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AN EFFICIENT SECOND-ORDER NON-ITERATIVE FINITE
DIFFERENCE SCHEME FOR HYPERBOLIC TELEGRAPH
EQUATIONS

YOUNBAE JUN?® AND HONGTAEK HWANGP

ABSTRACT. In this paper, we propose a second-order prediction/correction {SPC)
domain decomposition method for solving one dimensional linear hyperbolic partial
differential equation s + a(x, tyus +b(z, t)u = (2, t)ues + f{z,t). The method can
be applied to variable coefficients problems and singular problems. Unconditional
stability and error analysis of the method have been carried out. Numerical results
support stability and efficiency of the method.

1. INTRODUCTION

Hyperbolic partial differential equations arise in many phenomena such as wave
mechanics, vibrations, aerodynamic flows, flows of fluids and contaminants through
a porous media, neutron diffusion and radiation transfer. In this paper, we con-
sider the following one dimensional linear second-order hyperbolic partial differential
equation, so-called a telegraph equation, of the form

(1.1) u + a(z, thug + bz, t)u = c(z, t)uz, + f(z,t)

defined in {(z,t)|0 < z < 1,0 <t < T}, with the initial conditions and the Dirichlet
boundary conditions

(1.2) u(z,0) = go(x), ue(z,0) = g1(z) for 0 <z < 1,

(1.3) u(0,1) = ho(t), u(1,t) = hy(t) for ¢ > 0.

We often use finite difference scheme [2, 15, 16, 17, 18] or finite element scheme
[4, 8, 13, 19] to solve initial and boundary value problems. In particular, there
are several unconditionally stable finite difference schemes for solving hyperbolic
equations such as three-level implicit scheme [1], Mohanty’s three-level scheme [15],
compact difference scheme [6], and compact/collocation method [14].

Received by the editors April 8, 2010. Revised September 30, 2010. Accepted November 20, 2010.
2000 Mathematics Subject Classification. 65MO06.

Key words and phrases. second-order accuracy, domain decomposition, finite difference method,
hyperbolic telegraph equation, unconditional stability.

(© 2010 The Korean Society of Mathematical Educucation
289



290 YounBAE JUN & HONGTAEK HwANG

Due to recent powerful parallel computational capability, efficient parallel algo-
rithm is one of the biggest issues in computational mathematics. Domain decom-
position (DD) is known to be very efficient parallelism [5, 7, 9, 10, 11, 12]. Dawson
and Dupont [5] proposed a non-iterative DD method related to the explicit/implicit
conservative Galerkin method. This method is conditionally stable even though the
constraint is less than the fully explicit method. Gander and Halpern [7] proposed
an overlapping Schwarz method. Recently, Jun [12] has proposed a non-overlapping
prediction/correction (PC) method for linear hyperbolic equations. The perfor-
mance of the PC method [12] is much more efficient with respect to CPU time than
the three-level implicit scheme [1]. However, it was observed that truncation error
increases when the number of decomposed subdomains increases, since the predic-
tion scheme of the PC method uses the boundary points. In this paper, we provide
an algorithm using adjacent interface points instead of boundary points so that the
error term of the interface scheme of the new method is of second order. By doing
this way, the overall truncation error of the new method is getting less than the PC
method.

In Section 2, we discuss existing DD algorithms and propose a second-order non-
iterative DD algorithm, as well as we analyze stability of the new method. Numerical
experiments and efficiency of the method are provided in Section 3. We make con-
cluding remarks in Section 4.

2. SECOND-ORDER PREDICTION/CORRECTION ALGORITHM AND
STABILITY

First, we describe existing non-domain decomposition algorithm [1], which is
three-level implicit scheme, to solve the hyperbolic telegraph problem (1.1)-(1.3).
Second, we describe the Prediction/Correction (PC) domain decomposition (DD)
algorithm. Then, new second-order algorithm is introduced.

