REMARKS ON WEAKLY sγ-CONTINUOUS FUNCTIONS

Won Keun Min

ABSTRACT. We introduce the concepts of strongly $s\gamma$ -closed graph, $s\gamma$ -compactness and $s\gamma$ - T_2 space and study the relationships between such concepts and weakly $s\gamma$ -continuous functions.

1. Introduction

Let X be a nonempty set and P(X) the power set of X. A subclass $S \subseteq P(X)$ is called a *supratopology* on X [3] if $X \in f$ and S is closed under arbitrary union. (X, S) is called a supratopological space. The members of S are called *supraopen* sets. The complement of supraopen sets are called *supraclosed* sets.

Let (X, S) be a supratopological space and let $S(x) = \{A \in \tau : x \in A\}$ for each $x \in X$. Then we call $\mathbf{S}_x = \{A \subseteq X : \text{there exists } \mu \subseteq S(x) \text{ such that } \mu \text{ is finite and } \cap \mu \subseteq A\}$ the supra-neighborhood filter at x [4]. A filter \mathbf{F} on X supra-converges [4] to x if \mathbf{F} is finer than the supra-neighborhood filter \mathbf{S}_x . A subset U of X is called an $s\gamma$ -open set [4] in X if whenever a filter \mathbf{F} on X supra-converges to x and $x \in U$, $U \in \mathbf{F}$. The class of all $s\gamma$ -open sets in X will be denoted by $s\gamma(X)$. In particular, The class of all $s\gamma$ -open sets induced by the supratopology S will be denoted by $s\gamma_S(X)$.

For $A \subseteq X$, the $s\gamma$ -interior of A in X, denoted by $s_{\gamma}I(A)$, is the union of all $s\gamma$ -open sets contained in A.

 $s_{\gamma}C(A) = \{x \in X : A \cap U \neq \emptyset \text{ for all } U \in \mathbf{S}_x\}.$ We call $s_{\gamma}C(A)$ the $s\gamma$ -closure of A.

Theorem 1.1 ([4]). Let (X, τ) be a supratopological space and $A \subseteq X$.

(1)
$$s_{\gamma}I(A) \subseteq A$$
 and $A \subseteq s_{\gamma}C(A)$;

Received by the editors October 23, 2009. Revised October 30, 2010. Accepted November 22, 2010.

²⁰⁰⁰ Mathematics Subject Classification, 54C10.

Key words and phrases. weakly sy-continuous, sy-compact, sy- T_2 -space, strongly sy-closed graph.

- (2) A is sy-open set if and only if $A = s_{\gamma}I(A)$;
- (3) A is $s\gamma$ -closed if and only if $A = s_{\gamma}C(A)$;
- (4) $s_{\gamma}I(A) = X s_{\gamma}C(X A)$ and $s_{\gamma}C(A) = X s_{\gamma}I(X A)$.

Let (X, τ) be a topological space. Then τ^* is called an associated supratopology with τ if $\tau \subseteq \tau^*$.

Definition 1.2. Let (X, τ) and (Y, μ) be topological spaces and τ^* an associated supratopology with τ . A function $f: X \to Y$ is called

- (1) $s\gamma$ -continuous [4] if the inverse image of each open set of Y is an $s\gamma$ -open set in X;
- (2) weakly continuous [2] if for each x and each open set V of f(x), there exists an open set U in X such that $f(U) \subset cl(V)$;
- (3) weakly $s\gamma$ -continuous [5] if for $x \in X$ and each open subset V containing f(x), there is an $s\gamma$ -open subset U containing x such that $f(U) \subseteq cl(V)$.

2. Main Results

Definition 2.1. Let X be a supratopological space. Then X is said to be $s\gamma$ - T_2 if for every two distinct points x and y in X, there exist two disjoint $s\gamma$ -open sets U and V such that $x \in U$ and $y \in V$.

Let X be a topological space. Then X is said to be Urysohn [1] if for every two distinct points x and y in X, there exist two open sets U and V such that $cl(U) \cap cl(V) = \emptyset$.

