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EXISTENCE OF HOMOCLINIC ORBITS FOR LIENARD TYPE
SYSTEMS

Yong-In KiMm

ABSTRACT. We investigate the existence of homoclinic orbits of the following sys-
tems of Liénard type: a(z)z’ = h(y)—F(z), ¥ = —a(z)g(x), where h(y) = m|y|"?y
with m > 0 and p > 1 and a, F, g are continuous functions such that a(z) > 0 for all
z € R and F(0) = ¢g{0) = 0 and xg(z) > 0 for z # 0. By a series of time and coor-
dinates transformations of the above system, we obtain sufficient conditions for the
positive orbits of the above system starting at the points on the curve h{y) = F(x)
with = > 0 to approach the origin through only the first quadrant. The method of
this paper is new and the results of this paper cover some early results on this topic.

1. INTRODUCTION

Consider the existence of homoclinic orbits of the following generalized Liénard
system:

) { a(z)z’ = h(y) — F(),

y = —a(z)g(z),
where 7’ = z—f and y’ = %%. Throughout this paper, we assume that h(y) = m|y|P~2y
with constants m > 0 and p > 1, and q, F, g are continuous functions on R such
that a(z) > 0 for all z € R and F(0) = ¢(0) = 0 and zg(z) > 0 for all z # 0.
Moreover, we assume that smoothness conditions for the existence and uniqueness
of solutions of the initial value problem of (1) are satisfied.

If a(z) = 1, p = 2 and m = 1, then system (1) reduces to the so-called Liénard
system:

Yy =—g(2),
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which is equivalent to the following second order equation
@) =’ + f(z)2’ + g(z) = 0,

where F € C! and f(z) := F'(z).

As for the system (1), it is easy to see that the origin is the unique equilibrium
point of (1). An orbit of (1) is said to be a homoclinic orbit if its a— and w—limit sets
are the origin. The investigation of the existence of homoclinic orbits of a dynamical
system plays an important role in the study of various nonlinear dynamical systems
such as Lagrangian systems, Hamiltonian systems, Lorenz systems and Schrodinger
systems. Many results have been achieved on this topic. For example, see the results
in {1-10] and the references therein. The existence of a homoclinic orbit implies that
the zero solution is not stable and the origin is not a center. Moreover, the existence
of a homoclinic orbit has a close relationship with the stability of the zero solution,
the global attractivity of the origin and oscillation of the solutions and so on(see
(3,8-10)).

We say that system (1) has property Zj ( resp.,Z7) if there exists a point P =
(zo0, yo) with 2o > 0 (resp.,zo < 0) and h(yy) = F(zo) such that the positive
orbit of (1) starting at P approaches the origin through only the first (resp., third)
quadrant. Similarly, we say that system (1) has property Z, (resp., Z; ) if there
exists a point @ = (z1, ¥1) with 7 < 0 (resp.,z; > 0) and h(y1) = F(x1) such that
the negative orbit of (1) starting at Q approaches the origin through only the second
(resp., fourth) quadrant. If system (1) has both property Z;" and property Z; , a
homoclinic orbit exists in the upper half-plane. Similarly, if the system (1) has both
property Z:;" and property Z, , a homoclinic orbit exists in the lower half-plane.

Sugie et al [8] have obtained some implicit and explicit conditions for the System
(1) (with a(z) = 1) to have the property Z;'. Recehtly, Aghajani et al [9] also have
obtained some sufficient conditions for system (1) to have property Zf' .

In this paper, by a series of coordinates and time transformations, we rewrite
the system (1) in the so-called generalized polar coordinates and then by using the
information obtained from the second equation of the transformed system, we obtain
the same results achieved in [8] and [9]. The method used in this paper is new and

the constants obtained are very sharp.

2. COORDINATES TRANSFORMATIONS AND LEMMAS

First, by using coordinates and time transformations, we change system (1) into
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the so-called canonical form.
Letp>1andé+é=1. Thenqzz—)f—iandq>l.

Lemma 1. Define a time transformation T1 by

ds 1

dt ~ a(z)

Then, under the transformation Ty, the system (1) is changed into the following
form:

T1:

§ = —d*(z)g(x),
dx

o dr o dy
where & = 5, = .