We choose the positive integers L and N so that h = 1/L and k = T/N. Let
w;* be the approximated value to the exact value u} at the grid point (z;,t,) where
z; =ih and t, = nk. We denote a(x;,t,), b{z;, tn), c(zi, tn), and f(zi, tn) by al b7,
ci', and f*, respectively. We define the difference operators wf}, wy, wl, by
(2.1)

n-41 n n-—-1 n+-1 n-1 noo__ n n
e i 2w} + w; n_ Wi —wy n _ Wips — 2w +wi,
it k2 y Wy = 2% y Wy = h2 '

2.1. Three-level Implicit Scheme It is well-known [1] that the following three-
level implicit scheme is unconditionally stable if we choose a free variable v > 1/4,
and conditionally stable if we use v < 1/4:

(22)  wf +afuf +bfwf = (ywid! + (1 - 2v)wg, +ywgg ) +

When v = 0, the algorithm is referred to as the fully explicit scheme (FES). It is
known (1} that FES is stable only if A < 1, where the mesh ratio A = k/h = At/Axz.
Whereas, if v = 1/2, the algorithm is referred to as the fully implicit scheme (FIS)
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which is unconditionally stable for 0 < A < oo. We note that both FES and FIS
are not domain decomposition method. Three-level stencils of FES and FIS are
provided in Fig. 1. It is clear to see from Equation (2.2) that these schemes are
written as follows:

Fully explicit scheme vs. Fully implicit scheme

e Fully explicit scheme (FES): wf + a"wt + blwl = c”w;ﬂv + fl

l

e Fully implicit scheme (FIS): wjj + alw} + b" " =cl's [ nH 1] + f

n+1
w; w;z_—l-ll wn+1 w?—{-’_ll
n ¥12
Wi o O Win ?w?
w;
1 1 1 1
Ty T - 7y
w; Wi W Wit

(a) Fully explicit scheme (b) Fully implicit scheme
Figure 1. Three-level stencils of three-level implicit schemes

In Section 3, we demonstrate numerically that FES is conditionally stable and FIS
is unconditionally stable.

2.2. Prediction/Correction Method The Prediction/Correction (PC) method
has been proposed in [12] as a non-iterative unconditionally stable domain decompo-
sition method for solving hyperbolic partial differential equations. The PC algorithm
involves prediction and correction steps. The prediction of the interface values of
the PC method is based on Taylor series expansion with the knowledge of boundary
values. For a given function v(z), we easily approximate v”(z;) as follows:

1 2[pv(xr) — (p + g)v(z:) + qu(zo)]
v () = 5 ,
pa(p+q)H
where pH = z;, gH = z; — x;, and H = 1/P. Here P is the number of decomposed
subdomains. Thus, we define an operator to approximate u,; by
no__ n n
(23) B = 2[puL (p + Q)w12+ qu()] ’
pap+ H

Tx

where u} and ug are boundary values.
In the PC algorithm [12], the interface value is computed using Equation (2.3).
Then, the values of interior points in each subdomain are computed by the fully

implicit scheme (FIS) and the interface points are updated using the FIS. The PC
algorithm is as follows:



292 YOUNBAE JUN & HONGTAEK HWANG

Prediction/Correction (PC) algorithm'

Stepl: Interface prediction: wj} + alw] + bfw} = c"é [ o 4wl 1] +
where w72 ! and w7, ! are defined in Equatlon (2.3)

Step2: Interior region: wf} + afw} + bJwl = ¢y [wlF! +wirt] + f7,
which is the fully implicit scheme

Step3: Interface correction: wf + alwf + blw? = ¢4 [wiF! + wit] + f1
where w! and w}"}' are computed values in Step2

Step4: Repeat Stepl through Step3 until last time level

2.3. Second-order Prediction/Correction Method A drawback of the PC
method is that truncation error increases when the number of decomposed sub-
domains (P) increases, since the prediction scheme of the PC method uses the
boundary points. In this section, we propose a new method in which truncation er-
ror decreases when P increases. One reason of reduced error is that we use adjacent
interface points. Instead of computing the estimations of the interface points indi-
vidually, which is used in the PC method, we use central finite difference scheme to
compute the estimations on all the interface points at a time. The central difference
scheme can be formulated as follows:

v(z+ H) — 2v(z) + v(z — H)

