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EXTENSIONS OF MINIMIZATION THEOREMS AND FIXED
POINT THEOREMS ON A D*-METRIC SPACE

SunG BOK PARK? AND JEONG SHEOK UME"*

ABSTRACT. In this paper, we introduce the new concept of w-D*-distance on a
D*-metric space and prove a non-convex minimization theorem which improves the
result of Caristi[1], Ciri¢{2], Ekeland[4], Kada et al.[5] and Ume[8,9].

1. INTRODUCTION

Caristi[l] proved a fixed point theorem on complete metric spaces which gen-
eralized the Banach contraction principle. Ekeland[4] also obtained a non-convex
minimization theorem, often called the e-variational principle for a proper lower
semicontinuous function, bounded from below, on complete metric spaces. Later,
Takahashi([7] proved the following minimization theorem. Let X be a complete met-
ric space and let f : X — (—o00,00] be a proper lower semicontinuous function,
bounded from below. Suppose that, for each u € X with f(u) > infzex f(z), there
exists v € X such that v # u and f(v) + d(u,v) < f(u). Then, there exists o € X
such that f(zo) = infzex f(z). In 1996, Kada et al.[5] introduced the concept of
w-distance on a metric space as follows. Let X be a metric space with metric d.
Then a function p: X x X — [0,00) is called a w-distance on X if the following are
satisfied:

(1) p(z,z) < p(z,y) + ply, 2) for any z,y,2 € X,

(2) for any z € X, p(z,-) : X — [0, 00) is lower semicontinuous,

(3) for any € > 0, there exists § > 0 such that p(z,2) < § and p(z,y) < § imply
d(z,y) <e.
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By using the w-distance, they improved the Caristi fixed point theorem, Ekeland
variational principle, and Takahashi’s minimization theorem on complete metric
spaces. Recently, Shaban Sedghi et al.[6] introduced D*-metric which is a probable
modification of the definition of D-metric introduced by Dhage[3] and prove some
basic properties in D*-metric spaces.

In this paper, we introduce the new concept of w-D*-distance on a D*-metric
space and prove a non-convex minimization theorem which improves the result of
Caristi[1], Cirié[2], Ekeland[4], Kada et al.[5] and Ume[8, 9).

2. PRELIMINARIES

Throughout this paper, we denote by N the set of all positive integers, by R* the
set of all nonnegative real numbers, and by R the set of all real numbers.

Definition 2.1 ([6]). Let X be a nonempty set. A generalized metric (or D*-metric)
on X is a function, D* : X x X x X — [0, 00), that satisfies the following conditions
for each z,y, 2,24 € X:
(1) D*(z,y,2) 20,
(2) D*(z,y,z) =0ifand only if z = y = 2,
(3) D*(z,y,2) = D*(p{z,y,2}), (symmetry ) where p is a permutation function,
(4) D*(z,y,2) < D*(z,y,a) + D*(a, 2, 2).
The pair (X, D*) is called a generalized metric (or D*-metric) space.
We give some examples of D*-metric.
Example 2.2 ([6]). Define D* : X x X x X — R* by
(a) D*(z,y, 2) = max{d(z,y), d(y, 2), d(2, 2)},
(b) D*(z,y,2) =d(z,y) + d(y, 2) + d(z, 7).
Here, d is the ordinary metric on X.
(c) If X =R", then we define

1
P

D*(z,y,2) = (llz — yllIP + |ly — 2|IP + ||z — z[[P)
for every p € R*.
(d) If X =R, then we define

ifz=y=z,

D* s ) =
(@9:2) {max{x, y,2} otherwise.
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The following example shows that D*-metric space is a proper extension of metric.

Example 2.3. Let ¥ : R x R — R™ be a mapping defined as follows:

1 1
Then clearly v is not metric since ¥(1,2) # (2, 1).
Define G: R xR x R — R* by
G(z,y,2) = max{y(z,y),¥(y, 2), ¥(z, z)}.
Then G is a D*-metric.

