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AN APPLICATION OF DARBO’S FIXED POINT THEOREM
TO A NONLINEAR QUADRATIC INTEGRAL EQUATION

OF VOLTERRA TYPE

Zeqing Liu a, Jeong Sheok Ume b, ∗ and Shin Min Kang c

Abstract. Using Darbo’s fixed point theorem, we establish the existence of mono-
tone solutions for a nonlinear quadratic integral equation of Volterra type in the
Banach space of real functions defined and continuous on a bounded and closed
interval.

1. Introduction and Preliminaries

It is known that the theory of integral equations is an important part of non-
linear analysis and frequently applicable in other branches of mathematics and in
mathematical physics, engineering, economics, biology as well in describing problems
connected with real world. The theory is now very developed with help of various
tools of functional analysis, topology and fixed point theory, etc. For details, we
refer to [1],[2], [5]-[14], [16] and [17] and the references therein. Recently, Banaś and
Martinon [5] studied the existence of monotone solutions for a nonlinear quadratic
integral equation of Volterra type.

The goal of this paper is to investigate the following nonlinear quadratic integral
equation of Volterra type

(1.1) x(t) = a(t)+b(t)x(t)
∫ t

0
u(t, s, x(s))ds+c(t)x2(t)

∫ t

0
v(t, s, x(s))ds, t ∈ [0, T ],

where the functions a, b, c, u and v are given while x = x(t) is an unknown func-
tion. If b(t) = 1, c(t) = 0, ∀t ∈ [0, T ], then equation (1.1) reduces to the equation
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discussed by Banaś and Martinon [5]. Using Darbo’s fixed point theorem, we estab-
lish the existence of monotone solutions for equation (1.1) in the Banach space of
real functions defined and continuous on the interval [0, T ]. An example is given to
illustrate the advantage of the result presented in this paper.

Throughout this paper, let R = (−∞,∞), R+ = [0,∞), I = [0, T ], (E, ‖ · ‖)
denote an infinite-dimensional Banach space with the zero element θ and B(θ, r)
stand for the closed ball centered at θ and with radius r. Let B(E) denote the family
of all nonempty bounded subsets of E and C(I) represent the classical Banach space
of all continuous functions acting from I into R with the standard norm

‖x‖ = max{|x(t)| : t ∈ I}, x ∈ C(I).

For any nonempty bounded subset X of C(I), x ∈ X and ε ≥ 0, put

ω(x, ε) = sup{|x(t)− x(s)| : t, s ∈ I, |t− s| ≤ ε},
ω(X, ε) = sup{ω(x, ε) : x ∈ X}, ω0(X) = lim

ε→0
ω(X, ε),

d(x) = sup{|x(s)− x(t)| − [x(s)− x(t)] : t, s ∈ I, t ≤ s},
d(X) = sup{d(x) : x ∈ X}, µ(X) = ω0(X) + d(X).

Remark 1.1. Banaś and Olszowy [4] proved that the function µ is a measure of
noncompactness in the space C(I) and the kernel ker µ of this measure includes
nonempty bounded sets X such that functions from X are equicontinuous and non-
decreasing on the interval I.

Theorem 1.1 ([3, 5]). Let D be a nonempty bounded closed convex subset of the
space E and let f : D → D be a continuous mapping such that µ(fA) ≤ kµ(A) for
any nonempty subset A of D, where k ∈ [0, 1) is a constant and µ is a measure of
noncompactness on B(E). Then f has a fixed point in D.

2. Existence of Monotone Solutions

In this section, we will study equation (1.1) under the following assumptions:
(i) a, b and c are in C(I) and are nondecreasing and nonnegative on the interval

I;
(ii) u and v : I × I × R → R are continuous functions such that u and v :

I × I × R+ → R+, and for any s ∈ I and x ∈ R+, u(·, s, x) and v(·, s, x) are
nondecreasing with respect to the first argument in I;

(iii) there exist two nondecreasing functions f and g : R+ → R+ satisfying
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|u(t, s, x)| ≤ f(|x|), |v(t, s, x)| ≤ g(|x|), for all t, s ∈ I and for each x ∈ R;

(iv) there exists a positive number r satisfying

‖a‖+ T‖b‖rf(r) + T‖c‖r2g(r) ≤ r and T [‖b‖f(r) + 2‖c‖rg(r)] < 1.

