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PROPERTIES OF SOLUTIONS OF LINEAR DIFFERENTIAL
EQUATIONS IN THE COMPLEX PLANE

Zong-Xuan Chen a and Kwang Ho Shon b

Abstract. We research the properties of solutions of general higher order homoge-
neous linear differential equations and apply the hyper order to obtain more precise
estimation for the growth of solutions of infinite order.

1. Introduction and Results

The complex differential equations in the complex plane C have been an active
research area. Meanwhile, investigation of the complex differential equations in
the unit disc ∆ = {z : |z| < 1} also is paid attention toby CH. Pommerenke [5],
J. Heittokangas [4], I. Chyzhykov, G. Gundersen and J. Heittokangas [2], etc. In
this paper, we obtain some precise estimations of the order and the hyper order of
solutions for some linear differential equations in ∆. We assume that the reader is
familiar with the fundamental results and the standard notations of the Nevanlinna’s
value distribution theory of meromorphic functions in C and in ∆. (e.g., see [3, 6]).

The order of a meromorphic function f in ∆ is defined by

σ(f) = lim sup
r→1−

log+ T (r, f)
log 1

1−r

,

where T (r, f) is the Nevanlinna characteristic function of f(z). For an analytic
function f in ∆, we also define

σM (f) = lim sup
r→1−

log+ log+ M(r, f)
log 1

1−r

,

where M(r, f) is the maximum value of |f(z)| on |z| = r.
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We define the hyper-order of f in ∆ similarly as in the plane case

σ2(f) = lim sup
r→1−

log+ log+ T (r, f)
log 1

1−r

.

If f is an analytic function in ∆, we define

σM2(f) = lim sup
r→1−

log+ log+ log+ M(r, f)
log 1

1−r

.

Definition 1. A meromorphic function f in ∆ is called admissible, [non-admissible,
resp.] if and only if

lim sup
r→1−

T (r, f)
log 1

1−r

= ∞,

[
lim sup
r→1−

T (r, f)
log 1

1−r

< ∞
]

.

Theorem 1. Let Aj (j = 0, . . . , k − 1) be analytic in ∆ and A0 be admissible.
Suppose that σM (Aj) < σM (A0) = µ < ∞, for j = 1, . . . , k − 1; or σM (A0) = 0, Aj

are non-admissible for j = 1, . . . , k − 1. Then all solutions f(6≡ 0) of the equation

(1.1) f (k) + Ak−1(z)f (k−1) + · · ·+ A0(z)f = 0

in ∆ satisfy that σ(f) = ∞ and σ2(f) = µ.

Theorem 2. Let Aj (j = 0, . . . , k − 1) be analytic in ∆, σM (Aj) ≤ µ, (µ > 0 is
a constant). Suppose that A0(z) satisfies that there exists a set H ⊂ [0, 2π) with
linear measure mH > 0 such that for any ϕ ∈ H, there exist constants γ = γ(ϕ)
and δ = δ(ϕ) satisfying 0 ≤ δ < γ and

(1.2) |A0(z)| ≥ exp
{

γ + o(1)
(1− |z|)µ

}
,

(1.3) |Aj(z)| ≤ exp
{

δ + o(1)
(1− |z|)µ

}
, (j = 1, . . . , k − 1).

Then all solutions f(6≡ 0) of the equation (1.1) satisfy σ2(f) = µ.

2. Lemmas for Proofs of Theorems

Lemma 1 ([2]). Let f be a meromorphic function in ∆. Let α ∈ (1,∞) and β ∈
(0, 1) be constants, and k and j be integers satisfying k > j ≥ 0. Assume that
f (j) 6≡ 0. Let {am} denote the sequence of all the zeros and poles of f (j) listed
according to multiplicities and ordered by increasing moduli, and let nj(r) denote
the counting function of the points {am}. Then the following three statements hold:
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(1) If {am} is a finite sequence, then there exist constants R ∈ (0, 1) and C ∈
(0,∞), such that for all z satisfying R < |z| < 1, we have (with r = |z|)

(2.1)

∣∣∣∣∣
f (k)(z)
f (j)(z)

∣∣∣∣∣ ≤ C

[
(T (1− β(1− r), f))− log(1− r)

(1− r)2

]k−j

.

