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EXISTENCE OF MINIMAL SURFACES WITH PLANAR ENDS

SUN SooOK JIN

ABSTRACT. In this article we consider axes of a complete embedded minimal surface
in R of finite total curvature, and then prove that there is no planar ends at which

the Gauss map have the minimum branching order if the minimal surface has a
single axis.

1. INTRODUCTION

Historically, a minimal surface was described as a surface on which each point has
a neighborhood which is the surface of least area with respect to its boundary. In
1989, Osserman [6] showed that if we stand at infinity to view a complete minimal
surface in R3 of finite total curvature, it looks like several planes and catenoids.
Since the plane and the catenoid are rotational surfaces, we say that they have axes
(of rotation). Like the catenoid, we can consider an axis of a catenoid type end on
which the torque of the representative curve of the end vanishes, see [2]. Because
most of all the known examples can be constructed by symmetry methods, it follows
that each axis of a catenoid type end of such examples coincide.

In this paper, we define another type of axes for complete embedded minimal
surfaces of finite total curvature and describe their properties around a planar end.
Hoffman and Karcher [2] raised the question of the order of the Gauss map at a
planar end of a complete embedded minimal surface of finite total curvature can be
equal to two which is the minimum possible value. Using properties of axes around

a planar end, we can obtain another a partial result to this problem.
Theorem 1. If a complete embedded minimal surface in R3 of finite total curvature

has a single axis, then it cannot have a planar end where the Gauss map has the

manimum order two.
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2. PRELIMINARIES

A minimal surface of R3 is a conformal harmonic immersion X : S — R? where
S is a 2-dimensional smooth manifold, with or without boundary. We can define X
by

Pl 2y & 2

W XO=R[ (0= 5706, S0 de+ XCw)
where f is a holomorphic function and g a meromorphic function, which is called the
Enneper-Weierstrass representation of X. In particular, the meromorphic function
g : S — C is the stereographic projection of the Gauss map of X with respect to
the north pole of S2, just say it the Gauss map of X.

Let X be a complete minimal surface with finite total curvature. Then, by [6],
there exists a closed Riemann surface Sy of genus k£ and finite number of points
p1,--- ,pr on Sg, where S is conformally equivalent to Sk \ {p1,--- ,pr} and the

Gauss map g can be extended to Sj such that the extension
g: Sk — CU {00}

is a holomorphic function. Take p € {p1,---,p-} and consider a conformal closed
disk D C Sj such that p € D and p; ¢ D for p; # p, respectively. Denote D* :=
D\ {p}, then the restriction E := X(D*) is called an end of X at p. We may assume
that E has the vertical limit normal, for example g(p) = 0, and then we can take a
suitable conformal local coordinate z of the origin such that z(0) = p and a domain
U C C containing the origin to get

(2) 9(z) = 2"h(z)

where n > 0 and h is a holomorphic function on U with h(0) # 0. Since E is
embedded, by Lemma 11.9 in [1], the conformal metric A = 3|f|(1+ |g|*) must have
order 2 at zero. It means that in other terms

c
I +197) ~ 5
2|
for some constant ¢ > 0. Together with the well-definedness of (1), we have
(3) f(z)=a_g27% + Z a; 2
i=0

on U* := U \ {0} where a_3 # 0. From (1) we easily deduce, X|y~ is a graph

(1,2, u(x1,x2)) over the z1z9-plane with

(4) w(z1,22) = B+ alogr +r 2(11z1 + 2x2) + O(r™?)
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Figure 1.

for r = (22 + a‘%)% sufficiently large, where (3, a, v1 and 7 are real constants, see
([7]). The horizontal plane {(z1, 2, z3) € R*|x3 = 3} is called by the limit tangent
plane of the end. We call E o planar end if a = 0, or equivalently n > 2 in (2).
Otherwise, then we call it a catenoid type end. Notice that the embedded end E is
planar if and only if the corresponding puncture p is a branch point of the Gauss
map g with the branching order equal ton -1 > 1.

On the other hand let v € S be a closed curve and let v be the outward unit
conormal, see Figure 1, then we can define the fluz and the torque of X along  that;

Fluz(y) = /l/ds
2!

Torquep(y) = /X/\vds
g

where O = (0,0,0) is the base point of the position vector X. If we move the base

point from O to W € R3 then the position vector based on W is changed to X — W,
and the torque is

Torquew(y) = /(X ~W)Avds
Y
= Torqueg(y) — W A Fluz(y).

It follows that the torque of v does not depend upon the base point of X if the flux
of v vanishes.

Balancing Formula ([5]). Let S be a compact minimal surface. Then

Fluz(dS) = (0,0,0)
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Torquew (8S) = (0,0,0)
for all base points W € R3.

Note that we can compute the flux and the torque of an embedded end as those
of a representative curve, for example E N JB for a sufficiently large ball B.

Proposition 1 ([4]). If E is an embedded end which is defined by the graph of a
function u in (4) over a horizontal plane, where the order of Gauss map n is given
in (2). In the case of n =1, E is a catenoid type end and that

(5) Fluzx(E) = 27(0,0,a)

(6) Torquep(E) = m(v2,—m1,0).

If n > 2in (2), then the end E is a planar end and

(7 Fluz(E) = (0,0,0)

which follows that the torque of E is well-defined independent upon the base points.
Precisely, we get;

(2, =1,0) # (0,0,0) ifn=2

®) Torque(E) = { (0,0,0) ifn>2.