Remark 2.4 ([6]). In a D*-metric space, we prove that D*(z,x,y) = D*(z,y,y).
For

(i) D*(z,z,y) < D*(z,z,x) + D*(z,y,y) = D*(z,y,y) and similarly

(ii) D*(y,9,2) < D*(y,9,y) + D*(y, 2, z) = D*(y, z, x).
Hence by (1), (ii) we get D*(z,z,y) = D*(z,y,)-

Let (X, D*) be a D*-metric space. For r > 0, define
BD*(QZ,T) = {y € X: D*(Jf,y,y) < ’I"}.

Definition 2.5 ([6]). Let (X, D*) be a D*-metric space and A C X.

(1) If for every z € A, there exists r > 0 such that Bp«(z,r) C A, then subset A
is called open subset of X.

(2) Subset A of X is said to be D*-bounded if there exists r > 0 such that
D*(z,y,y)< r for all z,y € A.

(3) A sequence {z,} in X converges to z if and only if
D*(zp,zn,x) = D*(z,2,2,) — 0
as n — oo. That is, for each € > 0, there exists ng € N such that
Vn > ng => D*(z,z,2,) <€ (¥).
This is equivalent; for each £ > 0, there exists ng € N such that
Vn,m > np = D*(,Zn, Tm) <€ (*%).

Indeed, if (x) holds, then
€

D*(Zn, Tm, 2) = D*(Tn, T, Tm) < D* (20, 2,7) + D* (T, Tm, Tm) < % + 2

=E£.

Conversely, set m = n in (*x), then we have D*(z,, Tn, ) < €.
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(4) A sequence {z,} in X is called a Cauchy sequence if for each £ > 0, there
exists ng € N such that D*(zp, s, Zsm) < € for each n,m > ng. The D*-metric space
(X, D*) is said to be complete if every Cauchy sequence is convergent.

Let 7 be the set of all A C X with z € A if and only if there exists » > 0 such
that Bp.(z,r) C A. Then 7 is a topology on X (induced by the D*-metric D*).

Lemma 2.6 ([6]). Let (X, D*) be a D*-metric space. If r > 0, then ball Bp«(z,T)

with center x € X and radius r is open ball.

Definition 2.7 ([6]). Let (X, D*) be a D*-metric space. D* is said to be a contin-

uous function on X3 if

nlirgo D*(zn, yn, 2n) = D*(z, 9, 2)
whenever a sequence {(Zn,¥n, 2x)} in X3 converges to a point (z,y,z) € X3, that
is,

lim ¢, =2, lmy,=y, limz,=z2
n—oo n—00 n—00

Lemma 2.8 ([6]). Let (X,D*) be a D*-metric space. Then D* is a continuous
function on X3.

Now, we introduce the new concept of w-D*-distance on a D*-metric space.
Definition 2.9. Let (X, D*) be a D*-metric space. Then a function §: X x X x
X — [0, 00) is called a w-D*-distance on X if the following are satisfied.

(81) S(z,y,2) < S(z,a,a) + S(a,y, 2) for any z,y,2,a € X,

(S2) for each z € X, S(z,y,v) is a lower semicontinuous at y in X,

(83) for any € > 0, there exists § > 0 such that S(z,z,z) < § and S(z,y,y) <&

imply D*(z,y,y) <e.

Let us give some examples of w-D*-distance.

Example 2.10. Let (X,D*) be a D*-metric space. Then § = D* is a w-D*-
distance.
Proof. (S1) and (S2) are obvious. We show (S3). Let € > 0 be given and put
6 = ¢/2. Then if D*(z,z,z) < § and D*(z,y,y) < 8, we have
D*(z,y,y) < D*(z,2,2) + D*(2,9,y)
< D*(z,z,z) + D*(2,y,y) <6+ 6=26=¢.
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Example 2.11. Let (X, D*) be a D*-metric space. Then a function S : X x X xX —
[0,00) defined by S(z,y, z) = c for every z,y,z € X is a w-D*-distance on X, where
¢ is a positive real number.