(2) If {am} is an infinite sequence, then there exists an infinite sequence of discs
Di = {z : |z − ci| < Ri} ⊂ ∆\{0} (i = 1, 2, . . .), such that

(2.2)
∞∑

i=1

Ri

1− |ci| < ∞,

and there exist constants R ∈ (0, 1) and C ∈ (0,∞), such that for all z satisfying
z /∈ ⋃∞

i=1 Di and R < |z| < 1, we have (with r = |z|)

(2.3)

∣∣∣∣∣
f (k)(z)
f (j)(z)

∣∣∣∣∣ ≤ C

[
T (1− β(1− r), f)− log(1− r)

(1− r)2
+ W (r)

]k−j

,

where

(2.4) W (r) =
nj(1− β(1− r))

1− r

(
log

1
1− r

)α

log+ nj(1− β(1− r)).

(3) There exist a set E ⊂ [0, 2π) which has linear measure zero, and a constant
C > 0, such that if θ ∈ [0, 2π)\E, then there is a constant R = R(θ) ∈ (0, 1) such
that for all z satisfying arg z = θ and R ≤ |z| < 1, either (2.1) or (2.3) holds,
depending on whether {am} is a finite or infinite sequence, respectively.

Lemma 2 ([4]). Let f be an admissible meromorphic function in ∆ and let k ∈
N

⋃{0}, a ∈ Ĉ. Set a set E ⊂ (0, 1) such that
∫
E

1
1−rdr = α < ∞. Set b =

e−(α+1), s(r) = 1− b(1− r) and u(r) = (1− r)(1− b). Then there exists R ∈ (0, 1)
such that

(2.5) n(r,
1

f (k) − a
) ≤ k + 3

u(r)
T (s(r), f)

for all r ∈ (R, 1).

Lemma 3. Let f be an admissible meromorphic function in ∆ and let β ∈ (0, 1)
be a constant, and k and j be integers satisfying k > j ≥ 0. Assume that f (j) 6≡ 0.

Then the following statements hold:
(1) There exists a set E ⊂ (0, 1) such that

∫
E

1
1−rdr < ∞, and there exist con-

stants R ∈ (0, 1) and C ∈ (0,∞), such that for all z satisfying |z| = r /∈ E and



252 Zong-Xuan Chen and Kwang Ho Shon

R ≤ |z| < 1, we have

(2.6)

∣∣∣∣∣
f (k)(z)
f (j)(z)

∣∣∣∣∣ ≤ C

[
(T (1− β(1− r), f))1+ε

(1− r)2+ε

]k−j

where ε is any constant satisfying 0 < ε < 1.

(2) There exist a set E ⊂ [0, 2π) which has linear measure zero, and a constant
C > 0, such that if θ ∈ [0, 2π)\E, then there is a constant R = R(θ) ∈ (0, 1) such
that for all z satisfying arg z = θ and R ≤ |z| < 1, the inequality (2.6) holds.

Proof. (1) By Lemma 1(1) and (2) , we only need prove that Lemma 3 holds for
the case that f (j) has infinitely many zeros and poles. Setting E =

⋃∞
i=1(|ci| −

Ri, |ci| + Ri), we have E ⊂ ∆. By (2.2), there exists an integer I satisfying that as
i > I, Ri

1−|ci| < 1
2 . From this and (2.2), we deduce that

∫

E

1
1− r

dr =
∞∑

i=1

∫ |ci|+Ri

|ci|−Ri

1
1− r

dr ≤
∞∑

i=1

2Ri

1− |ci| −Ri

(2.7) ≤
I∑

i=1

2Ri
1−|ci|

1− Ri
1−|ci|

+
∞∑

i=I+1

4Ri

1− |ci| < ∞.

