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STABILITY OF FUNCTIONAL EQUATIONS RELATED TO THE
EXPONENTIAL AND BETA FUNCTIONS

YOUNG WHAN LEE

ABSTRACT. In this paper we obtain the Hyers-Ulam stability of functional equations

flz+y) = f(x) + f(y) + Ina®¥"?
and

fla+y) = f(x) + fy) + Bz, y) "

which is related to the exponential and beta functions.

1. INTRODUCTION

In 1940, S. M. Ulam gave a wide ranging talk in the Mathematical Club of the
University of Wisconsin in which he discussed a number of important unsolved prob-
lems [19]. One of those was the question concerning the stability of homomorphisms;

Let G1 be a group and G4 a metric group with a metric d(-,-). Given
€ > 0, does there exist ¢ § > 0 such that if @ mapping h : G1 — Go
satisfies the inequality d(h{zy), h(z)h(y)) < § for all z, y € Gy, then
there exists a homomorphism H : Gy — G with d(h(z), H(z)) < € for
alze Gy ?

In the next year, D. H. Hyers [7] answered the Ulam’s question for the case of
the additive mapping on the Banach spaces Gy, G as follows;

Let G1 and Go are Banach spaces. Assume that a mapping f : G1 —
G2 satisfies the inequality

f(@+y) - flz) - fW)ll <e
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for all z,y € G1. Then the limit g(z) := limp_oo ﬁ;:_m) exists for all
z € Gy and g is the unique additive mapping satisfying

If(z) —g(=z)l| < e
for all z € G;.
In 1978, Th. M. Rassias [16] provided a generalization of Hyers’ Theorem which
allows the Cauchy difference to be unbounded;
Let G1 be a vector space and G2 a Banach space. Assume that a

mapping [ : G1 — Gy satisfies

1f(x+y) — f(=) — fWI < e(ll=l” + llylIP)
forallz,y € G, e >0 andp < 1. Then the limit g(z) := limy 0 ﬂ';’:—zl
exists for all z € G1 and g is the unique additive mapping satisfying

|17 (x) — g(=)Il <

2e
2-2pr

|||?

for all z € Gy.

In 1991, Z. Gajda [3] gave an affirmative solution to this question by the same
approach as in Th. M. Rassias [16]. It was also shown by Z. Gajda (3], as well as by
Th. M. Rassias and P. Semrl [17] that one cannot prove the Th. M. Rassias’ type
theorem when p = 1. These results provided a lot of influence in the development
of a generalization of the Hyers-Ulam stability concept.

P. Gavruta [4] provided a further generalization of Th. M. Rassias’ Theorem.
During the last two decades a number of papers and research monographs have been
published on various generalizations and applications of the generalized Hyers-Ulam
stability to a number of functional equations and mappings (see [1]-[19]).

Gilényi [5] and Rétz [18] showed that if satisfies the functional inequality

l12(2) +2f(y) ~ flzy™"I < If (=y)]],

then f satisfies the Jordan-von Neumann functional equation

2f(z) + 2f(y) = f(zy) + flzy™").

Gilanyi [6] and Fechner [2] proved the generalized Hyers-Ulam stability of this func-
tional inequality. H. Kim and J. Oh [11] proved the Hyers-Ulam stability of the
following functional inequality with abc #0

llaf(z) +bf(y) + cf(2)ll < ||f(az + by + c2)|| + b(z, v, 2).
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Now, we consider the following functional equations (1) and (2)

(1) fz+y) = f(z) + f(y) + Ina®¥~!
and
(2) f@+y) = f(x) + fly) + n B(z,y) "

Then functional inequalities with a perturbing term § are represented by

|f(z+y) = (f(z) + f(y) + ma®¥ )] <6
and

[f(z +y) = (f(z) + f(y) + nB(z,y)"1)| < 6.

The purpose of this paper is to prove that if f satisfies the above inequalities,
then we can find the stable mappings satisfying the equation (1) and (2) near an
approximate mapping f, and thus we prove the Hyers-Ulam stability of the above
functional inequalities.

