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SOLVABILITY FOR SOME DIRICHLET PROBLEM
WITH P-LAPACIAN

Yong-In Kim

Abstract. We investigate the existence of the following Dirichlet boundary value
problem

(|u′|p−2u′)′ + (p− 1)[α|u+|p−2u+ − β|u−|p−2u−] = (p− 1)h(t),

u(0) = u(T ) = 0,

where p > 1, α > 0, β > 0 and α
− 1

p + β
− 1

p = 2, T = πp/α
1
p , πp = 2π

p sin(π/p)
and

h ∈ L∞(0, T ). The results of this paper generalize some early results obtained in
[8] and [9]. Moreover, the method used in this paper is elementary and new.

1. Introduction

Consider the solvability of the following Dirichlet boundary value problem

(1) (φp(u′))′ + (p− 1)[αφp(u+)− βφp(u−)] = (p− 1)h(t), t ∈ (0, T )

(2) u(0) = u(T ) = 0,

where p > 1, φp(u) = |u|p−2u, u± = max{±u, 0}, h ∈ L∞(0, T ) and α > 0, β > 0

with α
− 1

p + β
− 1

p = 2, T = πp/α
1
p and πp = 2π

p sin(π/p) .

By a solution of problem (1)-(2) we mean a real-valued function u ∈ C1[0, T ]
satisfying (1) and (2) such that φp(u′) is absolutely continuous and (1) holds almost
everywhere in (0, T ). Note that if p = 2 and α = β = 1, then T = πp = π and
(1)-(2) reduces to the linear problem

u′′ + u = h(t), u(0) = u(π) = 0 .
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The solvability of this problem is fully described, for example, by the classical linear
Fredholm alternative, that is, this problem is solvable if and only if h satisfies

∫ π

0
h(t) sin tdt = 0.

In this case, the solution set is a continuum constituted by a one dimensional linear
manifold. But for p 6= 2, the situation is quite different. Del Pino et al [8] proved
that for p 6= 2, the condition

(3)
∫ πp

0
h(t) sinp tdt = 0,

where u = sinp t is the unique solution of the following initial value problem

(φp(u′))′ + (p− 1)φp(u) = 0, u(0) = 0, u′(0) = 1,

is sufficient for the solvability of the following boundary value problem

(4) (φp(u′))′ + (p− 1)φp(u) = (p− 1)h(t), u(0) = u(πp) = 0,

provided that h ∈ C1[0, πp] and h 6≡ 0. They also showed that for p 6= 2, the solution
set of the problem (4) is bounded on C1[0, πp] if (3) holds. Later, Drabek et al [9]
generalized the results of [8] and replaced the condition h ∈ C1[0, πp] by a weaker
one h ∈ L∞(0, πp). For more results on this topic, see, for example, [1–7,10,11] and
the references therein.

In this paper, the above existence result is generalized to (1)-(2) and the method
used in this paper is elementary and different from those used in [8] and [9]. More-
over, we will give a sufficient condition for the existence of solutions for the following
more general class of nonhomogeneous nonlinear equations:

φp(u′))′ +
(p−1)q

p [αφq(u+)− βφq(u−)] = (p− 1)h(t), u(0) = u(T ) = 0,

where q ≥ p > 1, h ∈ L∞(0, T ), α
− 1

p + β
− 1

p = 2 and T = πp/α
1
p .

2. Lemmas

If h ∈ L∞(0, T ), then in a similar way as in the proof of [8], one can show that a
globally defined solution of (1) satisfying the initial condition

(5) u(0) = 0, u′(0) = α

exists for any α ∈ R. Therefore throughout this paper we assume the existence of a
globally defined solution of (1) with the initial condition (5).
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Let u = sinp t be the unique solution of the following initial value problem:

φp(u′))′ + (p− 1)φp(u) = 0, u(0) = 0, u′(0) = 1.

Then by [2] and [8], for t ∈ [0, πp/2], it can be described implicitly by the formula

t =
∫ sinp t

0

ds

(1− sp)
1
p

,

and sinp t = sinp(πp− t) for t ∈ [πp

2 , πp], sinp t = − sinp(2πp− t) for t ∈ [πp, 2πp] and
sinp(2kπp+t) = sinp t∀k ∈ Z, t ∈ [0, 2πp], i.e., sinp t ∈ C2 is 2πp-periodic. Moreover,
by defining cosp t = sin′p t, it follows from the above formula that sinp

p t + cosp
p t = 1

for t ∈ [0, πp/2].
Let S(t) be the solution of the following homogeneous initial value problem

(6) φp(u′))′ + (p− 1)[αφp(u+)− βφp(u−)] = 0, u(0) = 0, u′(0) = 1.

