J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. ISSN 1226-0657
Volume 17, Number 4 {(November 2010), Pages 341-346

ON SOME PROPERTIES OF TOPOS E(f, A)

I¢ Sung Kim

ABSTRACT. Category E(£2, A) forms a topos. We study on some properties of the
topos E(§1, A). In particular, we show that E(Q, A) is well-pointed.

1. INTRODUCTION

Let (£2,A) be fixed ample space. Then the set of all possibilistic set for (£, 4)
yield a category E(€2, A). Yuan [4] showed that E(Q, A) is a topos.

In this paper, we study some properties of the topos E(2,.A). In particular, we
show that E(Q, A) is a well-pointed topos. Finally, by the use of the concepts of the
topos E(£2, A), we obtain the logic operators of possibilistic sets.

2. PRELIMINARIES

In this section, we state some definitions and properties which will serve as the
basic tools for the arguments used to prove our results.

Definition 2.1. An elementary topos is a category £ that satisfies the following;
(T1) & is finitely complete,
(T2) &€ has exponentiation,
(T3) &€ has a subobject classifier.

(T2) means that for every object A in £, the endofunctor {—) x A has its right
adjoint (—)*. Hence for every object A in £, there exists an object B4, and a
morphism evy : B4 x A — B, called the evaluation map of A, such that for any Y
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and f : Y XA — Bin &, there exists a unique morphism g such that evqo(gxid) = f;

YxA —1 . B

gxidl lid

BAxA —— B

eva

And subobject classifier in (T3) is an £-object 2, together with a morphism
T : 1 — 2 such that for any monomorphism h : D — C, there is a unique morphism
xn : C — Q, called the character of h : D — C which makes the following diagram
a pull-back;

Xh

Example 2.2. Category Set is a topos. {x} is a terminal object. £ = {0,1} and
T : {*} — Q with T(*) = 1 is a subobject classifier. If we define

xp = 1 if ¢ = h(d) for some d € D,

xn = 0 otherwise

then xj, is a characteristic function of D .
Definition 2.3. A topos £ is called classicalif [T, 1] : 141 — Q is an isomorphism.

Definition 2.4. A topos £ is called Boolean if for every object D in £, (Sub(D), €)
is a Boolean algebra where Sub(D) is the class of monomorphism with common
codomain D, and g € f if there exists a morphism h : B — A such that foh =g
where f: A — D and g : B — D are monomorphisms.

Lemma 2.5 ([4]). For any topos &, the following statements are equivariant;
(1) € is Boolean.
(2) Sub(?) is a Boolean algebra.
(3) T:1— Q has a complement in Sub(f)).
(4) L:1 — Q is the complement of T in Sub(Q).
(5) TUL ~1g in Sub(Q).
(6) € is classical.
(7) 41:1 — 141 is a subobject classifier.

Definition 2.6. A topos is called well-pointed if it satisfies the extentionality prin-
ciple for morphisms, i.e., If f,g: A — B are a pair of distinct parallel morphisms,
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then there is an element a : 1 — A of A such that foa# goa.

Definition 2.7. Let X be a set and A be a subset of power set P(X) of X. If (1)
XeA

(2)Ac A= A€ A
(3) For any index set I, A, € A= UA; € A
Then A is called an ample field over X and (X, A) is called an ample space.

Definition 2.8. Let (X,.A) be an ample space, then

[l =N{Alz € A€ A}

is called an atom of A containing the element r € X.

Definition 2.9. Let (X,.A) and (Y, B) be two ample spaces. Let
y={BlyeBeB}, Y ={ylyeY}

Let B be an ample field generated by Y’. If set-valued mapping £ : X — P(Y)
satisfies B€ B= ¢~1(B) € A

then ¢ is called a possibilistic set from (X, .A) to (Y, B) and E(X, A;Y, B) denote
a set of all possibilistic sets from (X, .A) to (Y, B).

Let (22, A) be a fixed ample field and £ € E(f, 4; X, B) be denoted as (X, B,§).
Let E(Q,.A) be a category, its objects be possibilistic sets (X, B3, ) satisfying X =
Ué(w); a morphism from (X1,B1,&;) to (X3,B2,£2) be a mapping f : X1 — X»
satisfying f~}(&(w)) = & (w) for all w € Q. Then we have that the category
E(Q, A) is a topos | |.

3. SOME PROPERTIES OF Toros E(,.A)

Theorem 3.1. Topos E(RQ, A) is bivalent.

Proof. Let A = A* x 2, where A* = A/¢ and 2 = {0,1} . Then (A, Ba,§), where
0 :Q — P(A) is a mapping defined by é(w) = w’ x 2, is a subobject classifier. And
(A*,B*, %), where B* =[] with @ = {/ |w e Q}and e"(w) = = {A|we A€
A}, is a terminal object. For any ¢* : @ — P(A*) and § : @ — P(A), there exist
T:A* — A with T(A) = (A,1) and L : A* - A with L(A4) = (4,0).