Lemma 2. Define coordinates and time transformation Ty by
dr _ a(@)lg(a)]
45 (4Ga))"
where G(z) = [ a®(s)g(s)ds. Then under the transformation Ty, the system (4) is
changed into the following canonical form:

& = h(y) - F*(u),

d _
R

ro-s(e ()

Now, we introduce the so-called generalized sine and conine functions.
Let (z, y) = (S(t), C(t)) be the solution of the initial value problem

)

(5) Ty :u = (qG(x))7 sgn(z), v=uy,

(6)

where

(7) o =hy), ¥ =-lel"%z,  (2(0), y(0)) = (0, 1)).
Then it follows from (7) that (S(¢), C(t)) satisfies the following identity:
(8) QW +lCEP=1.

Note that if m =1 and p = 2(= q), then the functions S(t) and C(t) reduce to the
usual sine and cosine functions sint and cost respectively.

Lemma 3. Introduce the generalized polar coordinates transformation T3 : (r, 0) €
(0, +00) x R — (u, y) € R? by:

9) u=r286), y=riC(H).
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Then, by using p+ q = pq, (7) and (8), and after some calculations, system (6) is
changed into the following form: '

_2F(z)r¥)s( @I =25(6)
rd'r

(10) mar 25
a8 _ 1— F(z)r§C(0)
dr =

mr

Now note that by using (5), (8) and (9), we can obtain the following relation

- q
(11) P =¥ = (3’% +lylP = pG(x) +lyP?,
and by using (5), (9) and (11), we can put system (10) back into (z, y) coordinates:
dr _ _2F(z)(qC(z))P sgne
(12) rdr = qpG@)+mlylF]

%=1~ oo
From the first equation of (12), we get r(r) = r(O)efoT Als)s where A(s) equals the
right side of the first equation of (12) with z and y replaced by z(s) and y(s). Hence,
for 7(G) > 0, we see that for finite 7 > 0, 0 < r(7) < +00, which again implies that
() has no blow up in finite time. From the second equality of (12), we shall derive
some important information of our results. For this we need the following lemmas:

Lemma 4. If A, B are nonnegative numbers andp > 1, ¢ = then

P q
A—+£—>AB
p q

pl’

where the equality holds if and only if A = B9~1.

yo(z) = (g—%ﬂ) ’_l’ :

Lemma 5. Let

and for any fized x, define

__ Fly
H) = 6@ + migp
IfF(z) > 0, then
F(z)
max H I)) = —4———.
mas () = H(yo(z)) o )

Note that the function yo(z) > 0Vx # 0 and is independent of the function F(z)
and hence the function H(y) always takes its maximum value on yp(z). Lemma 5
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follows immediately by letting AP = pmly|P and B? = ¢pG(z) in Lemma 4. The

proofs of Lemma 1 - Lemma 4 are also straightforward, so we omit them.

3. MAIN RESULTS AND PROOFS

Now, we can state the main results of this paper. For simplicity, we discuss only
the property Z; of system (1). Other properties can be formulated in analogous
ways. Since the property Z; is preserved under the time transformation, we need
only to consider system (1) and the second equation of the system (12).

Theorem 1. Let A = m!/Ppg}/? > 0 and suppose that there exists a § > 0 such that
3
forz €10, 8), F(z) 2 A(G(x))e. Then the system (1) has property Z; .

Proof. We prove Theorem 1 by contradiction. Assume that there exists a point
Py = (x9, yo) on the curve h(y) = F(z) and zo € (0, §) such that the positive
orbit of system (1) starting from Py does not approach the origin through the region
D= {{z,y) : 0 <z <éand 0 < h(y) < F(z)}. Then it rotates in a clockwiss
direction about the origin. For this reason and by the assumption F(z) > A (G(z))®
it is easy to verify that F(x) > h(yo(z)) = mzl)q% (G(as))% in D and the positive orbit
crosses first the the curve y = yy(z) at some point P, = (z1, y1) and then crosses
the z—axis at some point P, = (z3, 0) = (2, y2) with 0 < zp < 1 < zo(since
a(z)z’ = h(y) — F(z) < 0in D) and 0 < 31 = yolz1) < yo = h™Y(F(zg)) in
D. Let us consider the curve y(z) joining P| and P,. For z € (z2, x1) it satisfies
0 < y(z) < yo(z) and equation

dr _ F(z) - hiy)

dy — a*(z)g(z)
Since F(z) 2 A (G(z))7 = m#qip(G(z))# and h(y()) < h(yo(a)) = m7q7 (G(z)?