Theorem 2.1. Under Assumptions (i)-(iv), Equation (1.1) possesses at least one
solution x = x(t) which belongs to the space C(I) and is nondecreasing on the
interval I.

Proof. Let G be the operator defined on the space C(I) by the formula

(Gx)(t) = a(t) + b(t)x(t)
∫ t

0
u(t, s, x(s))ds

+ c(t)x2(t)
∫ t

0
v(t, s, x(s))ds, ∀x ∈ C(I), t ∈ I.(2.1)

It follows from Assumptions (i) and (ii) that Gx is continuous on I for any x ∈ C(I).
That is, G : C(I) → C(I). In view of (2.1) and Assumptions (i) and (iii), we deduce
that for any x ∈ C(I) and t ∈ I

|(Gx)(t)| ≤ a(t) + b(t)|x(t)|
∫ t

0
|u(t, s, x(s))|ds + c(t)x2(t)

∫ t

0
|v(t, s, x(s))|ds

≤ ‖a‖+ ‖b‖‖x‖
∫ t

0
f(|x(s)|)ds + ‖c‖‖x‖2

∫ t

0
g(|x(s)|)ds

≤ ‖a‖+ T‖b‖‖x‖f(‖x‖) + T‖c‖‖x‖2g(‖x‖),

which implies that

(2.2) ‖Gx‖ ≤ ‖a‖+ T‖b‖‖x‖f(‖x‖) + T‖c‖‖x‖2g(‖x‖), ∀x ∈ C(I).

Put

B+
r = {x ∈ B(θ, r) : x(t) ≥ 0, ∀t ∈ I}.

Obviously, B+
r is a nonempty closed bounded and convex set. Using Assumptions

(i)-(iv) and (2.2), we easily conclude that G maps not only B(θ, r) into itself, but
also transforms B+

r into itself. For any ε ≥ 0, put

α(ε, r) = sup{|u(t, s, x)− u(t, s, y)| : ∀t, s ∈ I, x, y ∈ [0, r], |x− y| ≤ ε},
β(ε, r) = sup{|v(t, s, x)− v(t, s, y)| : ∀t, s ∈ I, x, y ∈ [0, r], |x− y| ≤ ε},
γ(ε, r) = sup{|u(t, s, x)− u(p, s, x)| : ∀x ∈ [0, r], t, p, s ∈ I, |t− p| ≤ ε},
δ(ε, r) = sup{|v(t, s, x)− v(p, s, x)| : ∀x ∈ [0, r], t, p, s ∈ I, |t− p| ≤ ε}.(2.3)
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Now we show that G is continuous on B+
r . Let ε > 0, x, y ∈ B+

r , ‖x − y‖ ≤ ε and
t ∈ I. By virtue of Assumptions (i) and (iii), and (2.1) and (2.3), we infer that

|(Gx)(t)− (Gy)(t)|

≤ b(t)
∣∣∣x(t)

∫ t

0
u(t, s, x(s))ds− y(t)

∫ t

0
u(t, s, y(s))ds

∣∣∣

+ c(t)
∣∣∣x2(t)

∫ t

0
v(t, s, x(s))ds− y2(t)

∫ t

0
v(t, s, y(s))ds

∣∣∣

≤ ‖b‖[x(t)
∫ t

0
|u(t, s, x(s))− u(t, s, y(s))|ds + |x(t)− y(t)|

∫ t

0
u(t, s, y(s))ds]

+ ‖c‖[x2(t)
∫ t

0
|v(t, s, x(s))− v(t, s, y(s))|ds + |x2(t)− y2(t)|

∫ t

0
v(t, s, y(s))ds]

≤ ‖b‖[r
∫ t

0
α(ε, r)ds + ε

∫ t

0
f(y(s))ds] + ‖c‖[r2

∫ t

0
β(ε, r)ds + 2rε

∫ t

0
g(y(s))ds]

≤ T‖b‖[rα(ε, r) + εf(r)] + T‖c‖[r2β(ε, r) + 2rεg(r)],

which yields that

(2.4) ‖Gx−Gy‖ ≤ T‖b‖[rα(ε, r) + εf(r)] + T‖c‖[r2β(ε, r) + 2rεg(r)].