Set
∫
E

1
1−rdr = α < ∞. By Lemma 2, if we take β1 = b = e−(α+1), then 0 < β1 < 1

2 ,

(2.8) s(r) = 1− β1(1− r), s(1− β1(1− r)) = 1− β2
1(1− r);

(2.9) u(r) = (1− r)(1− β1), u(1− β1(1− r)) = (1− r)β1(1− β1) ≥ (1− r)
β1

2
.

By Lemma 2, (2.8) and (2.9), we deduce that

nj(1− β1(1− r)) ≤ 2
j + 3

u(1− β1(1− r))
T (s(1− β1(1− r)), f)

(2.10) ≤ 4(j + 3)
β1(1− r)

T (1− β2
1(1− r), f).

Since for any given ε (0 < ε < 1) and M (0 < M < ∞), as a sufficiently large
positive real number x,

(log x)M ≤ xε,

we deduce that

(2.11) log nj(1− β1(1− r)) ≤
(

T (1− β2
1(1− r), f)

1− r

) ε
2

+ O(1);
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(2.12)
(

log
1

1− r

)α

≤
(

1
1− r

) ε
2

;

(2.13)
(

log
1

1− r

)
≤

(
1

1− r

) ε
2

.

By Lemma 1 and (2.10)-(2.12), we deduce that
(2.14)

W (r) ≤ 4(j + 3)T (1− β2
1(1− r), f)

β1(1− r)2

(
1

1− r

) ε
2

[(
T (1− β2

1(1− r), f)
1− r

) ε
2

+ O(1)

]
.

From (2.3), (2.13) and (2.14), setting β = β2
1 , we get that

∣∣∣∣∣
f (k)(z)
f (j)(z)

∣∣∣∣∣ ≤ C

[
(T (1− β(1− r), f))1+ε

(1− r)2+ε

]k−j

.

(2) Using the similar reasoning as in (1), we can get (2). ¤

Lemma 4 ([1]). Let Aj (j = 1, . . . , k−1) be analytic functions in ∆ with σM (Aj) ≤
σ. Suppose that f( 6≡ 0) is a solution of the equation (1.1). Then we have σ2(f) ≤ σ.

3. Proof of Theorem 1

We suppose that σM (f) = 0, then Aj(j = 1, . . . , k − 1) are non-admissible. By
Lemma 4, we have σ2(f) = 0. Now we prove that σ(f) = ∞. Assume σ(f) < ∞.

Then we have

(3.1) m(r,
f (j)

f
) = O

(
log

1
1− r

)
, (j = 1, . . . , k).

Since Aj (j = 1, . . . , k − 1) are non-admissible, we have that

(3.2) lim sup
r→1−

m(r,Aj)
log 1

1−r

< ∞ (j = 1, . . . , k − 1).

By the equation (1.1), we get that

(3.3) −A0 =
f (k)

f
+ Ak−1

f (k−1)

f
+ · · ·+ A1

f
′

f
.

By (3.1) and (3.3), we get that

(3.4) m(r,A0) ≤
k∑

j=1

m

(
r,

f (j)

f

)
+

k−1∑

j=1

m(r,Aj) ≤ M

(
log

1
1− r

)
+

k−1∑

j=1

m(r,Aj),
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where M (0 < M < ∞) is some constant. By (3.2) and (3.4), we get that

(3.5)
m(r,A0)
log 1

1−r

≤ M(log 1
1−r ) +

∑k−1
j=1 m(r,Aj)

log 1
1−r

< ∞.

Thus, (3.5) contradicts the hypothesis that A0 is admissible. Hence, we have σ(f) =
∞.

