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CR MANIFOLDS OF ARBITRARY CODIMENSION
WITH A CONTRACTION

Sung-Yeon Kim

Abstract. Let (M, p) be a germ of a C∞ CR manifold of CR dimension n and CR
codimension d. Suppose (M, p) admits a C∞ contraction at p. In this paper, we

show that (M, p) is CR equivalent to a generic submanifold in Cn+d defined by a
vector valued weighted homogeneous polynomial.

Introduction

Let M be a smooth manifold of real dimension 2n+d. M is called a CR manifold
of CR dimension n and CR codimension d if there exist a vector bundle T cM ⊂ TM

of rank 2n and a bundle isomorphism J : T cM → T cM such that J ◦ J = −id and
[X,JY ] + [JX, Y ] = J{[X,Y ]− [JX, JY ]} for any local sections X and Y of T cM .
The last condition is the formal integrability of CR structure. The pair (T cM,J)
is called a CR structure over M . If d = 1, then M is called a CR manifold of
hypersurface type.

A C1 map f from a CR manifold M to another CR manifold M̃ is called a CR
map if df(v) ∈ T cM̃ and df ◦ J(v) = J̃ ◦ df(v) for all v ∈ T cM , where (T cM̃, J̃) is
the CR structure over M̃ . Let p ∈ M . A CR diffeomorphism f from M to itself is
called a contraction at p if f(p) = p and ‖dfp‖ < 1.

In [7], Kim and Yoccoz proved that if (M, p) is a germ of a C∞ CR manifold
of hypersurface type admitting a C∞ contraction f at p, then (M, p) is CR equiva-
lent to a real hypersurface in a complex space defined by a weighted homogeneous
polynomial.
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In this paper we show that the same is true for CR manifolds of arbitrary CR
codimension.

Theorem 1. Let (M, p) be a germ of a C∞ CR manifold with CR dimension n and
CR codimension d. Suppose (M, p) admits a C∞ contraction at p. Then there exists
a C∞ CR embedding Φ : (M,p) → (Cn+d, 0) such that

Φ(M) = {(z, w) ∈ Cn × Cd : Im w = P (z, z̄,Re w)}
for some weighted homogeneous vector valued real polynomial P (z, z̄,Re w).

The main novelty of this paper is Theorem 3. With this theorem and approxima-
tion of (M, 0) by Cω CR manifolds(Lemma 2), we can prove Theorem 1 by following
the same argument in §3 of [7].

1. Preliminaries

Let M be a C∞ CR manifold of CR dimension n, CR codimension d and let
(T cM, J) be the CR structure of M . Define subbundles T 1,0M and T 0,1M of the
complexified tangent bundle CTM by

T 1,0
p M := {v −√−1J(v) : v ∈ T c

pM}
and

T 0,1
p M := {v +

√−1J(v) : v ∈ T c
pM}.

Then T 1,0M and T 0,1M are complex vector bundles of dimension n over M and it
holds that

T 1,0M = T 0,1M

and

T 1,0M ∩ T 0,1M = {0}.
A section of T 1,0M is called a (1, 0) vector field and a section of T 0,1M is called a

(0, 1) vector field. Denote by Γ(M, T 1,0M) the set of all smooth sections of T 1,0M .
Then the integrability condition of the CR structure implies that

[L, L̃] ∈ Γ(M, T 1,0M)

for any L, L̃ ∈ Γ(M, T 1,0M).
Assume that (M, p) is a germ of a C∞ real submanifold of real codimension d in

Cn+d. (M, p) is said to be generic if M has a local defining function ρ = (ρ1, . . . , ρd)
near p such that ∂ρ1, . . . , ∂ρd are C-linearly independent. In this case, (M,p) inherits
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a CR structure from the complex structure of Cn+d with CR dimension n and CR
codimension d.

The following lemma is proved in [1].

Lemma 1. Let (M, 0) be a germ of a Cω generic real submanifold in Cn+d with
real codimension d. Then there exists a holomorphic map Q : Cn × Cn × Cd → Cd

satisfying Q(z, 0, τ) ≡ Q(0, χ, τ) ≡ τ such that

M = {(z, w) ∈ Cn × Cd : w = Q(z, z̄, w̄)}.
Now let (M, p) be a germ of a C∞ (abstract) CR manifold of CR dimension n

and CR codimension d. Choose local coordinates (x, y, t) ∈ Rn × Rn × Rd centered
at p such that

T 1,0
p M = span

{
∂

∂zj
, j = 1, . . . , n

}
,

where zj = xj +
√−1yj . Then there exist C∞ functions ξ k

j and η a
j , j, k = 1, . . . , n

and a = 1, . . . , d such that

Lj =
∂

∂zj
+

n∑

k=1

ξ k
j (x, y, t)

∂

∂z̄k
+

d∑

a=1

η a
j (x, y, t)

∂

∂ta
, j = 1, . . . , n

span T 1,0M . Let

L
(m)
j =

∂

∂zj
+

n∑

k=1

ξ
(m),k
j (x, y, t)

∂

∂z̄k
+

d∑

a=1

η
(m),a
j (x, y, t)

∂

∂ta
, j = 1, . . . , n,

where ξ
(m),k
j , η

(m),a
j are m-th order Taylor polynomials of ξ k

j and η a
j at 0, respec-

tively. In [1], it is proved that if (M,p) is a Cω CR manifold, then there exists a Cω

CR embedding Φ : (M, p) → (Cn+d, 0) such that Φ(M) is generic. By this fact, we
can proved the following.

