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ESTIMATION OF DIFFERENCE FROM HÖLDER’S INEQUALITY

Yong-In Kim

Abstract. We give an upper bound for the estimation of the difference between
both sides of the well-known Hölder’s inequality. Moreover, an upper bound for
the estimation of the difference of the integral form of Hölder’s inequality is also
obtained. The results of this paper are natural generalizations and refinements of
those of [2-4].

1. Introduction

It is well-known that the following Hölder’s inequality [1]

(1)
m∑

i=1




n∏

j=1

aij


 ≤

n∏

j=1

(
m∑

i=1

a
pj

ij

) 1
pj

,

where aij > 0 for 1 ≤ i ≤ m and 1 ≤ j ≤ n and pj > 1 with
∑n

j=1 p−1
j = 1, together

with its integral form

(2)
∫ b

a

(
n∏

k=1

fk(x)

)
dx ≤

n∏

k=1

(∫ b

a
fpk

k (x)dx

) 1
pk

,

where fk ∈ C([a, b], (0, +∞)) for k = 1, 2, · · · , n, plays an important role in the study
of inequalities and in the field of applied mathematics. For example, the well-known
Cauchy’s inequality (

n∑

i=1

xiyi

)2

≤
(

n∑

i=1

x2
i

)(
n∑

i=1

y2
i

)

is a special case of (1) when n = 2 and p1 = p2 = 2. In many cases, we need to
know not only the inequalities, but also the estimations of the differences between
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the right hand sides and left hand sides of these inequalities. For instance, Cauchy’s
inequality is a direct consequence of the following Lagrange Identity

(
n∑

i=1

x2
i

)(
n∑

i=1

y2
i

)
−

(
n∑

i=1

xiyi

)2

=
∑

1≤i<j≤n

(xiyj − xjyi)2.

In general, however, such a simple equality does not exist. Sometimes, the estima-
tions of the differences between the right hand sides and left hand sides of these
inequalities and the conditions at which these inequalities become equalities play
important roles in the study and application of these inequalities. As for Hölder’s
inequality, many generalizations and refinements have been obtained so far, see, for
example, [1–6] and the references therein. In [2, 3, 4], by using Young’s inequality
and Ozeki’s inequality, the authors discussed the maximum of the difference

Dp(a, b, w) :=

(
n∑

k=1

wka
p
k

) 1
p

(
n∑

k=1

wkb
q
k

) 1
q

−
n∑

k=1

wkakbk,

where w = (w1, w2, · · · , wn) is a weight and p, q > 1 with p−1 + q−1 = 1 and
ak, bk, k = 1, 2, · · · , n are positive numbers such that

0 < m1 ≤ ak ≤ M1 and 0 < m2 ≤ bk ≤ M2, k = 1, 2, · · · , n

for some positive constants m1, m2,M1 and M2. If we replace w
1/p
k ak and w

1/q
k bk by

ak and bk for k = 1, 2, · · · , n respectively, then we have

Dp(a, b, w) = Dp(a, b) =

(
n∑

k=1

ap
k

) 1
p

(
n∑

k=1

b
q
k

) 1
q

−
n∑

k=1

akbk.

Hence we need only to consider the case where w = (1, 1, · · · , 1).

2. Main Results

The main results of this paper are the followings:

Theorem 1. Let aij > 0 for i = 1, 2, · · · ,m and j = 1, 2, · · · , n and let pk > 1
for k = 1, 2, · · · , n with

∑n
k=1 p−1

k = 1. Assume that there exist positive constants
Aj , Bj , j = 1, 2, · · · , n such that

(3) 0 < Aj ≤ aij ≤ Bj , i = 1, 2, · · · ,m, j = 1, 2, · · · , n.

Let

∆(a, p) :=
n∏

j=1

(
m∑

i=1

a
pj

ij

) 1
pj

−
m∑

i=1




n∏

j=1

aij


 .
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Then, we have the following estimation:

(4) 0 ≤ ∆(a, p) ≤ m




n∏

j=1

Bj


 ·

n∑

k=1

1
pk

(
Bk

Ak

)pk

ln

(
Bpk

k∏n
j=1 Aj

)
.

Moreover, the constant in the right hand side of (4) is sharp.

Similarly, we have the following estimation of the difference of the integral form
of Hölder’s inequality.

Theorem 2. Let pk > 1 for k = 1, 2, · · · , n with
∑n

k=1 p−1
k = 1. Assume that

fk ∈ C([a, b], (0, +∞)) for k = 1, 2, · · · , n and there exist positive constants Ck and
Dk for k = 1, 2, · · · , n such that

(5) 0 < Ck ≤ fk(x) ≤ Dk, k = 1, 2, · · · , n, x ∈ [a, b].