2. SOLUTIONS OF THE EQUATION (1) AND (2)

Let f(z) = lna®**+. Then f(z +y) = f(z) + f(y) + Ina®**¥~2. Thus this
function is a solution of the functional equation (1). Now consider the gamma and
beta functions

I(z) = f0°° t=le—tdt
and

Bz, y) = fJy 271 (1 — t)¥ dt.
It is well known that these gamma and beta functions satisfy the equation

Bz, y)l'(z +y) = (z)I(y).
Thus if we let f(z) = InT(z), then
fz+y) = f(2)+ f(y) + Bz, 1),
and so this logarithm of the gamma function is a solution of the functional equation

2).

3. STABILITY OF THE FUNCTIONAL EQUATION (1) AND (2)

The following theorem is the Hyers-Ulam stability of the functional equation
fle+y)=f@)+ fly) + ma®*¥ (a>0)

which is related to the exponential function.
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Theorem 1. Let § > 0 and a > 0 be given. Assume that a mapping f : R — R
satisfies the functional inequality

&) |f(z +y) - f(=) - fly) —ma®@ 7| <6
for all x,y € R. Then there exists a unique mapping g : R — R such that
gz +y) = g(z) + 9(y) + na®¥!

forallz,y € R and
|f(z) — g(z)| < &
for all x € R. In particular, g is defined by

(@) = lim Pu(a)

where
My 92012,
Pp(z) = % —lnHa 2t
i=1
forallz € R.

Proof. If we replace y by = and dividing 2 in (3), we get

z2—
@) 122 o= )| < 2
2 2
for all z € R. We use induction on n to prove
f(2"x) n 221—1f2_1 "1
) Ta T - ) <0y g

for all z € R. On account of (4), the inequality holds for n = 1. Suppose that the
inequality (5) holds true for some integer n > 1. Then (4) and (5) imply

2n+l n 2i+1,2
ﬂﬁ“—m) ~lnaX T f(a)
f@2r-2z) 1 n 2271len?r f(2r) f(2z) 2021
ST et T T ST Ty e - /(@)
n+1

1
S(SZE‘
i=1

which ends the proof of (5). For any x € R and for every positive integer n we define
that

92i-1,2_,

Py(z) = f(;::c) - lnHa—zT—.
i=1
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Let m,n > 0 be integers with n > m. Then it follows from (3)

IPn(I) - Pm(m)i

B 1 f(2n——m(2m$)) n—m 221'-1(2? -1
e R = waa In E a 2 - f(2"z)

-1

552%-—&0
i=1

as m — oo. Therefore, the sequence {P,(z)} is a Cauchy sequence, and we may
define a function g : R — R by

g(z) := lim Py(z)
for all z € R. Now we prove that
g(z +y) = g(z) + g(y) + Ina®¥

for all z,y € R. For this, we consider the following property.

22i-1),2 (2i-1),2_,

& i 2V TyT-1 (i1 . 4L
1 [li,o = [[te = oGttt
n 2(2i—1)§2+y)2_1 =1n azxy_lazwy(1+2+...+2n~l)
a2zy—1 H?:} a Py

< 1 1 1
= 9n n 2@ z)(2y)~1

for all z,y € R. Thus we have

l9(z +y) — g(z) — g(y) — Ina®¥7!|

i |fZEA2%)  f202)  fMy) L aerneiy)-t
- T}L“;! 2 2 T

S
= =0

and so
9(z +y) = g(z) + g(y) + Ina*¥~*
for all z,y € R. From the inequality (5), we have
[f(x) —g(@)| <6
for all x € R. Now suppose that h satisfies the equation
h(z +y) = h(z) + h(y) + Ina®¥~1
for all z,y € R and
[f(2) - h(z)] <6
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for all z € R. Then

lg(z) — h(x)l
9n T g2i-1.2 4
< hm —|f(2"z) — h(2"z)| + 11 (Qnm) - lnHa 7 — h(x)
i=1
= lim —é- +0=0
n~oo 2N
as n — oo and for all z € R, and thus g is unique. 0

Corollary 2. Let A be a Banach algebra and § > 0 be given. Assume that a mapping
f: A — A satisfies the functional inequality

Wf(z+y) - fl@) - fly) - Qay—1)|| <§
for all z,y € A. Then there exists a unique mapping g : A — A such that
9(z +y) = g(z) + g(y) + 22y — 1
for allz,y € A and

|f(z) - g(z)| < 6
for all x € A. In particular, g is defined by

9(z) := lim Fy(z)

where n
Pn( Z (221-1 2 1)
for all z,y € A. =
Proof. From Theorem 1 with a = e, we complete the proof. O

The following theorem is the Hyers-Ulam stability of the functional equation
fz+y) = f(z) + f(y) + n Bz, )~

which is related to the beta function.