Lemma 2. Let (M, 0) be a germ of a C∞ CR manifold of CR dimension n and
CR codimension d. Then for any positive integer m, there exists a C∞ embedding
Φ : (M, p) → (Cn+d, 0) such that

Φ(M) = {(z, w) ∈ Cn × Cd : w = Q(z, z̄, w̄)}
for some holomorphic map Q : Cn×Cn×Cd → Cd satisfying Q(z, 0, τ) ≡ Q(0, χ, τ) ≡
τ and that

Φ∗(L)/T 1,0Φ(M) ∈ o(m)

for all L ∈ Γ(M, T 1,0M), where T 1,0Φ(M) is the (1, 0) vector bundle over Φ(M)
induced by the complex structure of Cn+d.
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2. Weighted Homogeneous Generic CR Manifolds

Let f : (CN , 0) → (CN , 0) be a local biholomorphic map at 0 such that ‖df0‖ < 1
and let df0 = L. Write

L = D + A,

where D is diagonal, A is nilpotent and DA = AD.

Definition 1. A holomorphic polynomial map G : (CN , 0) → (CN , 0) is said to
satisfy the resonance condition with respect to f , if G ◦D = D ◦G.

The next theorem gives a normalization for holomorphic contractions. See [3] as
a reference.

Theorem 2. (Poincaré-Dulac) Suppose that f is a local biholomorphic map fixing 0
such that ‖df(0)‖ < 1. Then there exists a local biholomorphic map h fixing 0 such
that dh(0) = id and that h ◦ f ◦ h−1satisfies the resonance condition with respect to
f .

Let

D = diag(λ1, . . . , λN ).

Assume that

λ = max
j

(|λj |, j = 1, . . . , N).

Define mj , j = 1, . . . , N , by

|λj | = λmj .

For ε > 0, define Sε : CN → CN by

Sε(z1, . . . , zN ) = (εm1z1, . . . , ε
mN zN ).

Definition 2. A polynomial P defined in CN is said to have weight ω with respect
to f if

P ◦ Sε = εωP̃ + o(εω)

as ε → 0 for some non-zero polynomial P̃ . The zero polynomial is understood as
having weight ∞. We denote by wtf (P ) the weight of P with respect to f .

If a polynomial map G satisfies G ◦ D = D ◦ G, then one can easily see that
G ◦ Sε = Sε ◦G. Hence we have the following lemma.
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Lemma 3. Suppose G : (CN , 0) → (CN , 0) satisfies the resonance condition with
respect to f . If dG(0) is invertible, then G preserves the weight with respect to f ,
i.e., for any polynomial P , it holds that

wtf (P ) = wtf (P ◦G).

In this section we show the following.

Theorem 3. Let (M, 0) be a germ of a Cω generic submanifold in Cn+d with real
codimension d. Assume that (M, 0) admits a Cω CR contraction at 0. Then (M, 0)
is biholomorphically equivalent to a real submanifold defined by

w = Q(z, z̄, w̄)

for some weighted homogeneous Cd-valued polynomial Q such that

(z, 0, τ) ≡ Q(0, χ, τ) ≡ τ.

Proof. Assume that

T 1,0
0 M = span

{
∂

∂zj
, j = 1, . . . , n

}
.

After a linear change of coordinates, we may assume that M is defined by

w = Q(z, z̄, w̄)

for some vector valued holomorphic function Q(z, χ, τ) such that

Q(z, χ, τ) = τ + o(1).

Now let f be a Cω CR contraction at 0. Since M and f are real analytic, f extends
holomorphically to a neighborhood of 0. Then by Poincaré-Dulac Theorem, we can
choose a local biholomorphic map h : (Cn+d, 0) → (Cn+d, 0) with h = id + o(1) such
that h ◦ f ◦ h−1 satisfies the resonance condition with respect to f . Hence we may
assume that f itself satisfies the resonance condition with respect to f .

Let λj , j = 1, . . . , n, be the eigenvalues of df0 restricted to T 1,0
0 M and let µa,

a = 1, . . . , d, be the eigenvalues of df0 restricted to CT0M/(T 1,0
0 M+T 0,1

0 M). Assume
that

|λ1| ≤ · · · ≤ |λn|
and

|µ1| ≤ · · · ≤ |µd|.
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Since f preserves T 1,0M , we may assume that

df0

(
∂

∂zj

)
= λj

∂

∂zj
mod

∂

∂z1
, . . . ,

∂

∂zj−1
.