Theorem 2.2. Let (X, τ) and (Y, μ) be topological spaces and τ^* be an associated supratopology with τ . If $f: (X, \tau) \to (Y, \mu)$ is a weakly $s\gamma$ -continuous injection and Y is Urysohn, then X is $s\gamma$ - T_2 .

Proof. Let x_1 and x_2 be two distinct elements in X, then $f(x_1) \neq f(x_2)$. There exist two open sets U and V in Y containing $f(x_1)$, $f(x_2)$, respectively, such that $cl(U) \cap cl(V) = \emptyset$. Since f is weakly $s\gamma$ -continuous, there exist $s\gamma$ -open sets U_1 , V_2 containing x_1 , x_2 , respectively, such that $f(U_1) \subseteq cl(U)$, $f(V_2) \subseteq cl(V)$. It follows $U_1 \cap V_2 = \emptyset$. Hence X is $s\gamma$ - T_2 .

Remark 2.3. Let (X, τ) and (Y, μ) be topological spaces and τ^* be an associated supratopology with τ . If $\tau = \tau^*$, then obviously $s\gamma(X) = \tau$.

Proof. It follows from Theorem 2.2 and Remark 2.3.

Definition 2.5. Let (X, τ) and (Y, μ) be topological spaces and τ^* be an associated supratopology with τ . Let $f: (X, \tau) \to (Y, \mu)$ be a function. We call f has a strongly $s\gamma$ -closed graph if for each $(x, y) \notin G(f)$, there exist an $s\gamma$ -open set U and an open set V containing x and y, respectively, such that $(U \times cl(V)) \cap G(f) = \emptyset$.

Lemma 2.6. Let $f:(X,\tau)\to (Y,\mu)$ be a function on topological spaces (X,τ) , (Y,μ) and τ^* an associated supratopology with τ . Then f has a strongly $s\gamma$ -closed graph if for each $(x,y)\notin G(f)$, there exist an $s\gamma$ -open set U containing and an open set V containing x and y, respectively, such that $f(U)\cap cl(V)=\emptyset$.

Proof. Obvious.

Theorem 2.7. Let (X,τ) and (Y,μ) be topological spaces and τ^* be an associated supratopology with τ . If $f:(X,\tau)\to (Y,\mu)$ is weakly $s\gamma$ -continuous and Y is Urysohn, then f has a strongly $s\gamma$ -closed graph.

Proof. Let $(x, z) \notin G(f)$. Then $z \neq f(x)$ and since Y is Urysohn, there exist two open sets U and V containing z and f(x), respectively, such that $cl(U) \cap cl(V) = \emptyset$. Since f is weakly $s\gamma$ -continuous, there exists an $s\gamma$ -open set H containing x such that $f(H) \subseteq cl(V)$. It implies $f(H) \cap cl(U) = \emptyset$. Hence f has a strongly $s\gamma$ -closed graph.

Let (X, τ) and (Y, μ) be topological spaces. We call $f: X \to Y$ has a *strongly closed graph* if for each $(x, y) \notin G(f)$, there exist open sets U and V containing x and y, respectively, such that $(U \times cl(V)) \cap G(f) = \emptyset$.

Corollary 2.8. Let (X, τ) and (Y, μ) be topological spaces. If $f: (X, \tau) \to (Y, \mu)$ is weakly continuous and Y is Urysohn, then f has a strongly closed graph.

Proof. It follows from Remark 2.3 and Theorem 2.7.

Theorem 2.9. Let (X, τ) and (Y, μ) be topological spaces and τ^* be an associated supratopology with τ . If $f: (X, \tau) \to (Y, \mu)$ is a weakly $s\gamma$ -continuous injection with a strongly $s\gamma$ -closed graph, then X is $s\gamma$ - T_2 .