Since u and v are uniformly continuous on I × I × [0, r], it follows from (2.3) and
(2.4) that G is continuous on B+

r .
Let X be a nonempty subset of B+

r . For any ε > 0, x ∈ X and t, p ∈ I with
|t − p| ≤ ε, we may, without loss of generality, assume that t ≤ p. On account of
Assumptions (i)-(iii), (2.1) and (2.3), we arrive at the following estimates

|(Gx)(p)− (Gx)(t)|

≤ |a(p)− a(t)|+
∣∣∣b(p)x(p)

∫ p

0
u(p, s, x(s))ds− b(t)x(t)

∫ t

0
u(t, s, x(s))ds

∣∣∣

+
∣∣∣c(p)x2(p)

∫ p

0
v(p, s, x(s))ds− c(t)x2(t)

∫ t

0
v(t, s, x(s))ds

∣∣∣

≤ ω(a, ε) + |b(p)x(p)− b(t)x(t)|
∫ p

0
u(p, s, x(s))ds

+ b(t)x(t)
∫ p

0
|u(p, s, x(s))− u(t, s, x(s))|ds

+ b(t)x(t)
∫ p

t
u(t, s, x(s))ds + |c(p)x2(p)− c(t)x2(t)|

∫ p

0
v(t, s, x(s))ds

+ c(t)x2(t)
∫ p

0
|v(p, s, x(s))− v(t, s, x(s))|ds + c(t)x2(t)

∫ p

t
v(t, s, x(s))ds
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≤ ω(a, ε) + T [‖x‖ω(b, ε) + ‖b‖ω(x, ε)]f(‖x‖) + ‖b‖‖x‖[Tγ(ε, r) + 2(p− t)f(‖x‖)]
+ T‖x‖[‖x‖ω(c, ε) + 2‖c‖ω(x, ε)]g(‖x‖) + ‖c‖‖x‖2[Tδ(ε, r) + (p− t)g(‖x‖)]

≤ ω(a, ε) + T [rω(b, ε) + ‖b‖ω(x, ε)]f(r) + r‖b‖[Tγ(ε, r) + 2εf(r)]

+ rT [rω(c, ε) + 2‖c‖ω(x, ε)]g(r) + r2‖c‖[Tδ(ε, r) + εg(r)],

which means that

ω(GX, ε) ≤ ω(a, ε) + T [rω(b, ε) + ‖b‖ω(X, ε)]f(r) + r‖b‖[Tγ(ε, r) + 2εf(r)]

+ rT [rω(c, ε) + 2‖c‖ω(X, ε)]g(r) + r2‖c‖[Tδ(ε, r) + εg(r)].(2.5)

In the light of Assumptions (i) and (ii), (2.3) and (2.5), we derive that

(2.6) ω0(GX) = lim
ε→0

ω(GX, ε) ≤ T [‖b‖f(r) + 2r‖c‖g(r)]ω0(X).