U”(x) = H2 + O(H2)’

where H is distance of adjacent interface points. Also, H is an integer multiple of
h. The accuracy of the new interface prediction scheme is of second order O(H?).
Thus, it is clear that truncation error decreases when P(= 1/H) increases. So, we
define an operator to approximate uz, by
(2 4) W = w?—i—LH - 22,0.? + w‘?‘—LH

. xTa HZ )
where w}, ; ;; and w} ;, are adjacent interface points. We predict the interface
values using the following scheme:

1 .
(2.5) why + alwf + blw? 0?5 [wdt + a2 + £
Once the interface values are predicted, we compute the interior points using

FIS. Then, the interface points are updated using FIS. In the correction step, w;":ll

and w:‘_“_"ll are computed values in the interior step. PFurthermore, systems which
are generated by the prediction and interior schemes are only tri-diagonal linear
systems and they are solved by non-iterative Crout factorization method [3]. Three-
level stencils of the three steps of the new method are provided in Fig. 2. We
call the new method the second-order prediction/correction (SPC) method that is

summarized as follows:
Second-order Prediction/Correction (SPC) algorithm:

Stepl: Interface prediction: wf + afw] + bfwl = c3 [wpd! + dgt] + f7,
where @2} and @7, are defined in Equation (2.4)
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Step2: Interior region: wf; + alw( + blw] c?% [widt +wist] + [P,
which is the fully implicit scheme

Step3: Interface correction: wf + alwp + bfw? = Pl [ A T 1] + i

i 2
where w:‘j_'ll and w"+1 are computed values in Step2

Step4: Repeat, Stepl through Step3d until last time level

n+1 n+1 n+1 n4-1 n+1 n+1 n+1 n+1 n+1
w; w! w) W w! w) w) w w,

%—LH g @—LH i—1 it1 i—1 it+1

® n n L ] n

wy wy w;

H H h
¢ 1 1 b 1 1 1 1 1 1
i — n— T -— n— n— I n— ¥l n—
Wi LH w; w; LH w;_y Wy Wiy Wiy W Wi
(a) Prediction (b) Interior (c) Correction

Figure 2. Three steps of the Second-order Prediction/Correction (SPC) algorithm

In order to obtain wil for u(z, k), we use a Taylor series expansion with respect

to time
2

w(z, k) = u(z, 0) + kua(z,0) + %—utt(:c,()) + O(k).

Since u(z,0) = go(x) = w?, w(x,0) = gi(z), and uu(x,0) = c(x,0)uz(x,0) —
a(z,0)ut(z,0) — b(z, 0)u(z, 0) + f(z,0), the above u(z, k) equation is approximated
by

1

K2 [ qwd_y —2w) + wd,
wi = w) + k(g1)? + ) ) 2 —ad(g1)} - bfw) + f7

2.4. Stability and Error Analysis of the SPC Method We analyze stability
and truncation error of the new method. As we see in the SPC algorithm, three-
level stencils of the prediction scheme (Fig. 2(a)) is slightly different from those of

the interior and correction schemes (Fig. 2(b),(c)). Thus, we prove two similar but
different theorems.

Theorem 2.1. The interface prediction scheme of the SPC method is uncondition-
ally stable and the error term for the scheme is |w? — ul| = O(H? + k?).

Proof. It is known [1] that the fully implicit scheme (FIS) is unconditionally stable.
The SPC interface scheme is a FIS scheme, in which the step size of the z-direction
is H. Thus, the SPC interface scheme is unconditionally stable. Furthermore,
we have |wl? — u?| = O(H? + k?), since W} = uy + O(k?), wl = u, + O(k?),
W = Upy + O(H?). O

With the same argument in the previous proof, we can see immediately the
following theorem.
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Theorem 2.2. The interior and interface correction schemes of the SPC method are
unconditionally stable and the error term of each scheme is |w® — ult| = O(h? + k?).