Then it is well-known that S(t) is 2πp-periodic and can be expressed explicitly as

S(t) =





α
− 1

p sinp α
1
p t, t ∈ [0, T ];

−β
− 1

p sinp β
1
p (t− T ), t ∈ [T, 2πp].

Moreover, by using (6), it is also easy to verify that S(t) satisfies the following
identity:

(7) |S′(t)|p + α(S+(t))p + β(S−(t))p ≡ 1, t ∈ R.

Under the generalized polar coordinates transformation

(8) T : u = ρ
1

p−1 S(θ), u′ = ρ
1

p−1 S′(θ), ρ > 0, θ ∈ R,

and by using (7), it is not difficult to show that equation (1) is transformed into the
following first order system:

(9)

dρ

dt
= (p− 1)S′(θ)h(t),

dθ

dt
= 1− ρ−1S(θ)h(t).

If we consider the periodicity of S(t), and by u = ρ
1

p−1 S(θ), with ρ > 0, we can
assume without loss of generality that u(0) = 0 implies that θ(0) = 0 or θ(0) = T ,
which, by (8), is equivalent to u′(0) > 0 or u′(0) < 0 respectively. For simplicity,
we discuss the first case only, that is θ(0) = 0. Now, the condition u(T ) = 0 is
equivalent to θ(T ) = mT for some m ∈ Z.
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Lemma 1. Let (ρ(t), θ(t)) be the solution of (9) satisfying the initial value condition
(ρ(0), θ(0)) = (ρ0, 0). Suppose h ∈ L∞(0, T ), then

(10) θ(T ) = T + ρ−1
0 Ih + O(ρ−2

0 )

as ρ0 → +∞, where ρ0 = ρ(0) and O(ρ−2
0 ) is uniformly with respect to all h ∈

L∞(0, T ) with ‖h‖ ≤ C for any fixed constant C > 0 and

Ih = −
∫ T

0
S(t)h(t)dt.

Proof. Since h is bounded, we obtain from the first equation of (9) that for t ∈ [0, T ],

ρ(t) = ρ0 + (p− 1)
∫ t

0
S′(θ(τ))h(τ)dτ = ρ0 + O(1),

which implies that for ρ0 À 1, ρ(t) À 1 for all t ∈ [0, T ]. Introduce a new positive
variable r = ρ−1, then ρ À 1 is equivalent to r ¿ 1 and for r(0) = r0 ¿ 1, one has
r(t) ¿ 1 for all t ∈ [0, T ]. Under this variable transformation, system (9) is changed
into the following form:

(11)

dr

dt
= −(p− 1)r2S′(θ)h(t),

dθ

dt
= 1− rS(θ)h(t).

Since θ(0) = 0, for t ∈ [0, T ], we get from above equations (r0 ¿ 1)

(12)
r(t) = r0 + O(r2

0),

θ(t) = t + O(r0).

Substituting (12) into (11) and integrating from 0 to t, we obtain

(13)
r(t) = r0 − (p− 1)r2

0

∫ t
0 S′(τ)h(τ)dτ + O(r3

0),

θ(t) = t− r0

∫ t
0 S(τ)h(τ)dτ + O(r2

0).

Let t = T , we get from the second equation of (13) that

θ(T ) = T + r0Ih + O(r2
0),

which is equivalent to (10). ¤

Lemma 2. If Ih = 0, then for ρ0 À 1, we have the following approximation

(14) θ(T ) = T + ρ−2
0 Jh + O(ρ−3

0 ),
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where

Jh = −(p− 2)
2




∫ T
2

0

(
∫ T

2
t S′(τ)h(τ))dτ)2

|S′(t)|p dt +
∫ T

2

0

(
∫ T

2
t S′(T − τ)h(T − τ)dτ)2

|S′(T − t)|p dt


 .