In view of Assumptions (i)-(iii), we deduce that for any x ∈ X and t, p ∈ I with
t ≤ p, the following estimates can be derived,

|(Gx)(p)− (Gx)(t)| − [(Gx)(p)− (Gx)(t)]

=
∣∣∣a(p) + b(p)x(p)

∫ p

0
u(p, s, x(s))ds + c(p)x2(p)

∫ p

0
v(p, s, x(s))ds

− a(t)− b(t)x(t)
∫ t

0
u(t, s, x(s))ds− c(t)x2(t)

∫ t

0
v(t, s, x(s))ds

∣∣∣

− [a(p) + b(p)x(p)
∫ p

0
u(p, s, x(s))ds + c(p)x2(p)

∫ p

0
v(p, s, x(s))ds

− a(t)− b(t)x(t)
∫ t

0
u(t, s, x(s))ds− c(t)x2(t)

∫ t

0
v(t, s, x(s))ds]

≤ |a(p)− a(t)| − [a(p)− a(t)]

+
∣∣∣b(p)x(p)

∫ p

0
u(p, s, x(s))ds− b(t)x(t)

∫ t

0
u(t, s, x(s))ds

∣∣∣

− [b(p)x(p)
∫ p

0
u(p, s, x(s))ds− b(t)x(t)

∫ t

0
u(t, s, x(s))ds]

+
∣∣∣c(p)x2(p)

∫ p

0
v(p, s, x(s))ds− c(t)x2(t)

∫ t

0
v(t, s, x(s))ds

∣∣∣

− [c(p)x2(p)
∫ p

0
v(p, s, x(s))ds− c(t)x2(t)

∫ t

0
v(t, s, x(s))ds]

≤ |b(p)x(p)− b(t)x(t)|
∫ p

0
u(p, s, x(s))ds



180 Zeqing Liu, Jeong Sheok Ume & Shin Min Kang

+ b(t)x(t){
∫ p

t
u(p, s, x(s))ds +

∫ t

0
[u(p, s, x(s))− u(t, s, x(s))]ds}

− [b(p)x(p)− b(t)x(t)]
∫ p

0
u(p, s, x(s))ds

− b(t)x(t){
∫ p

t
u(p, s, x(s))ds +

∫ t

0
[u(p, s, x(s))− u(t, s, x(s))]ds}

+ |c(p)x2(p)− c(t)x2(t)|
∫ p

0
v(p, s, x(s))ds

+ c(t)x2(t){
∫ p

t
v(p, s, x(s))ds +

∫ t

0
[v(p, s, x(s))− v(t, s, x(s))]ds}

− [c(p)x2(p)− c(t)x2(t)]
∫ p

0
v(p, s, x(s))ds

− c(t)x2(t){
∫ p

t
v(p, s, x(s))ds +

∫ t

0
[v(p, s, x(s))− v(t, s, x(s))]ds}

≤ {|b(p)x(p)− b(t)x(t)| − [b(p)x(p)− b(t)x(t)]}
∫ p

0
u(p, s, x(s))ds

+ {|c(p)x2(p)− c(t)x2(t)| − [c(p)x2(p)− c(t)x2(t)]}
∫ p

0
v(p, s, x(s))ds

≤ {b(p)|x(p)− x(t)|+ x(t)|b(p)− b(t)|

− b(p)[x(p)− x(t)]− x(t)[b(p)− b(t)]}
∫ p

0
f(‖x‖)ds

+ {c(p)|x2(p)− x2(t)|+ x2(t)|c(p)− c(t)|

− c(p)[x2(p)− x2(t)]− x2(t)[c(p)− c(t)]}
∫ p

0
g(‖x‖)ds

≤ T‖b‖f(r){|x(p)− x(t)| − [x(p)− x(t)]}
+ T‖c‖g(r){|x2(p)− x2(t)| − [x2(p)− x2(t)]}

≤ T [‖b‖f(r) + 2r‖c‖g(r)]d(x).

This yields that

(2.7) d(GX) ≤ T [‖b‖f(r) + 2r‖c‖g(r)]d(X).

In view of (2.6) and (2.7), we see that

(2.8) µ(GX) = ω0(GX) + d(GX) ≤ T [‖b‖f(r) + 2r‖c‖g(r)]µ(X).

Thus Theorem 2.1 follows from Assumption (iv), (2.8), Theorem 1.1 and Remark
1.1. This completes the proof. ¤
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Remark 2.1. It follows from Theorem 2.1 that each solution of equation (1.1) is
positive provided that a(0) > 0.