Proof. (S1) and (S2) are obvious. To show (S3), for any € > 0, put § = ¢/2. Then
we have S(z,z,z) < é and S(z,y,y) < 8 imply D*(z,y,y) < €. O

Example 2.12. Let X be normed linear space with norm || - ||]. Then a function
S: X x X xX —[0,00) defined by
S(z,y,2) = llz|l + llyll + l|2]l for every z,y,z € X
is a w-D*-distance on X.
Proof. Define D* : X x X x X — [0,00) by D*(z,y,2) = ||lz—yl +|ly—z|| + ||z —z|-
Let z,y,2z € X. Then we have
S(x,y,2) = llzll + lyll + |l=I
< S(z,a,a) + S(a,y, 2).
This implies (S1). (S2) is obvious. Let € > 0 and put 6 = £/2. Then, if S(z,z,z) <
and S(z,y,y) < 4, we have
D*(z,y,9) = e —yll + lly — vll + lly — |

< 2(||lll + [lyiD)

< 8(z,2,2) + S(2,9,9)

<25=¢e.
This implies (S3). g

Example 2.13. Let X = R* be a metric space with the usual metric. Define
h:XxX—->Xand D*,58: X x X x X — X as follows :

h(x,y) =z, S($;yaz) :h‘(y’z)

0 fr=y=z

D* =9 |
(ma y, Z) {max{a:’ y, z}, otherWiSe-

Then

(i) h is neither metric nor w-distance on X,
(ii) S is a w-D*-distance.

Proof. (i) Since h(0,1) # h(1,0), h is not metric. Also, h is not w-distance on
X. In fact, if h is w-distance on X, then for € = 1, there exists § > 0 such that
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h(z,z) = z < § and h(z,y) = z < § imply d(z,y) = |r — y| < 1. Putting z = §/2,
z =1, and y = 4 in the above inequalities, we have 1 > |1 — 4| =3 > 1, which is a
contradiction. Thus, A is not w-distance on X.

(i) Let z,y,2,a € X. We have S(z,y,2) =y < a+y = S(z,a,a) + S(a,y, 2).
This implies (S1). (S2) is obvious. Let € > 0 and put § = ¢. Then, if S(z,z,z) < J
and S(z,y,y) <4, we have D*(z,y,y) < max{z,y} < d = e. This implies (53). s

Example 2.14. Let X be a normed linear space with norm || - ||. Define A :
XxX —Rtand D*,§: X x X x X —» R? as follows :

h(z,y) =|lzll,  S(z,y,2) = max{h(z,y), h(y, 2), h(z,2)}

D*(z,y,2) = ||z - yl| + lly ~ [l + ||z — z]|.
Then clearly h is not w-distance but S is a w-D*-distance.

The following lemma plays important role to prove minimization theorems, fixed

point theorems, and variational inequalities.

Lemma 2.15. Let (X, D*) be a D*-metric space and let S be a w-D*-distance on
X. Let {x,} and {y,} be sequences in X, let {a,} and {B.} be sequences in [0, 00)
converging to 0, and let z,y,z € X. Then the following hold:

(1) If S(zpn,y,y) < an and S(zn,2,2) < By for anyn € N, theny = 2. In
particular, if S(z,y,y) =0 and S(z,2,2z) =0, then y = z,

(2) f S(Zn, Yn,Yn) < o and S(n,2,2) < B for any n € N, then {y,} con-
verges to 2,

(3) if S(xn,Tm,ZTm) < an for any n,m € N with m > n, then {z,} is a Cauchy
sequence,

(4) if S(y, Tn, Tn) < an for any n € N, then {z,} is a Cauchy sequence.

Proof. We first prove (2). Let £ > 0 be given. From the definition of w-D*-distance,
there exists 6 > 0 such that S(u,v,v) < § and S(u,2,2) < § imply D*(v,2,2) < e.
Choose ng € N such that a,, < é and 8, < 4§ for every n > ng. Then we have, for any
n > ng, S(Tn,Yn,Yn) < on < 6 and S(zy,2,2) < Bn, < § and hence D*(yy, 2,2) < €.
This implies that {y,} converges to z. It follows from (2) that (1) holds. Let us
prove (3). Let € > 0 be given. As in the proof of (1), choose § > 0. Then for any
n,m2>ng+1,

S(Tngs TnyTn) Sy <6 and  S(Tng, Tm, Tm) < any <6
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and hence D*(z,,, Zm, Tm) < €. This implies that {z,} is a Cauchy sequence. As in
the proof of (3), we can prove (4). 0O

Lemma 2.16. Let (X, D*) be a D*-metric space and let S1, Sy be w-D*- distances

on X. Then two functions on X x X x X defined as follows are w-D*-distances on
X.