Since f preserves M and M is defined by Q satisfying Q(z, χ, τ) = τ +o(1), we have

df0

(
∂

∂wa

)
∈ span

{
∂

∂w1
, . . . ,

∂

∂wd

}
.

Therefore we may assume that

(2.1) df0

(
∂

∂wa

)
= µa

∂

∂wa
mod

∂

∂w1
, . . . ,

∂

∂wa−1
.

Let Q = (Q1, . . . ,Qd). Write

Qa = Qa,− +Qa,0 +Qa,+, a = 1, . . . , d,

where Qa,−, Qa,0, Qa,+ consist of monomials with weight < wtf (wa), = wtf (wa)
and > wtf (wa), respectively. We will show that for each a, it holds that

Qa,− ≡ Qa,+ ≡ 0

and hence M is defined by

w = Q0(z, z̄, w̄),

where Q0 := (Q1,0, . . . ,Qd,0).
Since f satisfies the resonance condition with respect to f , we can apply Lemma

3. Therefore the manifold defined by

w = Q−(z, z̄, w̄)

is invariant under f , where Q− := (Q1,−, . . . ,Qd,−). Suppose that Qa,− 6≡ 0 for
some a. Let `0 be the smallest degree of non-trivial terms in Qa,−, a = 1, . . . , d.
Write

Qa,− = Q(`0)
a,− + o(`0).

Let Q(`0)
− := (Q(`0)

1,− , . . . ,Q(`0)
d,− ). Then real submanifold defined by

w = Q(`0)
− (z, z̄, w̄)

is invariant under df0. Now suppose Q(`0)
1,− 6≡ 0. Since we assumed (2.1), this im-

plies that by considering lexicographic ordering, there exists a nontrivial monomial
α(z, z̄, w̄) in Q(`0)

1,− (z, z̄, w̄) such that

α ◦D = µ1 · α.
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But this means that Q(`0)
1,− contains a nontrivial term of weight wtf (w1), which is a

contradiction. Hence we conclude that

Q(`0)
1,− ≡ 0.

By induction on a, a = 1, . . . , d and by the same argument, we can show that

Q(`0)
a,− ≡ 0, ∀a.

Similarly, we can prove that
Qa,+ ≡ 0, ∀a.

Since Q0 is a weighted homogeneous polynomial map such that Q0(z, χ, τ) =
τ +o(1), after a holomorphic change of coordinates preserving weighted homogeneity
of Q0, we can remove all harmonic terms in Q(z, z̄, w̄). Therefore can show that M

is defined by
w = Q(z, z̄, w̄)

for some new weighted homogeneous polynomial map Q such that Q(z, 0, τ) =
Q(0, χ, τ) = τ . ¤

3. Proof of Theorem 1

The proof presented in this section is a modification of the proof in §3 of [7].

Let (M, p) be a germ of a C∞ CR manifold of CR dimension n and CR codimen-
sion d and let f be a C∞ contraction at p. By Lemma 2, we can show that for any
positive integer m, there exists a C∞ embedding Φ : (M, p) → (Cn+d, 0) such that

Φ(M) = {(z, w) ∈ Cn × Cd : w = Q(z, z̄, w̄)}
for some holomorphic map Q(z, χ, τ) satisfying Q(z, χ, τ) = τ + o(1) and

Φ∗(Lj)/T 1,0Φ(M) ∈ o(m), j = 1, . . . , n

for a basis {Lj}j=1,...,n of (1, 0) vector fields of M .
Write M̃ := Φ(M). Consider

f̃ := Φ ◦ f ◦ Φ−1 : M̃ → M̃.

Since f is a CR map, by taking m > 1, we can show that df̃0 is an (n+d) by (n+d)
complex matrix. Hence we can extend f̃ as a local C∞ diffeomorphism of Cn+d at 0
such that ‖df̃0‖ < 1. Then by the Normalization theorem for real contractions([7]),
we can choose a local C∞ diffeomorphism h of Cn+d at 0 such that h−1 ◦ f̃ ◦ h has
formal power series satisfying the resonance condition with respect to f̃ .
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By following the same argument in §3 of [7] using Theorem 3, we can choose a
Cω generic submanifold M̂ defined by

M̂ = ({(z, w) ∈ Cn × Cd : w = Q0(z, z̄, w̄)}

for a weighted homogeneous polynomial map Q0 with Q0(z, 0, τ) = Q0(0, χ, τ) = τ

and a local C∞ diffeomorphism Ψ : (Cn+d, 0) → (Cn+d, 0) with Ψ = id + o(m) such
that

Ψ(M̃) = M̂.

Assume that on a small neighborhood U of 0 in M , it holds that

‖f(x)‖ ≤ λ‖x‖

for all x ∈ U . Since f is a contraction at 0, we may assume that λ < 1. Choose m

large enough so that on U , it holds that

‖df−1‖ λm ≤ 1
2
.

Then by following the same argument in Lemma 3.1 of [7], we can prove the following
lemma, which will complete the proof.

Lemma 4. The map Ψ ◦ Φ : (M, 0) → (M̂, 0) is a CR diffeomorphism.
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