Q —S— P(AY)

ll l
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Lemma 3.2. Finite coproducts ezist in E(Q, A).

Proof. Let (Xi1,B1,e1) and (X3,B2,¢2) be two objects in E(Q,A). Let B =
[B1 L1 B2) (X1 X2) where X;| ] X2 is the disjoint union of X; and X3, and € :
Q0 — P(X1|]X2) is a set valued mapping defined by e(w) = £1(w) | Je2(w). Then
(X110 X2),B,¢) is an object in E(Q,.A). Since if* oec = &1 and i3’ og = &
where 11 : X1 4 X1 UX2 and g : X2 i X1 L]Xz, ((Xl UXg,B, 8),i1,‘i2) is s finite
coproduct of (X3,B;,¢1) and (X2, Ba, £2). 0

Theorem 3.3. Topos E(R2, A) is classical.

Proof. Since (A*, B*,e*), where B* = [('] with ' = {' |w € O} and e*(w) =o' =
{A|w € A € A}, is a terminal object, by lemma 3.2 ((A*|].A* B,e),41,i2) is a
coproduct of (A*,B*,e*) and (A*, B*,¢*).

(o JEAN T

H |

Q0 —— P(A*|]AY)
li [
Q- P

Forany 6 : @ — P(A) and T : A* - A, L : A* — A, there exists a f :
A*| JA* — A defined by f(A,0) = (A,0) and f(0,A) = (A,1) such that foi; =T

and f oy = L. Since f is bijective, E(,.A) is classical. ]
Theorem 3.4. Topos E{Q, A) is Boolean.
Proof. Lemma 2.5 and Theorem 3.3. O

Theorem 3.5. Topos E(Q, A) is well-pointed.

Proof. Let (X1, B1,€1) and (X2, B, €2) be two objects in E(9, A). Let f,g: X; —
X3 such that f # g. Then there exists ¢ € X; such that f(x) # g(z). Since
X1 = Je1(w), there exists w € Q such that £1(w) = z. Construct k¥ : 4* — X;
defined by k(A) = z, then we get that k(A) = ;1(w). So we have that fok # gok.

@ = 0 = QO

le B =

P(A*) —— P(X;) —— P(X)
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4. Logic OPERATIONS OF Toros E((2, A)

(1) Negation:
- : A — Ais the characteristic function of the L : A* — A where L(A4) = (A4, 0),
that is, the following diagram

P(A*) —— P(A*)

l l

P(a) — P(4)
is a pull-back. Since § : 2 — P(A) defined by d(w) = v’ x 2 and &* : @ — P(A4*)
defined by e*(w) = w’, we have that 17! o §(w) = L7} x 2) = {A|(4,0) €
W' x 2} ={A4|A e} =uw =e*(w).
(2) Conjunction:
1:Ax A — A is the characteristic function of the (T, T) : A* — A x A where
(T, T)(A) = ((A4,1),(A,1)), that is, the following diagram
P(A*) —— P(A7)

l |

P(A x A) —— P(A)
is a pull-back. Since § :  — P(A x A) defined by f(w) = (v x 2,w’ x 2) and
€*: Q0 — P(A*) defined by £*(w) = ', we have that (T, T) " lod(w) = (T, T) "} (' x
2)={Al{(4,1),(A, 1) € (' x2)x (' x2)} ={4|A €'} = =&*(w).
(3) Implication:
=: A X A — A is the characteristic function of the inclusion h: Im — A x A
where Im = {((/, s), (', 1)) € (W' x 2) x {w x 2)|s,t =0,1,s <t,} and h(v,q) =
(W', q), that is, the following diagram
P(Im) —— P(AY)

! |

P(A x Ay —— P(A)
is a pull-back. Since §: Q@ — P(A x A) defined by §(w) = ((w' % 2),(w’ x 2)) and
n :  — I'm defined by n(w) = {((¢/, s), (W', 1)) € (W' X 2) % (W' x2)|s,t =0,1,s < ¢},
we have that A~} 0 8(w) = n(w).
(4) Disjunction:
U: AXA — A is the characteristic function of the inclusion k : D — A x A where
D = {((,8), (W 1)) € (W x2) x (w'x2)|s,t =0,1,s+t > 1} and k(w', q) = (v, q),
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that is, the following diagram
P(D) —— P(AY)

! |

P(A xA) —— P(A)
is a pull-back. Since § : @ — P(A x A) defined by f(w) = ((w' x 2), (' x 2)) and
¥ : 2 — D defined by ¥(w) = {((«, 5), (W', 1)) € (W' x2) x (' x2)[s,t =0,1,5 < t},
we have that k71 0 §(w) = ¥(w).
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