Proof. Let x_1 and x_2 be two distinct elements in X, then $f(x_1) \neq f(x_2)$. This implies that $(x_1, f(x_2)) \in (X \times Y) - G(f)$. Since f has a strongly $s\gamma$ -closed graph, there exist an $s\gamma$ -open set U and an open set V containing x_1 and $f(x_2)$, respectively, such that $f(U) \cap cl(V) = \emptyset$. Since f is weakly $s\gamma$ -continuous, there exist an $s\gamma$ -open set W containing x_2 such that $f(W) \subseteq cl(V)$. It implies $f(W) \cap f(U) = \emptyset$. Therefore $W \cap U = \emptyset$ and so X is an $s\gamma$ - T_2 space.

Corollary 2.10. Let (X, τ) and (Y, μ) be topological spaces. If $f: (X, \tau) \to (Y, \mu)$ is a weakly continuous injection with a strongly closed graph, then X is T_2 .

Definition 2.11. A subset A of a supratopological space (X, τ) is called $s\gamma$ -compact relative to A if every collection $\{U_i : i \in J\}$ of $s\gamma$ -open subsets of X such that $A \subseteq \bigcup \{U_i : i \in J\}$, there exists a finite subset J_0 of J such that $A \subseteq \bigcup \{U_i : i \in J_0\}$.

A subset A of a topological space X is said to be quasi H-closed relative to A [6] if every collection $\{U_i: i \in J\}$ of open subsets of X such that $A \subseteq \bigcup \{U_i: i \in J\}$, there exists a finite subset J_0 of J such that $A \subseteq \bigcup \{cl(U_i): i \in J_0\}$.

Theorem 2.12. Let (X,τ) and (Y,μ) be topological spaces and τ^* be an associated supratopology with τ . If $f:(X,\tau)\to (Y,\mu)$ is weakly $s\gamma$ -continuous and A is an $s\gamma$ -compact subset of X, then f(A) is quasi H-closed relative to (Y,μ) .

Proof. Let $\{V_i: i \in J\}$ be a cover of f(A) by open subsets of Y. For each $x \in A$, there exists $i \in J$ such that $f(x) = y \in V_i(x)$. Since f is weakly $s\gamma$ -continuous, there exists an $s\gamma$ -open set $U_i(x)$ containing x such that $f(U_i(x)) \subseteq cl(V_i(x))$. The family $\{U(x): x \in A\}$ is a cover of A by $s\gamma$ -open sets in X. Since A is $s\gamma$ -compact, there is a finite subcover $\{U_1(x), U_2(x), \cdots, U_n(x): x \in A, j = 1, 2, \cdots, n\}$ such that $A \subseteq \cup U_j(x)$. Then

$$f(A) \subseteq f(\cup U_j(x)) = \cup f(U_j(x)) \subseteq \cup cl(V_j(x)),$$

 $1 \leq j \leq n$.

Thus f(A) is quasi H-closed relative to (Y, μ) .

Corollary 2.13. Let (X, τ) and (Y, μ) be topological spaces. If $f: (X, \tau) \to (Y, \mu)$ is weakly continuous and A is a compact subset of X, then f(A) is quasi H-closed relative to (Y, μ) .

REFERENCES

- 1. J. Dugundji: Topology. Allyn and Bacon, Boston (1966).
- 2. N. Levine: A decomposition of continuity, Amer. Math. Monthly 68 (1961), 44-46.
- 3. A.S. Mashhourr, A.A. Allam, F.S. Mahmoud & F.H. Khadr: On Supratopological Spaces. *Indian J. Pure Appl. Math.* **14** (1983), no. 4, 502-510.
- 4. W.K. Min: On supra-convergence of filters. Indian Journal of Pure and Applied Mathematics 34 (2003), no. 12, 1719-1726.
- 5. _____: On Weakly sγ-continuous Functions. Journal of the ChungCheong Mathematical Society 22 (2009), no. 3, 353-358.
- 6. N.V. Velicko: H-closed topological spaces. Amer. Math. Soc. Transl. 78 (1968), 103-118.

DEPARTMENT OF MATHEMATICS, KANGWON NATIONAL UNIVERSITY, CHUNCHEON 200-701, KOREA

Email address: wkmin@cc.kangwon.ac.kr