Proof. The interior and correction schemes of the SPC method are FIS, where the
step size of the z-direction is h. Thus, they are clearly unconditionally stable.
Also, W} = uy + O(k?), w} = u; + O(k?), and w2, = uzy + O(h?). Therefore,
uf = 7] = O(k? + k2). 0

All of the interface prediction, interior, and interface correction schemes of the
SPC method are FIS methods. Hence, the SPC method is unconditionally stable
for 0 < A < o0.

3. NUMERICAL EXAMPLES AND EFFICIENCY OF THE SPC METHOD

In this section, we test stability and efficiency of the new method using three
model problems. The exact solution for each model problem is u(z,t) = e~ % sinh .
The initial and boundary conditions and f(z,t) are derived from the exact solution.
We note that the exact solution is unknown, in general. However, we use the exact
solution for the comparison of numerical experiment in this paper.

First, we compare four different methods for stability: (1) the fully explicit scheme
(FES); (2) the fully implicit scheme (FIS); (3) the Prediciton/Correction method of
five subdomains (PC(5)); (4) the Second-order Prediciton/Correction method of five
subdomains (SPC(5)). The FIS method is used as the benchmark for stability, since
it is well-known unconditionally stable method. All of the numerical experiments
are carried out on a desktop computer with Intel Core2 Duo CPU at 2.93GHz with
4.0 GB of RAM.

Second, we test efficiency of the SPC method. Total CPU time in seconds with
various number of subdomains is provided in this section. Since the algorithm is
simulated with one processor, the true parallel execution time using P processors is
roughly equivalent to the total CPU time divided by P. Thus, the parallel execution
time is referred to as parallel CPU time.

Example 3.1. Model Problem 1 (MP1):

ugg + 2"y + sin?(z 4 t)u = (14 22)ugg + f(z, 1)

Table 1 shows the maximum error of MP1 between the approximated solution
and the exact solution ||w™ — u"|| at the final time T = 1 with various A\(= k/h)
ranging from 1/2 to 200 using four different methods: FES, FIS, PC(5), and SPC(5).
As we can see in Table 1, FES is conditionally stable and FIS is unconditionally
stable, as expected. Both PC and SPC methods are unconditionally stable, but we
can see that the SPC is more accurate than PC. Table 2 shows the maximum error
and CPU time of SPC with various P for h = 1/2000 and k& = 1/1000. We can
see in Table 2 that the SPC method is unconditionally stable not only at P = 5,
but also at various P. Also, we see that PCPU time in seconds decreases when P
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increases. We note that when P = 1 is used, the SPC method is equivalent to FIS,
which is non-domain decomposition. Fig. 3 shows numerical solution curves of MP1
using two schemes PC(5) and SPC(5) at the final time ¢ = 1 with h = 1/2000 and
k =1/1000. Exact solution curve is provided as reference. As we can see in Fig. 3,
SPC(5) curve is closer to the exact solution curve than PC(5) curve, which supports
that accuracy of the SPC method is better than PC.

Table 1. Maximum error of MP1 with various X

h k ) FES FIS PC(5)  SPC(5)
1/2000 1710 200| oo 0.1068e2 0.7440e-2 0.2009¢-2
1/2000 1/20 100| oo  0.4878e-3 0.6334e-2 0.5659e-3
1/2000 1/1000 2 0o 0.1987e-6 0.1828e-4 0.1312e-5
1/2000 1/4000 1/2 |0.9716e-8 0.1292e-7 0.1156e-5 0.8360e-7

Table 2. Maximum error and CPU time of SPC with various P
(TCPU=Total CPU time, PCPU=Parallel CPU time)

P 1=FIS 2 5 10 20

Error |0.1987e-6 0.253%-5 0.1312e-5 0.7693e-6 0.4785e-6
TCPU | 0.375 0.45313  0.56250  0.76563  1.125
PCPU | 0.375 0.22657  0.1125 0.07656  0.05625

Numerical solution curve of PC(5)
r x

Numericai solution curve of SPC(5}
.16 T U

v T T T Y 7 T T
= Exaci solubon e Exact solution
w » PC{S) solubion = » SPC(S) sotion
aatn 4