Proof. Substituting (13) into (11) and integrating the second equation over [0, T ],
we obtain

θ(T ) = T + r0Ih + r2
0Jh + O(r3

0)

which is equivalent to (14), where

Ih = −
∫ T

0
S(t)h(t)dt

and

Jh = (p− 1)
∫ T

0
S(t)h(t)

(∫ t

0
S′(τ)h(τ)dτ

)
dt +

∫ T

0
S′(t)h(t)

(∫ t

0
S(τ)h(τ)dτ

)
dt.

By using Ih = 0 and integration by parts, we obtain

Jh = (p− 2)
∫ T

0
S(t)h(t)

(∫ t

0
S′(τ)h(τ)dτ

)
dt.

Denote a = T
2 and set

L =
∫ T
0 S(t)h(t)

(∫ t
0 S′(τ)h(τ)dτ

)
dt

=
∫ a
0 S(t)h(t)

(∫ t
0 S′(τ)h(τ)dτ

)
dt +

∫ T
a S(t)h(t)

(∫ t
0 S′(τ)h(τ)dτ

)
dt

=: L1 + L2.

Then Jh = (p− 2)L, where L = L1 + L2 with

L1 =
∫ a
0 S(t)h(t)

(∫ t
0 S′(τ)h(τ)dτ

)
dt

=
∫ a
0 (

∫ a
t S(τ)h(τ)dτ)S′(t)h(t)dt;

L2 =
∫ T
a S(t)h(t)

(∫ t
0 S′(τ)h(τ)dτ

)
dt.

Set U(t) =
∫ a
t S′(τ)h(τ)dτ, V (t) =

∫ a
t S(τ)h(τ)dτ , then

L1 = − ∫ a
0 U ′(t)V (t)dt

= U(0)V (0) +
∫ a
0 U(t)V ′(t)dt

= U(0)V (0) +
∫ a
0

U(t)U ′(t)S(t)dt
S′(t)

= U(0)V (0) + 1
2

U2(t)S(t)
S′(t) |a0 − 1

2

∫ a
0 U2(t)

(
1− S(t)S′′(t)

(S′(t))2

)
dt.

Claim 1. limt→a
U2(t)S(t)

S′(t) = 0.



262 Yong-In Kim

In fact, by the definition of U(t), S(t) and by using L’ Hospital’s rule, we get

limt→a
U2(t)S(t)

S′(t)

= limt→a
U2(t)
S′(t) limt→a S(t) = α

− 1
p limt→a

U2(t)
S′(t)

= α
− 1

p limt→a
2U(t)U ′(t)

S′′(t) = α
− 1

p limt→a
−2U(t)|S′(t)|p−2U ′(t)

α|S(t)|p−2S(t)
= 0.

Claim 2. 1− S(t)S′′(t)
(S′(t))2 = 1

|S′(t)|p , t ∈ (0, T ).
In fact, since S(t) > 0 on (0, T ), we get from (6) and (7),

|S′(t)|p−2S′′(t) = −α|S(t)|p−2S(t), and |S′(t)|p + α(S(t))p ≡ 1.

From above equations, we obtain

1− SS′′

(S′)2
=

(S′)2 + α|S|p/|S′|p−2

(S′)2
=
|S′|p + α|S|p

|S′|p =
1

|S′|p .

By using Claim 1 and Claim 2, we get

L1 = U(0)V (0)− 1
2

∫ a

0

U2(t)
|S(t)|p dt = U(0)V (0)− 1

2

∫ a

0

(
∫ a
t S′(τ)h(τ)dτ)2

|S′(t)|p dt

Now we calculate L2:
Let F (t) =

∫ t
0 S′(τ)h(τ)dτ, G(t) =

∫ t
0 S(τ)h(τ)dτ , then G(T ) = Ih = 0 and

L2 =
∫ T
a G′(t)F (t)dt = −G(a)F (a)− ∫ T

a F ′(t)G(t)dt

= −G(a)F (a)− ∫ T
a S′(t)h(t)(

∫ t
0 S(τ)h(τ)dτ)dt.