Let

Σ(f, p) :=
n∏

k=1

(∫ b

a
fpk

k (x)dx

) 1
pk −

∫ b

a

(
n∏

k=1

fk(x)

)
dx.

Then we have the following estimate:

(6) 0 ≤ Σ(f, p) ≤ (b− a)

(
n∏

k=1

Dk

)
·

n∑

k=1

1
pk

(
Dk

Ck

)pk

ln

(
Dpk

k∏n
j=1 Cj

)
.

Moreover, the constant in the right hand side of (6) is sharp.
The following corollaries are direct consequences of Theorem 1 and Theorem 2

and so we omit the proofs of them:

Corollary 1. Let Ak = A, Bk = B for k = 1, 2, · · · , n in Theorem 1. Then we
have

0 ≤ ∆(a, p) ≤ (mBn) ·
n∑

k=1

1
pk

(
B

A

)pk

ln
(

Bpk

An

)
.

Corollary 2. Let Ck = C, Dk = D for k = 1, 2, · · · , n in Theorem 2. Then we
have

0 ≤ Σ(f, p) ≤ (b− a)Dn ·
n∑

k=1

1
pk

(
D

C

)pk

ln
(

Dpk

Cn

)
.

Corollary 3. Let n = 2 in Theorem 1. Assume that ak, bk, k = 1, 2, · · · ,m

are positive numbers and that there exist positive constants Ck, Dk, k = 1, 2 such
that 0 < C1 ≤ ak ≤ D1, 0 < C2 ≤ bk ≤ D2 for k = 1, 2, · · · ,m and that
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p > 1, q = p
p−1 > 1. Then we have

(7)
0 ≤

(
m∑

k=1

ap
k

) 1
p

(
m∑

k=1

bq
k

) 1
q

−
m∑

k=1

akbk

≤ mD1D2 ·
[
1
p

(
D1

C1

)p

ln
(

Dp
1

C1C2

)
+

1
q

(
D2

C2

)q

ln
(

Dq
2

C1C2

)]
.

Moreover, the constant in the right hand side of (7) is the best possible.

Corollary 4. Let n = 2 in Theorem 2. Assume that f, g ∈ C([a, b], (0,+∞))
and that there exist positive constants δk,∆k, k = 1, 2 such that 0 < δ1 ≤ f(x) ≤
∆1, 0 < δ2 ≤ g(x) ≤ ∆2 for all x ∈ [a, b] and that p > 1, q = p

p−1 > 1. Then we
have

(8)
0 ≤

(∫ b

a
fp(x)dx

) 1
p

·
(∫ b

a
gq(x)dx

) 1
q

−
∫ b

a
f(x)g(x)dx

≤ (b− a)∆1∆2 ·
[
1
p

(
∆1

δ1

)p

ln
(

∆p
1

δ1δ2

)
+

1
q

(
∆2

δ2

)q

ln
(

∆q
2

δ1δ2

)]
.

Moreover, the constant in the right hand side of (8) is the best possible.

3. Proofs of Theorems

Consider a continuous function h : (−∞, +∞) → (0, +∞) defined by

(9) h(t) =
n∏

k=1




m∑

i=1




n∏

j=1

aij




1−t

atpk
ik




1
pk

.

Then h ∈ C∞ and note that (1) is equivalent to the following inequality:

(10) h(0) =
m∑

i=1

n∏

j=1

aij ≤
n∏

j=1

(
m∑

i=1

a
pj

ij

) 1
pj

= h(1).

From the above observation, we see that the function h(t) plays a crucial role in
proving the Theorem 1. In fact, we have the following:

Lemma 1. Let the function h be defined as in (9). Then h ∈ C∞ is a concave
function, that is, h′′(t) ≥ 0 ∀ t ∈ R and h takes its minimum at t = 0. Moreover,
h′′(t0) = 0 at some t0 ∈ R if and only if

(11)
apk

ik∏n
j=1 aij

=
apk

jk∏n
l=1 ajl
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for all 1 ≤ i, j ≤ m, 1 ≤ k ≤ n. In this case, h(t) ≡ h(0) = constant and
h′(t) ≡ h′′(t) ≡ 0. If (11) does not hold, then h is a strictly concave function, i.e.,
h′′(t) > 0 ∀ t ∈ R and h′(t)t > 0 for all t 6= 0.

Proof. Let

(12) bi =
n∏

j=1

aij , dik =
apk

ik

bi
=

apk
ik∏n

j=1 aij
, 1 ≤ i ≤ m, 1 ≤ k ≤ n.

Then h(t) can be written as

h(t) =
n∏

k=1

[
m∑

i=1

bid
t
ik

] 1
pk

.