. £ A " . L x i L L : : i . ‘ L
0 a1 02 03 04 05 086 o7 o8 68 1 0 [A] 02 03 o4 0.8 08 oy a8 09
X~aniz X-axis

(a) Solution curve of PC(5) (b) Solution curve of SPC(5)
Figure 3. Solution curves of PC(5) and SPC(5) to MP1

Example 3.2. Model Problem 2 (MP2):

2 1
we+ st U= (1+ 2°)uge + f(,t)
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Maximum error and CPU time in seconds of the SPC method to MP2 at the final
time ¢t = 1 with A = 1/2000 and k& = 1/1000 are provided in Tables 3 and 4.

Table 3. Maximum error of MP2 with various A

3 % ) FES FiS PC(5)  SPC()
1/2000 1/10 200| oo  0.1217e-2 046582 0.1362e-2
1/2000 1/20 100| oo  0.3272e-3 0.3107e-2 0.3604e-3
1/2000 1/1000 2 o0 0.1275e-6 0.1564e-4 0.6171e-6
1/2000 1/4000 1/2|0.6871e-8 0.8180e-8 0.9858e-6 0.3929e-7

Table 4. Maximum error and CPU time of SPC to MP2
(TCPU=Total CPU time, PCPU=Parallel CPU time)

P 1=FIS 2 5 10 20

Error | 0.1275e-6 0.1294e-5 0.6171e-6 0.3761e-6 0.2467e-6
TCPU | 0.375 0.45313  0.56250  0.75 1.125
PCPU | 0.375 0.22657  0.1125 0.075 0.05625

Example 3.3. Model Problem 3 (MP3):
g + 20u; + 25u = ug, + f(z,t)

Maximum error and CPU time in seconds of the SPC method to MP3 at the final
time £ = 1 with A = 1/2000 and k& = 1/1000 are provided in Tables 5 and 6.

Table 5. Maximum error of MP3 with various A

h k ) FES FIS PC(5)  SPC(5)
1/2000 1/10 200| oo  0.1677e-2 0.2023e-2 0.1658¢-2
1/2000 1/20 100 oo  0.4207e-3 0.1618e-2 0.4267e-3
1/2000 1/1000 2 o 0.1688¢-6 0.9200e-5 0.3577e-6
1/2000 1/4000 1/2 | 0.9935¢-8 0.1066e-7 0.5870e-6 0.2268e-7

Table 6. Maximum error and CPU time of SPC to MP3
(TCPU=Total CPU time, PCPU=Parallel CPU time)

P 1=FIS 2 5 10 20

Error | 0.1688e-6 0.6506e-6 0.3577e-6 0.2624e-6 0.2154e-6
TCPU | 0.375 0.45313  0.56250  0.75 1.14063
PCPU | 0.375 0.22657  0.1125 0.075 0.05703

Fig. 4 shows distribution of the error |wf —ul| at the final time t = 1 of MP2 and
MP3 using the SPC(P) method with various P, where h = 1/2000 and k = 1,/1000.
As you can see in Fig. 4 that truncation error decreases when P increases, which is
consistent to our theory. FIS is the benchmark which is unconditionally stable and
non-domain decomposition.



SECOND-ORDER NON-ITERATIVE SCHEME FOR TELEGRAPH EQUATIONS 297
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(a) Error distribution to MP2 (b) Error distribution to MP3

Figure 4. Error distribution of SPC with various P

4. CONCLUSION

In this paper, we present a second-order prediction/correction (SPC) non-iterative
finite difference scheme using domain decomposition for solving one dimensional lin-
ear hyperbolic partial differential equations. The interface prediction scheme of the
new SPC method is of order O(H? + k?). The interior and interface correction
schemes of SPC are of order O(h? + k?). The SPC scheme is unconditionally stable
for 0 < A < oo and can be used to variable coefficients problems and singular prob-
lems. Numerical experiments show that the SPC method is stable for any choice
of A(= h/k) and efficient domain decomposition method. It is hoped that the SPC
scheme for one dimensional telegraph equations is easily applied to two dimensional
problems.
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