Since ∫ T
a S′(t)h(t)(

∫ t
0 S(τ)h(τ)dτ)dt

t=T−x=
∫ a
0 S′(T − x)h(T − x)

(∫ T−x
0 S(τ)h(τ)dτ

)
dx

τ=T−y
=

∫ a
0 S′(T − x)h(T − x)

(∫ T
x S(T − y)h(T − y)dy

)
dx

and
∫ T
0 S(T − y)h(T − y)dy =

∫ T
0 S(t)h(t)dt = 0, we get

∫ T

x
S(T − y)h(T − y)dy = −

∫ x

0
S(T − y)h(T − y)dy.

This implies that
∫ T
a S′(t)h(t)

(∫ t
0 S(τ)h(τ)dτ

)
dt

=
∫ a
0 S′(T − x)h(T − x)

(∫ x
0 S(T − y)h(T − y)dy

)
dx.

Similar to the calculation of L1, we obtain

L2 = −G(a)F (a)− 1
2

∫ a

0

(
∫ a
t S′(T − τ)h(T − τ)dτ)2

|S′(T − t)|p dt.
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It is evident that

F (a) = U(0), G(a) = V (0).

Now it follows from the expressions of L1 and L2 that

L = L1 + L2 = −1
2

[∫ a

0

(∫ a
t S′(τ)h(τ)dτ

)2

|S′(t)|p dt +
∫ a

0

(
∫ a
t S′(T − τ)h(T − τ)dτ)2

|S′(T − t)|p dt

]
.

¤
Remark 1. Let α = β = 1, then S(t) = sinp t, S′(t) = sin′p t = cosp t, T = πp, a =
πp

2 , Lemma 2 reduces the

Jh = −(p− 2)
2




∫ πp
2

0

(
∫ πp

2
t h(τ) cosp τdτ)2 + (

∫ πp
2

t h(πp − τ) cosp τdτ)2

cosp
p t

dt


 ,

which differs only by a constant from the one defined in [8]. Besides, it should point
out that the expression of Jh in [8] contains a typing error: πp should be πp/2 in the
upper limit of the second integral.

3. Main Results

In this section, by using a similar method used in [8] and [9], we give and prove
an existence result of (1)-(2).

Let X = C1
0 [0, T ] = {u ∈ C1[0, T ] : u(0) = u(T ) = 0} and R+ = [0, +∞). For

u ∈ X, h ∈ L∞(0, T ) and λ ∈ R+, define an operator Gλ,h : X → X by Gλ,h(v) = u

if and only

(15)
(φp(u′))′ = λ[h(λ

1
p t)− αφp(v+) + βφp(v−)],

u(0) = u(T ) = 0.

Standard arguments based on the Arzela-Ascoli theorem imply that Gλ,h is a
well-defined operator which is compact from X into X∗. Moreover, Gλ,h depends
continuously on the perturbations of h and λ.

Lemma 3. Let deg[I − Gλ,h; BR(0), 0] be the Leray-Schauder degree of I − Gλ,h

with respect to BR(0) and 0, where R > 0 and BR(0) = {u ∈ X; ‖u‖ < R}, I is the
identity operator. Then for small ε > 0 and any R > 0,

(16)
deg[I −G1−ε,0; BR(0), 0] = 1,

deg[I −G1+ε,0; BR(0), 0] = −1.
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Proof. The result of Lemma 3 is a direct consequence of the results of [8] and the
invariance of the Leray-Schauder degree under homotopy since α, β lie in the curve
α
− 1

p + β
− 1

p = 2 which passes the point λ1 = (p− 1). ¤

Theorem 1. Assume h ∈ L∞(0, T ) and h 6≡ 0, Ih =
∫ T
0 S(t)h(t)dt = 0. Then the

boundary value problem (1)− (2) has at least one solution. Moreover, if p 6= 2, then
the set of all possible solutions is bounded in C1[0, T ].

Proof. By using the homogeneity and the boundary condition in (15), we see that
for fixed h ∈ L∞(0, T ), we can take R > 0 so large that (16) extend to

(17)
deg[I −G1−ε,h; BR(0), 0] = 1,

deg[I −G1+ε,h; BR(0), 0] = −1.

First, we consider the case 1 < p < 2, then by Lemma 2, Jh > 0 and for t ≥ T

we extend h to [0, 2T ] as a L∞ function.
We claim that there exists a constant R > 0 such that for any λ ∈ [1, 1 + ε] the

boundary value problem

(18)
(φp(u′))′ + (p− 1)λ[αφp(u+)− βφp(u−)] = (p− 1)λh(λ1/pt)],

u(0) = u(T ) = 0,

has no solution with ‖u‖C1[0,T ] ≥ R.