Define a C∞ function H : R→ R by H(t) = lnh(t). Then we have

H(t) =
n∑

k=1

1
pk

ln

(
m∑

i=1

bid
t
ik

)
,

H ′(t) =
n∑

k=1

1
pk

∑m
i=1 bid

t
ik ln dik∑m

i=1 bidt
ik

,

and

H ′′(t) =
n∑

k=1

1
pk

∑
1≤i<j≤m bibjd

t
ikd

t
ij(ln dik − ln djk)2

(
∑m

i=1 bidt
ik)

2
≥ 0.

From (12) and the relation
∑n

k=1 p−1
k = 1 and the expression of H ′(t), we have

H ′(0) =
n∑

k=1

1
pk

∑m
i=1 bi ln dik∑m

i=1 bi

=

(
m∑

i=1

bi

)−1 n∑

k=1

1
pk

m∑

i=1

bi ln dik

=

(
m∑

i=1

bi

)−1 m∑

i=1

bi

n∑

k=1

1
pk

ln dik

=

(
m∑

i=1

bi

)−1 m∑

i=1

bi

n∑

k=1

1
pk

ln
apk

ik

bi

=

(
m∑

i=1

bi

)−1 m∑

i=1

bi

(
n∑

k=1

ln aik −
n∑

k=1

1
pk

ln bi

)

=

(
m∑

i=1

bi

)−1 m∑

i=1

bi (ln bi − ln bi) = 0.

Hence we have h′(0) = h(0)H ′(0) = 0.
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Moreover, we see that H ′′(t0) = 0 for some t0 ∈ R if and only if

dik = djk, 1 ≤ i < j ≤ m, k = 1, 2, · · · , n

which is equivalent to (11) by (12). In this case, H ′′(t) ≡ 0, and so H ′(t) ≡ H ′(0) =
0. Since h′(t) = h(t)H ′(t) and

h′′(t) = h(t)
[
H ′′(t) +

(
H ′(t)

)2
]
,

we also have h′′(t) = h′(t) = 0 ∀t ∈ R. If (11) does not hold, then H ′′(t) > 0 ∀t ∈ R
and hence we have h′′(t) > 0 ∀ t ∈ R and h′(t)t > 0 ∀ t 6= 0 ¤

Proof of Theorem 1. If the equality (11) holds, then by Lemma 1, we have h(t) ≡
h(0) =constant, in particular, we have h(1) = h(0), and hence ∆(a, p) = 0. Oth-
erwise, h′(t)t > 0 ∀t 6= 0 and h′′(t) > 0 ∀t ∈ R. This implies that there exists a
τ ∈ (0, 1) such that ∆(a, p) = h(1) − h(0) = h′(τ) < h′(1). But it follows from
h′(t) = h(t)H ′(t) that h′(1) = h(1)H ′(1). Since the equality can be achieved, the
right hand side of (4) is sharp. Now the conclusion of Theorem 1 follows from the
expressions of h(1), H ′(1) and the assumption (3). ¤

The proof of Theorem 2 goes in parallel to that of Theorem 1 and so we omit
the details of it with the following Lemmma 2, from which it follows immediately.
Let the conditions of Theorem 2 hold. Consider a C∞ function g : R → (0, +∞)
defined by

(13) g(t) =
n∏

k=1




∫ b

a




n∏

j=1

fj(x)




1−t

f tpk
k (x)dx




1
pk

.

Then (2) is equivalent to g(0) ≤ g(1). Now we have the following:

Lemma 2. Let the function g be defined as in (13). Then g ∈ C∞ is a concave
function, i.e., g′′(t) ≥ 0 ∀ t ∈ R and it takes its minimum at t = 0. Moreover,
g′′(t0) = 0 for some t0 ∈ R if and only if

fk(x) ≡ constant, ∀ x ∈ [a, b], 1 ≤ k ≤ n.

In this case, g(t) ≡ g(0) = constant and g′(t) ≡ g′′(t) ≡ 0. Otherwise, g is a strictly
concave function, i.e., g′′(t) > 0 ∀ t ∈ R and g′(t)t > 0 for all t 6= 0.

Proof. Let

(14) F (x) =
n∏

k=1

fk(x), Fk(x) =
fpk

k (x)
F (x)

, x ∈ [a, b], k = 1, 2, · · · , n.
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Then g(t) can be written as

g(t) =
n∏

k=1

[∫ b

a
F (x)F t

k(x)dx

] 1
pk

.

Define a function G : R→ R by G(t) = ln g(t). Then G ∈ C∞ and

g′(t) = G′(t)g(t), g′′(t) = g(t)
[
G′′(t) +

(
G′(t)

)2
]
.