(i) S(z,y, z) = max{Si(z,y, 2), S2(z,y, 2)} for every x,y,z € X.
(ii) S(z,y,2) = aS1(z,y,2) + BSa2(x,y,z) for every z,y,z € X, where o and 8

are nonnegative real numbers such that o #0 or 8 #0.

Proof. We first prove (i). Let z,y,z,a € X. Then we have

5(z,y,z) = max{Si(x,y,2), S2(z,y,2)}
< max{S;(z,a,a) + Si(a,y, z), S2(z,a,a) + Sa2(a,y,2)}
< max{S(z,a,a)+ S(a,y, z),S(z,a,a) + S(a,y, 2)}
= S(z,a,a) + S(a,y, 2).

It is clear that for any z € X, S(z,y,y) = max{Si(z,y,y), S2(z,y,y)} is lower
semicontinuous at y in X. Let ¢ > 0 be given. Then choose 6 > 0 such that
S1(z,z,z) < § and Si(z,y,y) < 6 imply D*(z,y,y) < e. If S(2,z,z) < 6 and
S(z,y,y) <9, then S;(z,z,z) < b and S1(2,y,y) < 6. So, we have D*(z,y,y) < e.

Let us prove (ii). Without loss of generality, we may assume a > 0. Let ,y,2,a €
X. Then we have

S(ma Y, Z) = OlSl(x, Y, Z) + 552(1:7 Y, Z)
< a(Si(z,a,a) + Si(a,y, 2)) + B(S2(z, a,a) + S2(a,y, 2))
= S(z,a,a) + S(a,y,2).

Since for any z € X, aSi(x,y,y) and BS;(z,y,y) are lower semicontinuous at y,
S(z,y,y) = aSi(z,y,y) + BS1(z,y,y) is also lower semicontinuous. Let &€ > 0 be
given and then choose &' > 0 such that Sj(z,z,z) < § and Si(z,y,y) < ¢ imply
D*(z,y,y) < e. Put § = ad’. Then, if S(z,z,z) < § and S(z,y,y) < §, we have
S1(z,z,z) < & and Si(2,y,y) < &'. So, we have D*(z,y,y) <e. 0

Lemma 2.17. Let X be a metric space with metric d, let p be a w-distance on X

and let o be a function from X into [0,00). Define D*,S : X x X x X — RT as
follows :



20 SuNG Bok PARK & JEONG SHEOK UME

for every x,y,2 € X. Then S is a w-D*-distance on X.

Proof. For every z,y,2,a € X,

S(z,y,2) = max{a(z), p(z,y), p(z, 2)}
< max{a(z) + a(a), p(z, @) + p(a, y), p(z, a) + p(a, z)}
< S(z,a,a) + S(a,y, 2).
Therefore (S1) is satisfied. (S2) is obvious. We show (S3). Let € > 0 be fixed. Then
since p is a w-distance on X, then exists § > 0 such that p(z,z) < § and p(z,y) <6

imply d(z,y) < e. So, assume S(z,z,z) < §é and S(2,y,y) < 6, then p(z,z) < § and
p(z,y) < 4. Therefore, D*(z,y,y) = d(z,y) < e. This implies (S3). O

3. MINIMIZATION THEOREMS AND ITS APPLICATIONS

Theorem 3.1. Let (X,D*) be a complete D*-metric space, and let f : X —
(—o0, 00} be a proper lower semicontinuous function, bounded from below. Assume
that there exists a w-D*-distance S on X such that for anyu € X with infyex f(z) <
f(u), there exists v € X with v # u and

F@)+ S(u,v,v) < f(u).
Then there exists o € X such that infzex f(z) = f(zo).