Suppose on the contrary that there exist sequence {un}∞n=1 ⊂ C1
0 [0, T ], {λn}∞n=1 ⊂

[1, 1 + ε], such that λn → λ̄ ∈ [1, 1 + ε], and ‖un‖C1[0,T ] → ∞ and un, λn satisfy

(18). From (8), we know that ρn(0) → +∞. In this case, vn(t) := un(λ
−1
p t) solves

the equation

(φp(v′n))′ + (p− 1)[αφp(v+
n )− βϕp(v−n )] = (p− 1)h(t), vn(0) = 0,

with ρn(0) → +∞ and un(T ) = vn(Tλ
1
p
n ) = 0. But Lemma 2 and Ih = 0 imply

θn(T ) > T for n large enough. This contradicts the fact un(T ) = vn(Tλ
1
p
n ) = 0

because 1 ≤ λn ≤ 1 + ε for any n ∈ N. Thus the claim is verified.
For this claim we see that for ε > 0 small the homotopy H : X × [1, 1 + ε] → X

defined by H(u, λ) = u−Gλ,hλ
(u), where hλ = h(λ

1
p t), satisfies H(u, λ) 6= 0 for all

λ ∈ [1, 1 + ε] and ‖u‖C1[0, T ] ≥ R. Thus, from the homotopy invariance property of
the Leray-Schauder degree, we obtain by (17)

deg[I −G1,h; BR(0), 0] = deg[I −G1+ε,h1+ε ;BR(0), 0] = −1.

This proves that for given h satisfying Ih = 0, the boundary value problem (1)-(2)
has at least one solution. Moreover, it follows from our discussions that all possible
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solutions of (1)-(2) are bounded in the C1[0, T ] norm. The case p > 2 can be proved
similarly. ¤

Theorem 2. Define a functional E : W 1,p
0 (0, T ) → R given by

E(u) =

∫ T
0 |u′|p

p
− [α

∫ T
0 |u+|p + β

∫ T
0 |u−|p]

p
+

∫ T

0
hu

where u is a solution of (1)− (2), α > 0, β > 0, α
− 1

p + β
− 1

p = 2, and T = πp/α
1
p .

Assume that h ∈ L∞(0, T ), and Ih = 0, h(t) 6≡ 0.
(i) for 1 < p < 2, the functional E is unbounded from below. The set of its critical

points is nonempty and bounded.
(ii) for p > 2, the functional E is bounded from below and has a global minimizer.

The set of its critical points is bounded.

The proof of Theorem 2 is similar to the proof of Theorem 1.2 in [8], so we omit
it.

4. More General Nonhomogeneous Problems

In this section, we deal with the existence of solutions to the following nonhomo-
geneous boundary value problem:

(19)
(φp(u′))′ +

(p−1)q
p [αφq(u+)− βφq(u−)] = (p− 1)h(t),

u(0) = u(T ) = 0,

where q ≥ p > 1, πpq =
∫ 1
0

ds

(1−sq)
1
p

= 2
qB(1

q , 1
p∗ ), p∗ = p

p−1 , α
− 1

q + β
− 1

q = 2, T =

πpq/α
1
q and B(r, s) =

∫ 1
0 tr−1(1 − t)s−1dt is the β function for r > 0, s > 0 and

h ∈ L∞(0, T ).
If q = p, then (19) reduces to (1). Therefore we consider the case q > p only.

Similar to the results of [7], we can define (with minor modification) the following
2πpq-periodic function u = sinpq t which is the solution of the following initial value
problem:

(20)
(φp(u′))′ +

(p−1)q
p φq(u) = 0,

u(0) = 0, u′(0) = 1

which for t ∈ [0, πpq

2 ] can be given implicitly by the formula

t =
∫ sinpq t

0

ds

(1− sq)
1
p
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and sinpq t = sinpq(πpq − t) for t ∈ [πpq

2 , πpq]; sinpq t = − sinpq(2πpq − t) for t ∈
[πpq, 2πpq]. Define also cospq t = d

dt(sinpq t). Then

| sinpq t|q + | cospq t|p ≡ 1, ∀t ∈ R.

Let S(t) be the solution of the following initial value problem:

(21)
(φp(u′))′ +

(p−1)q
p [αφq(u+)− βφq(u−)] = 0,

u(0) = 0, u′(0) = 1.