we get for = € (zq, z1),

& _ Fo-hy)

a?(x)g(x

m? gl p(G(z))d ~m? g} (G(z)) 4
‘

> ?(@)g(a)
11 1
- mPq?(p-1}{G(z))9
a%(x)g(z) ’
and hence,
d 2
(13) il < a (.’L‘)g(.’L‘) T2 << I3

N T
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Integrating inequality (13) over [z2, 1] and using y(z2) = 0, we obtain

1

y(@1) - y(e2) = y(@) = woler) < L7 [(G@1))7 — (G(a2))¥| = vo(a1) - wo(a2),

mpe

which is a contradiction. Here, we have used the following facts

y(z1) = yo(z1) = (M)% and  yo(x2) = (@—2—))% > 0.

m m
ad

Theorem 2. Assume that there exists constants § > 0 and € € (—o0, 1) such that
forz €0, 4),

0< Fz) < A (G(z))7 .
Then system (1) fails to have property Z; .

Proof. Since 0 < F(z) < €A (G(x))%, we get from the second equation of (12) and
Lemma 5 that

F
£ 21— maxer o0 e
=1— H(yo(z))
—1_ F(z
mPp(gG(x))?

> 1 — € = constant > 0.

This implies that 8(7) — 400 as 7 — 400 and so for all Py = (xo, yo) with
zo € (0, 6) and h(yo) = F(zo), the positive orbit of Py rotates around the origin
clockwise, and it crosses the positive z—axis in finite time 79 > 0. This implies that
system (1) fails to have property Z;'. O
Remark 1. We see from Theorem 1 and Theorem 2 that the value ) is sharp and
also that the sign of changes from positive to negative when y = yo(z) and F(z)
changes from F(z) < /\ (G(m))q to F(z) > A (G(z))q Moreover, £ = 0 if y = yo(z)
and F(z) = (G(x))q In this case, we say that system (1) has property X ¥ in the
right half-plane (see [3,10] for details). Besides, it is assumed p > 2 in [3] with a
slightly different form of h(y), but our results hold for p > 1.

Remark 2. In Theorem 2, if we further assume that there exists a constant eg > 0
such that for all x € R,
dr _drds _ 1 d*(z)lg(z)| _ (w)lg(ﬂv)l
- - 1
dt - dsdta(@) (4G(z))r  (4G(@)7

>0,
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then this implies that 7(t) — +o0o as t — +oo. And from the second equation of
(12}, we also get

o df dr
dt  drdt
which implies that all solutions of system (1) rotate around the origin clockwise

and cross the z—axis and y—axis infinitely many times. Therefore, all solutions of

> (1 — €)eg = constant > 0,

system (1) are oscillatory.

Example 1. Consider the system

(14) ' =1+ a2? [my/\/ry_]-F(x)}, Yy =- 2

V1+zZ
where m is a positive constant. Then a(z) = ﬁ, p= %, q =3, g(z) = 2z, and
G(z) = ¥ 248 = In(1 + 2?), and A = 2372

If F(z) > A[In(1 + x2)]% for £ > 0 sufficiently small, then by the Theorem 1,

1
system (14) has property Z;". If 0 < F(z) < eA[In(1 + 2%)]3 for some constant
€ € (~00, 1) and = > 0 sufficiently small, then by Theorem 2, system (14) fails to
have property Z;".

Example 2. Consider the system
(15) ' =yly - clz* 'z, ¢ = -3lalz,

where ¢ and k are positive constants. Then a(z) =m =1,p=3,¢ = %, g(z) =
2
3|z|z, G(z) = |z> and A = 3(3)3. In this case, system (15) has property Z;
provided one of the following two conditions is satisfied:
() 0<k <2
2
(i) k=2,c>A=3(3)%.
Example 3. Consider the system (1) with a(z) = 1, g(z) = g|z|¢"!sgn{z) and
1 1 1
q = 557- Then A =m#pqe, G(z) = |z(%, (G(z))? = || and
dr

1
— = g9 = constant > 0.
a1

If there exists a constant € € [0, 1) such that for all z € R, 0 < F(z) < eA|z|, then
by Theorem 2 and Remark 2, all solutions of system (1) are oscillatory, and hence
system (1) fails to have property Z;".
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