Proof. Suppose infzex f(z) < f(y) for every y € X and choose u € X with f(u) <
co. Then we define inductively a sequence {u,} in X, starting with u; = u. Suppose
un € X is known. Then choose u,+1 € S(uy) such that

S(un) = {z € X : f(2) + S(un, z,2) < f(un)},

klun) = inf (=)
and
(tng) < bun) + 2
Since
f(uns1) + S(un, Uns1, unt1) < flun),

{f(us)} is nonincreasing. So, limp_oo f(un) exists. Put k = limp_o f(uy). We
claim that {u,} is a Cauchy sequence. In fact, if n < m, then
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m—1
S(Un, Um, Um) < Z S(“j’uj+1auj+1)
j=n
m—1
(3.) | < S {fu) — Fluzn))
j=n

= f(un) ~ f(um) < f(un) — k.

From Lemma 2.15, {u,} is a Cauchy sequence. Let u, — vg. Then, if m — oo in
(3.1), we have

S(un, vo, vo) < f(un) — k < f(un) — f(vo).
On the other hand, by hypothesis, there exists v; € X such that v; # vp and
f(v1) + S(vo,v1,v1) < f(vg). Hence, we obtain
F(v1) + S(un,v1,v1) < f(v1) + S(up, vo,vo) + S(vo, v1,01)
(32) < f(vo) + S(un,vo, vo)
< f(un)

and hence v; € S(u,). Since

S|+

£(30) < Funs1) < K(un) + - < fon) +

for every n € N, we have f(vy) < f(v1). Then, f(v) = f(v1). So, we have
S(vo,v1,v1) = 0. By hypothesis, there exists v € X such that vy # v; and
f(v2) + S(v1,v2,v2) < f(v1). As in (3.2), we have f(v2) + S(un,v2,v2) < f(un) and
hence v2 € S(uy). So, we have f(v1) = f(v) < f(v2). This implies S(vi,v2,v2) = 0.
From S(vo,v2,v2) < S(vo,v1,v1) + S(v1,v2,v2) = 0, we have S(vg,vq,v2) = 0.
Hence, from S(vg,v1,v1) = 0, S(vo, v2,v2) = 0 and Lemma 2.15, we have v; = vs.
This is a contradiction. ]

Corollary 3.2 ([5]). Let (X,d) be a complete metric space, and let f : X —
(—o00,00] be a proper lower semicontinuous function, bounded from below. Assume
that there exists a w-distance p on X such that for any u € X with infcx f(z) <
f(u), there exists v € X with v # u and f(v) + p(u,v) < f(u). Then there exists
zo € X such that infzex f(z) = f(xo).

Proof. Define D* : X x X xX — R* by D*(z,y, 2z) = max{d(z,y),d(y, z),d(z,z)} for
all z,y,z € X and define S : X X X x X — R* by S(z,y, z) = max{p(z,y),p(z, 2)}
for all z,y,z € X. Then, X, D* S and f satisfy the suppositions in Theorem 3.1.
Therefore, Corollary 3.2 follows from Theorem 3.1. O
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The following example shows that Theorem 3.1 is more general that Corollary
3.2.

Example 3.3. Let X, h, D*, and S be as in Example 2.13. Define f : X — (—o00, o0}

as follows:
2z +1, f0<zr<?2,

fzy =< -1, ifx=2,
3z + 1, if2<uz
It is clear that all of the conditions except inequality in Theorem 3.1 are satisfied. To
show that inequality in Theorem 3.1 is satisfied, we need to consider several possible
cases as follows.

(1) For v = 0 in X, there exists v = 2 in X such that

fw)+ S(u,v,v) = fw)+v=f(2)+2=-1+2=1= f(0) = f(u).
(2) For u € X with 0 < u < 2, there exists v € (0, (1/2)u) such that

FW)+ Su,v,v)=fv)+v=w+1+v<u+l+u=2u+1l= f(u)

(3) For u € X with 2 < u, there exists v € (0,2), such that

fW)+ S(w,v,v)=fw)+v=2v+1+v=3v+1<3u+1= f(u).
Hence, for u € X with infzex f(z) < f(u), there exists v € X with v # u such that

f(w)+ S(u,v,v) < f(u),

that is, inequality in Theorem 3.1 is satisfied. Thus, all of the conditions in Theorem
3.1 are satisfied and therefore, there exists 2 € X such that inf e x f(z) = f(2).