Remark 2.2. In the case b(t) = 1 and c(t) = 0 for all t ∈ I, Theorem 2.1 reduces
to Theorem 3.1 of Banaś and Martinon [5].

The following example reveals that Theorem 2.1 generalizes essentially the result
of Banaś and Martinon [5].

Example 2.1. Consider the following nonlinear quadratic integral equation

(2.9) x(t) = 1 + 0.25
√

tx(t)
∫ t

0

√
(t + s)|x(s)|
1 + x2(s)

ds + 0.5t2x2(t)
∫ t

0

tx(s)
1 + s + |x(s)|ds.

Let

0 < T <
1√

0.25 +
√

2
,

1− 0.25T 2 −
√

(1− 0.25T 2)2 − 2T 4

T 4
≤ r <

1− 0.25T 2

T 4
,

a(t) = 1, b(t) = 0.25
√

t, c(t) = 0.5t2, ∀t ∈ I,

u(t, s, x) =

√
(t + s)|x|
1 + x2

, v(t, s, x) =
tx

1 + s + |x| , ∀(t, s, x) ∈ I × I ×R,

f(x) =
√

T , g(x) = T, ∀x ∈ R+.

It is easy to verify that the conditions of Theorem 2.1 are satisfied. Thus Theorem 2.1
and Remark 2.1 ensure that Equation (2.9) possesses at least one solution x ∈ C(I).
Moreover, it is positive and nondecreasing on the interval I. However, Theorem 3.1
of Banaś and Martinon [5] is not applicable for equation (2.9).

The following two examples show that condition (iv) in Theorem 2.1 can not be
omitted.

Example 2.2. Consider the following integral equation

(2.10) x(t) = 1 +
1
2
x(t)

∫ t

0
(2s + 1)ds +

1
2
x2(t)

∫ t

0
(2s + 1)ds, t ∈ [0, 1].

Let

T = 1, a(t) = 1, b(t) = c(t) =
1
2
, ∀t ∈ I,

u(t, s, x) = v(t, s, x) = 2s + 1, ∀(t, s, x) ∈ I × I ×R,

f(x) = g(x) = 4, ∀x ∈ R+.
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Then it is clear that above all conditions satisfy conditions in Theorem 2.1, except
the condition (iv). By simple calculation, for any r > 0,

‖a‖+ T‖b‖rf(r) + T‖c‖r2g(r) > r

and

T [‖b‖f(r) + 2‖c‖rg(r)] ≥ 1.

Thus condition (iv) in Theorem 2.1 is not satisfied. Moreover, x(t) of Equation

(2.10) does not exist in R for any t ∈
(

1
2

{
−1+

√
1 + 4× (6− 4

√
2)

}
, 1

]
. Therefore

condition (iv) in Theorem 2.1 is essential.

Example 2.3. Consider the following integral equation

(2.11) x(t) = 1 +
1
4
x(t)

∫ t

0
4ds +

1
4
x2(t)

∫ t

0
4ds, t ∈ [0, 4].

Let

T = 4, a(t) = 1, b(t) = c(t) =
1
4
, ∀t ∈ I,

u(t, s, x) = v(t, s, x) = 4, ∀(t, s, x) ∈ I × I ×R,

f(x) = g(x) = 4, ∀x ∈ R+.

Then it is clear that above all conditions satisfy conditions in Theorem 2.1, except
the condition (iv). Also x(t) of Equation (2.11) does not exist in R for any t ∈
(3− 2

√
2, 4]. Therefore condition (iv) in Theorem 2.1 is essential.
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3. J. Banaś & K. Goebel: Measures of noncompactness in Banach spaces. In Lecture Notes
in Pure and Applied Math., Volume 60, Marcel Dekker, New York, 1980.
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5. J. Banaś & A. Martinon: Monotonic solutions of a quadratic integral equation of Volterra
type. Computers Math. Applic. 47 (2004), 271-279.



AN APPLICATION OF DARBO’S FIXED POINT THEOREM 183
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