3. PROOF oF MAIN RESULT

In this section we assume that M C R3 is a complete embedded minimal surface
of finite total curvature with horizontal limit tangent planes at the ends. Denote

some notations by;

o II; := {(x1, %2, x3)| z3 = t} is a horizontal plane at the height t € R
e v := M N1l; is the intermediate curve of M with II;
e S(a,b) := {(z1,z2,z3)|a < z3 < b} is a slab for a < b.

Let M have parallel planar ends Ep,,--- ,Ep, of heights hi,--- , hi, respectively,
with
hi >---> hg.
Let t € R\ {h1, -, hi}, then - is compact and divides the surface M into two
components Mti where
Mt+ = Mn {(1131,1'2,.’173) e R? | T3 > t}
M7: = Mn {(331,$2,$3) € R3|.733 < t}.
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Consider a sufficiently large closed region K C R? such that the boundary of the

compact minimal sub-surface Mt+ M K satisfies
5(Mt+ﬂK) :%UI‘tl UUth

where I’y ,--- T, are respectively in the same homology class as the representative
curves of each end of M,', i.e., the representative curves of ends. Then from the
Balancing Formula;

Fluz(y)+ Y Fluz(Ty,) = (0,0,0).
i=1

Recall that the flux of each end of M must be either vertical or zero, see (5) and
(7); hence the flux of ; must be vertical.

Proposition 2. For all t € R\ {h1,---, hi}, there is a unique horizontal vector
Wi = (wi,w}, 0) € R® such that;

Torquew, (')’t) = (Oa 0, 0)

We call Wy the base point of M at the height t.

Proof. By the halfspace theorem {3], M cannot be contained in a halfspace. Let
t > hy, then M[’” can have only catenoid type ends E¢,,- - , E¢, and we can choose
a closed region K such that;

IMNK)=vUTg U---Ulg,
where I'c;, i = 1,--- £, is a representative curve of E¢,, respectively. From the

balancing formula, we have

14
Torqueo(v:) = — Z Torqueo(Ec,)

i=1

which is horizontal by (6). Recall that for W € R?,
Torquew () = Torqueo(v:) — W A Fluz{vy).

Since the flux of +; is vertical, we can take a (unique) horizontal vector W; =
(wf,w?, 0) for which
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TOTquewt (’Yt) = (07 0: 0)

Now let s < hy and M have planar ends Ep,, - - - ,Epkl for k¢ < k. Take a closed
region K such that

8(MHK)=")’3UFPIU“'UrpkeUrclU-*'UFC,Z

where T'p,, i = 1,--- , kg, is the representative curve of Ep,, respectively. Then the
torque of 7y, is horizontal by (6) and (8), and

¢ ke
Torqueo(vs) = — ZTorqueo(ECi) - E Torque(Ep;).
i=1 j=1
As before the torque vanished in this case, too. O

If we consider a slab S(a,b) such that M N S(a,b) is compact, then for the base
points W, and W, at the heights a, b, respectively, we have;

(0,0,0) = Torquew,(vs) + Torquew, ()
= Torquew,(7a) + Torquew, (1) — (Wa — Ws) A Fluz(y)
(9) = —(Wo — W) A Fluz().
Since all the base points are horizontal and the flux of 4, is vertical, it implies that

W, = Wp. Therefore, there is a unique vertical line on which the torque of
vanishes for all a <t < b.

Definition 1. For a slab S(h;,h;_1),i=1,--- ,k+ 1, where hg = o0 and hg41 =
—00, the (unique) vertical line £;, on which the torque of +; vanishes for all h; <t <
hi_1, is called the i-th axis of M.

To compare two consecutive axes around a planar end, consider a slab S(c,d)
which contains only one planar end E € {Ep,,---,Ep} with the limit tangent
plane II. Then for a closed region K we have the boundary;

IMnNS(e,d NK)=~UyuUTl

where T is the representative curve of E. Let us denote the upper axis ¢, and the
lower axis £_ around E, then for the (horizontal) base points W4 € £4, respectively,
we have;

Torquew_(v) = (0,0,0)

Torquew,(va) = (0,0,0).
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Apply the balancing formula to the compact surface M N S(c, d) N K, then we get

Torquew_(7v.) + Torquew_(vq) + Torque(E)

= Torquew, (vq) — (W4 — W) A Fluz(vg) + Torque(E)
(10) = —~(Wy — W_) A Fluz(vg) + Torque(E)

= (0,0,0).
If E has the the minimum branching order then the torque does not vanish by (8),
so together with (10), we have
(11) Torque(E) = (W4 — W_) A Fluz(7.) # (0,0,0)
which follows that W, # W_. Therefore, since £, # £, the minimal surface M
cannot have a single axis. This completes the proof of the main theorem.

Remark. Let E be a planar end of a minimal surface M with the minimum branch-
ing order which is defined by (4), then for the limit tangent plane I the intersection
M N 1lg is asymptotically parallel to a line

Mz +v2r2 =0

in I1z. Therefore, by (8), the torque of F is the direction of A/NII at infinity. Observe
that, together with (11), we can say that the difference of base points W, — W. is
perpendicular to the direction of M N II asymptotically.
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