Remark 3.4. Since S(z,y, z) = h(y, z) is neither metric nor w-distance, Corollary
3.2 cannot be applicable. This means that Theorem 3.1 is a proper extension of
Corollary 3.2.

The following theorem extends, improves, and unifies many known results due to
Caristi[l}, Kada et al.[5], Takahashi[7], and Ume(8].

Theorem 3.5. Let (X, D*) be a complete D*-metric space and let f : X — (—o0, ]
be a proper lower semicontinuous function, bounded from below. Let T be a mapping
from X into itself. Suppose that there ezists a w-D*-distance S on X such that

f(Tz) + 8(z, Tz, Tz) < f()

for every z € X. Then, there exists xg € X such that Tzo = x¢ and S(xo,zo, To) =
0.
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Proof. Since f is proper, there exists u € X such that f(u) < co. Put

Y={zeX:f(z) < fW}

Then, since f is lower semicontinuous, Y is closed. Hence Y is complete D*-metric
space. Let z € Y. Then, since f(Tx) + S(z,Tz,Tz) < f(z) £ f(u), we have
Tr €Y. SoY is invariant under T". Assume that Tz # z for every z € Y. Then,
by Theorem 3.1, there exists vy € Y such that f(vp) = infzey f(x). Since

f(Tvo) + S(vo, Tvo, Tvo) < f(vo)
and
f(wo) = inf f(z),
we have f(Tv) = f(vg) = infey f(z) and S(vg, Tvo, Tvp) = 0. Similarly, we obtain
F(T?0%) = f(Two) = inf f(x)
zeyY
and
S(Twg, T?vg, T?vp) = 0.
Since
S (vo, T?vg, T?vg) < S(vg, Two, Tvo) + S(Twg, T?vo, T?vg) = 0,
we have S(vg, T%vg, T?vg) = 0. Hence, from
S(UO,TUO,TUO) = 0, S(U{),TZ’I)O,TQUO) = ()
and Lemma 2.15, we have Ty = T?vy. This is a contradiction. Therefore, T' has a
fixed point zg in Y. Since f(z¢) < co and
f(zo) + S(20, %0, 20) = f(Txo) + S(z0, T0, T0) < f(To0),
we have S(zg, zo, o) = 0. a
We give an example to support Theorem 3.5.
Example 3.6. Let X,h, D* and S be as in Example 3.3, Define T : X — X and
[ X — (—00,00] as follows:

2+1, if0<z<4,

1
Te=:z VzeX, -
TET f(=) {3x+1, if4 <z

Clearly, f is a proper lower semicontinuous function, bounded from below. Now, we
show that inequality in Theorem 3.5 is satisfied. There are several possible cases
which we need to consider.
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(1) For z € X with 0 < Tz = (1/2)z £ 2, we have

f(Tz) + S(z,Tz,Tz) = f(Tz) + Tz = f(lx)—i-l:c

2 2
1 1 3
== — — T - 1
2x2x+1+2x 2x+
<2z +1= f(z).

(2) For z € X with 2 < Tz = (1/2)z < 4, we have

f(Tz)+ S(z, Tz, Txz) = f(Tz) + Tz = f(—l-x)—kla;

2 2
1 1 3
= —_ 1 - = - ]_
2x2x+ +2:E zm—i-
<3z +1= f(z).

(3) For z € X with 4 < Tz = (1/2)x, we have

1 1
f(Tz) + 8(z,Te,Tz) = f(Tz) + Tz = f(§x)+§z
1 1
<3z +1=f(z).

Hence, f(Tz) + S(z,Tz,Tx) < f(z) for all z € X. Thus, all of the conditions in
Theorem 3.5 are satisfied and, therefore, there exists 0 € X such that 70 = 0 and
5(0,0,0) = 0.

Remark 3.7. Since S(z,y,2) = h(y, 2) is neither metric nor w-distance, fixed point
theorems of Caristi[1], Kada et al.[5], Takahashi[7], and Ume|[8] cannot be applicable.
Therefore, Theorem 3.5 is a proper extension of results due to Caristi[l], Kada et
al.[5], Takahashi[7], and Ume][8].