And also we assume that σM (Aj) < σM (A0) = µ < ∞, for j = 1, . . . , k − 1. By
Lemma 4, we have σ2(f) ≤ µ. Now we prove to σ2(f) ≥ µ. By Lemma 3(1), there
exists a set E ⊂ (0, 1) such that

∫
E

1
1−rdr < ∞ and there exist constants R1 ∈ (0, 1)

and C ∈ (0,∞) such that for all z satisfying |z| = r /∈ E and R1 ≤ |z| < 1, we have

(3.6)

∣∣∣∣∣
f (j)(z)
f(z)

∣∣∣∣∣ ≤ C

[(
T (1− 1

2(1− r), f)
)2

(1− r)3

]j

, (j = 1, . . . , k).

Set

(3.7) max{σM (Aj); j = 1, . . . , k − 1} = δ < µ.

For any given ε (0 < 3ε < µ − δ), there exists a constant R2(R1 ≤ R2 < 1), such
that for all z satisfying |z| = r ∈ [R2, 1), we have

(3.8) |Aj(z)| ≤ exp
{

1
(1− r)δ+ε

}
, (j = 1, . . . , k − 1).

Since σM (A0) = µ, we can choose a sequence of points {zn} satisfying |zn| = rn ∈
[R2, 1)\E. Thus we have |A0(zn)| = M(rn, A0), and

(3.9) M(rn, A0) ≥ exp
{

1
(1− rn)µ−ε

}
.

By (3.3), (3.6)-(3.9), we deduce that

(3.10) exp
{

1
(1− rn)µ−ε

}
≤ kC exp

{
1

(1− rn)δ+ε

}[
(T (1− 1

2(1− rn), f))2

(1− rn)3

]k

.

Since 3ε < µ− δ, by (3.10), we get that

(3.11) exp
{

1
(1− rn)µ−2ε

}
≤

[
(T (1− 1

2(1− rn), f))2

(1− rn)3

]k

.

Since ε is arbitrary, by (3.11), we get that σ2(f) ≥ µ. Theorem 1 is proved. ¤
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4. Proof of Theorem 2

Assume f(z)(6≡ 0) is a solution of the equation (1.1). By the equation (1.1), we
get that

(4.1) −A0(z) =
f (k)

f
+ Ak−1(z)

f (k−1)

f
+ · · ·+ A1(z)

f
′

f
.

By Lemma 3(2), there exist a set E ⊂ [0, 2π) with linear measure zero, and a
constant C > 0 such that if arg z = ϕ ∈ [0, 2π)\E, then there exists a constant
R = R(ϕ) ∈ (0, 1), such that for all z satisfying arg z = ϕ and R ≤ |z| < 1, the
following inequality holds:

(4.2)

∣∣∣∣∣
f (j)(z)
f(z)

∣∣∣∣∣ ≤ C

[
(T (1− 1

2(1− r), f))2

(1− r)3

]j

, (j = 1, . . . , k).

Since the linear measure of H, mH > 0 and the linear measure of E, mE = 0, we
can choose a ray arg z = ϕ0 ∈ H\E. By the condition of Theorem 2, we know that
there exist constants γ = γ(ϕ0) and δ = δ(ϕ0) satisfying 0 ≤ δ < γ and

(4.3) |A0(z)| ≥ exp
{

γ + o(1)
(1− |z|)µ

}
,

(4.4) |Aj(z)| ≤ exp
{

δ + o(1)
(1− |z|)µ

}
, (j = 1, . . . , k − 1).

By (4.1)-(4.4), we deduce that for all z satisfying arg z = ϕ0 and |z| = r ∈ [R, 1),
we have

(4.5) exp
{

γ + o(1)
(1− r)µ

}
≤ |A0(z)| ≤ kC exp

{
δ + o(1)
(1− r)µ

}[
(T (1− 1

2(1− r), f))2

(1− r)3

]k

.

By (4.5), we get that

(4.6) exp
{

γ − δ + o(1)
(1− r)µ

}
≤ kC

[
(T (1− 1

2(1− r), f))2

(1− r)3

]k

.

By (4.6), we get that σ2(f) ≥ µ. By Lemma 4, we have σ2(f) ≤ µ. Therefore
σ2(f) = µ. ¤
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