As in the proof of Lemma 1, we can show that g′(0) = 0 and

G′(t) =
n∑

k=1

1
pk

∫ b

a
F (x)F t

k(x) lnFk(x)dx

∫ b

a
F (x)F t

k(x)dx

,

G′′(t) =
n∑

k=1

1
pk

∫ b

a

∫ b

a
F (x)F (y)F t

k(x)F t
k(y) (ln Fk(x)− ln Fk(y))2 dxdy

2
(∫ b

a
F (x)F t

k(x)dx

)2 ≥ 0.

Moreover, it follows from the expression of G′′(t) that the equality G′′(t0) = 0 holds
for some t0 ∈ R if and only if Fk(x) = Fk(y) ∀x, y ∈ [a, b], that is, fpk

k (x)/F (x) =
fpk

k (y)/F (y) ∀x, y ∈ [a, b], k = 1, 2, · · · , n, which is equivalent to Fk(x) =constant
∀x ∈ [a, b], k = 1, 2, · · · , n. In this case, we get from the relation of g′′ and G′′ that
g′′(t) = g′(t) = g′(0) ≡ 0 and g(t) = g(0) =constant. Otherwise, g′′(t) > 0 for all
t ∈ R and it follows from g′(0) = 0 that g′(t)t > 0 ∀ t 6= 0. ¤
Example 1. Let p = q = 2 and replace m by n in Corollary 3. Then we obtain

(15)
0 ≤

[(
n∑

k=1

a2
k

)(
n∑

k=1

b2
k

)] 1
2

−
n∑

k=1

akbk

≤ n

2
D1D2

[(
D1

C1

)2

ln
(

D2
1

C1C2

)
+

(
D2

C2

)2

ln
(

D2
1

C1C2

)]
.

In particular, if D1 = D2 = D and C1 = C2 = C, we have

(16) 0 ≤
[(

n∑

k=1

a2
k

)(
n∑

k=1

b2
k

)] 1
2

−
n∑

k=1

akbk ≤ 2nD4

C2
ln

(
D

C

)
.

Moreover, the right hand sides of (15) and (16) are sharp.
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Example 2. Let p = q = 2 in Corollary 4. Then we have

(17)
0 ≤

[(∫ b

a
f2(x)dx

)(∫ b

a
g2(x)dx

)] 1
2

−
∫ b

a
f(x)g(x)dx

≤ (b− a)
2

·∆1∆2

[(
∆1

δ1

)2

ln
(

∆2
1

δ1δ2

)
+

(
∆2

δ2

)2

ln
(

∆2
2

δ1δ2

)]
.

In particular, if ∆1 = ∆2 = ∆ and δ1 = δ2 = δ, we have
(18)

0 ≤
[(∫ b

a
f2(x)dx

)(∫ b

a
g2(x)dx

)] 1
2

−
∫ b

a
f(x)g(x)dx ≤ 2(b− a)

∆4

δ2
ln

(
∆
δ

)
.

Moreover, the right hand sides of (17) and (18) are sharp.

Example 3. Consider the weighted difference

Dp(a, b, w) =

(
n∑

k=1

wka
p
k

) 1
p

(
n∑

k=1

wkb
q
k

) 1
q

−
n∑

k=1

wkakbk

where w = (w1, w2, · · · , wn) is a weight and p, q > 1 with p−1 + q−1 = 1 and
ak, bk, wk, k = 1, 2, · · · , n are positive numbers such that

0 < m1 ≤ ak ≤ M1, 0 < m2 ≤ bk ≤ M2, 0 < γ ≤ wk ≤ Γ, k = 1, 2, · · · , n

for some positive constants m1, m2,M1,M2, γ and Γ. Setting ak = w
1
p

k ak and bk =

w
1
q

k bk for k = 1, 2, · · · , n, then it follows from Corollary 3 that 0 ≤ Dp(a, b, w) and
(19)

Dp(a, b, w) ≤ nΓ2M1M2

γ

[
1
p

(
M1

m1

)p

ln
(

ΓMp
1

γm1m2

)
+

1
q

(
M2

m2

)q

ln
(

ΓM q
2

γm1m2

)]
.

Moreover, the right hand side of (19) is sharp.

Remark. From Theorem 1 and Theorem 2 as well as example 3, we see that the
results of this paper are natural generalizations and refinements of the results of
[2-4].
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2. S. Izumino: Ozeki’s method on Hölder’s inequality. Math. Japon. 50 (1999), 41-551.
3. S. Izumino, H. Mori & Y. Seo: On Ozeki’s inequality. Math.Inequal. Appl. 4 (2001),

163-187.



ESTIMATION OF DIFFERENCE FROM HÖLDER’S INEQUALITY 197

4. S. Izumino, J. Pecaric & M. Tominaga: Difference derived from weighted Hölder’s
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