Theorem 3. Let § > 0 and a > 0 be given. Assume that a mapping f : (0,00) —
(0,00) satisfies the functional inequality

®) @ +y) - (@)~ fu) ~ n Bl )7 < 8

for all z,y € (0,00). Then there erists a unique mapping g : (0,00) — (0,00) such
that

g(z +y) = g(z) + g(y) + In B(z, y)v”l
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for allz,y € (0,00) and
|f(z) —glz)| < 6

for all z € (0,00). In particular, g is defined by

g(z) ;= lim P,(z)

n—00

where

n--1
2%z i e 1
f(2n ) [[ 82z, 2'z) 7

=0

Pp(z) =

for all x,y € (0, 00).
Proof. If we replace y by z and dividing 2 in (6), we get

) 282 4 1o, - 10

for all z € R. We use induction on n to prove

(8) 'f(g T ﬁﬂ 2, 22T — ()| <

4 Z 21+1

for all z > 0. On account of (7), the inequality holds for n = 1. Suppose that
inequality (8) holds true for some integer n > 1. Then (7) and (8) imply

n+1
‘f(znilx) +lnHﬂ(2‘x 2 )Eﬂ‘f f(z)
=0
_|f@-22) T aroi o oi oz F(22)
Y T —l gﬁ(? - 22,2" - 23:)‘7—T 5
+ }@ +ln;3(:c,x)% - f(z)
<5; 2i+1

for any > 0, which ends the proof of (8). For any > 0 and for every positive
integer n we define that

n—1
Pu(z) = (2 IZ9) ] Bz, 22y

i=0
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for all z,y > 0. Let m,n > 0 be integers with n > m. Then it follows from (6) that
forallz >0
|Po() — Pr()|
L|femem) 7

— S +In H B(2'x, 2'x) FAT f(@mz)
i=0

2m

1£@™@m0) | T poiom. giom o

~g| g 1] A p2n g
n—1 1

2 gt 0
=m

as m — oo. Therefore, the sequence {P,(z)} is a Cauchy sequence, and we may
define a function g : (0, 00) — (0, 00) by
g(a) = lim Pa(a)

for all z > 0. Now we prove that

9z +y) =g(z) + 9(y) + InBz,y) !

for all z,y > 0. For this, we consider the following property of the beta function.

B,z +y)Bly,y +2x) _ B(z,2)B(y, y)B(2z, 2y)
B(z,y) Bz, y)?
for all z,y > 0. By this property, we have the equation

il [ﬁ(zi(x +9),2(z + y))] w1 [ﬁ(w‘ﬂx, z*f+1y>} T
B(2'z, 22) B (2'y, 2'y) 1117607, 2y
9) _ [ﬁ(%, 2y)r . [ﬁ(22x, 22y)} w [ B2z, 2"y) } "
B(z,y)? B(2z, 2y)? B(2n—1z,2n~1y)2
_ B2z, 2y
B(z,y)
for all z, y > 0. From this equation (9) we get

|l9(z + ) — 9(2) — 9(v) — InB(z, )7}

9 f(2n$+2ny) f(2nw) f(2ny) 1 n n,\—1
= lim l o o " Tom —2—nln{3(2 z,2™y)

Blx+y,x+y) =

i=

.0
S A =0
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for all z,y > 0 and thus

g(z +y) = g(z) + g(y) + In fz,y) "
for all z,y > 0. From the inequality (8), we have
|f(z) - g(@)| < &
for all z > 0. Now suppose that h satisfies the equation
h(z +y) = h(z) + h(y) + I f(z,y)”"
for all z,y > 0 and

|f(z) — h(z)| <&

forallz > 0. Then forall z >0

lg(z) — (=)l
1 h@) T o oo

< Jim, 5|/ (2) = W2+l | =0+ [] 02, 20)F ~ ho)
.0

<lim —4+0=0

n—oo 27
as n — oo and for all z > 0, and thus g is unique. O
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