Then it is easy to see that S is 2πpq-periodic and can be expressed explicitly as

S(t) =





α
− 1

q sinpq α
1
q t, t ∈ [0, T ];

−β
− 1

q sinpq β
1
q (t− T ), t ∈ [T, 2πpq].

Moreover, it is also easy to verify by using (21) that S(t) satisfies the following
identity:

(22) |S′(t)|p + α(S+(t))q + β(S−(t))q ≡ 1.

For ρ > 0, θ ∈ R, define the following generalized polar coordinates transforma-
tion T as:

(23) u = ρσS(θ), u′ = ρ
1

p−1 S
′(θ),

where
σ =

q − p

(p− 1)q
> 0.

Then by using (22), we can show that (19) is changed into the following system:

(24)

dρ

dt
= (p− 1)S′(θ)h(t),

dθ

dt
= ρσ − p

q
ρ−1S(θ)h(t),

Theorem 3. Suppose q > p, h ∈ L∞(0, T ). Then the boundary value problem (19)
has infinitely many solutions un(t) and the number of zeros of un in (0, T ) increases
to ∞ as n →∞, moreover, ‖un‖ → ∞ as n →∞.

Proof. From above discussion, (19) is changed into (24). Now suppose θ(0) = 0,
then the second equation u(T ) = 0 in (2) is equivalent to θ(T ) = kT for some k ∈ Z.
The assumption q > p implies σ > 0. Let ρ(0) = ρ0 À 1, then it follows from the
first equation of (24) that

(25)
ρ(t) = ρ0 + O(1),

ρ−1(t) = ρ−1
0 + o(ρ−1

0 ), t ∈ (0, T )



SOLVABILITY FOR SOME DIRICHLET PROBLEM WITH P-LAPACIAN 267

Substituting (25) into the second equation of (24) and integrating from 0 to T , we
get

(26) θ(T ) = ρσ
0T + o(ρσ

0 ) = ρσ
0T (1 + o(1)).

It follows from (26) and the fact that θ(T ) depends continuously on ρ0 that there
exist infinitely many n ∈ N such

θ(T ) = nπpq

and ρn(0) →∞ as n →∞. ¤

Let α = β = 1, then T = πpq and S(t) = sinpq(t). In this case, Theorem 3 reduces
to

Corollary 4. Let q > p > 1, h ∈ L∞(0, πpq). Then the following boundary value
problem

(φp(u′))′ +
(p−1)q

p φq(u) = (p− 1)h(t),

u(0) = u(πpq) = 0,

has infinitely many solutions un(t) and the number of zeros of un in (0, πpq) increases
to ∞ as n →∞, moreover, ‖un‖ → ∞ as n →∞.

Remark 2. Let us compare the key approximation formulas in [8] and in this paper.
Let α = β = 1, S(t) = sinp t. In [8], for |α| À 1, the initial condition is

(27) u(0) = 0, u′(0) = α = ±|α|,
In our paper, the initial condition is

(28) u(0) = 0, u′(0) = ρ
1

p−1

0 S′(θ(0)) = ±ρ
1

p−1

0 .

Comparing (27) with (28), we get ρ0 = |α|p−1 À 1 and α > 0 is equivalent to
θ(0) = 0, and α < 0 is equivalent to θ(0) = πp = T . Moreover, as ρ = |α| À 1,
we have dθ

dt = 1 + O(ρ−1
0 ) ≈ 1, hence it is easy to verify that the following two key

approximations are equivalent:
Assume

∫ πp

0 sinp th(t)dt = 0, then in [8]

(29) tα1 = πp + (p− 2)Jh|α|2(1−p) + o(|α|2(1−p)),

where tα1 is the first positive zero of u(t), and Jh > 0. While in our paper,

(30) θ(πp) = π +
(2− p)

2
Lρ−2

0 + o(ρ−2
0 ),

where L > 0. It is now easy for us to see that (29) and (30) are equivalent. Besides,
the results of our paper remains valid when we replace the function h(t) in the right
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side of (1) by a continuous and bounded function f(t, u), provided that the limits
limu→±∞ f(t, u) = f(t,±∞) ∈ L∞(0, T ) exists and

lim
u→±∞ |u|

p−1[f(t, u)− f(t,±∞)] = 0.

Finally, we end up this paper with a remark that the existence of solution of (19)
when 1 < q < p is left as an open question.
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