The following theorem is a generalization of the corresponding results in [4,5,7,8].

Theorem 3.8. Let (X, D*) be a complete D*-metric space, let S be a w-D*-distance
on X andlet f : X — (—o00,00)] be a proper lower semicontinuous function, bounded
from below. Then the following (i) and (it) hold :

(i) For any u € X with f(u) < oo, there exists v € X such that f(v) < f(u)
and f(2) > f(v) — S(v,z,2) for every z € X with z # v,

(ii) for any € > 0 and v € X with S(u,u,u) = 0 and f(u) < infzex f(z) + ¢,
there ezists v € X such that f(v) < f(u), S(y,v,v) < 1, and f(z) >
fv)—e-8S(v,z,2) for every z € X with z # v.
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Proof. We first prove (i). Let u € X be such that f(u) < coandletY ={z € X :
f(z) < f(u)}. Then, Y is nonempty closed and complete D*-metric space. Hence,
we may prove that there exists an element v € Y such that f(z) > f(v) — S(v,z,2)
for every z € X with z # v. Suppose not. Then, for every z € Y, there exists
z € X such that z # z and f(2) + S(z,2,2) < f(z). Since f(2) < f(z) £ f(u),
z € X is an element of Y. So, by Theorem 3.1, there exists o € Y such that
f(zo) = infzey f(x). We also have that for each xg, there exists z; € Y such that
z1 # xp and f(x1) + S{zg,71,71) < f(xg). Hence, we have f(z1) = f(zo) =
infzey f(z) and S(zg, z1,21) = 0. Similarly, there exists z2 € Y such that zo # 1
and S(z1,z2,z2) = 0. From S(zo, 22, z2) < S(x0, 1, 21) + S(z1, 22, 22) = 0, we have
S(zo, x2, z2) = 0. Hence, from S(zg,z1,71) = 0, S(z0, 2, z2) = 0 and Lemma 2.15,
we have 21 = x9. This is a contraction. Therefore, there exists v € Y such that
f(z) > f(v) — S(v, z, 2) for every z € X with z # v.

Let us prove (ii). Let Z = {z € X : f(z) < f(u) —€- S(u,x,z)}. Then Z is
nonempty closed and complete D*-metric space. Note that € - S is a w-D*-distance
by Lemma 2.16. Then, as in the proof of (i), we have that there exists v € Z such
that f(z) > f(v) —€- S(v,2,2) for every z € X with z # v. On the other hand,
since v € Z, we have f(v) < f(u) — - S(u,v,v) < f(u) and

S(uyv,0) < 21FW) — SO)] £ 3 [) - int f(@)]<
The proof is complete. 0

-e=1.

o |

The following is an example to support Theorem 3.8.

Example 3.9. Let X, h, D*, S, and f be as in Example 3.6. Taking v =0 in X, (i)
and (ii) of Theorem 3.8 hold.
Remark 3.10. Since S(z,y, z) = h(y, z) is neither metric nor w-distance, theorems

in [4,5,7, 8] cannot be applicable. Therefore, Theorem 3.8 is a generalization of the
corresponding results in [4,5,7, 8].

4. F1xEDp POINT THEOREMS

The following theorem is a generalization of the corresponding results in [2,5,9]

Theorem 4.1. Let (X, D*) be a complete D*-metric space, let S be a w-D*-distance

on X and let T be a mapping from X into itself. Suppose that there exists r € [0,1)
such that

8(Tx,T?z, T*x) < r- S(z, Tz, Tx)
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for every z € X and that
inf{S(z,y,y) + S(z,Tz,Tz) : 2 € X} >0
for everyy € X withy # Ty. Then, there exists z € X such that 2 = Tz. Moreover,
if v="Tv, then S(v,v,v) =0.
Proof. Let u € X and define the sequence {uy,}2, satisfying the following:

ug = u and u, = T™u for any n € N. Then, we have, for any n € N,

S(um Un+1, Un+1) <r: S(un—ls Un, un)

g T2 * S(u’n-Za Up~1, un-l)

<7 S(u, up, wp).
So, if m > n,

S(una Um, um) < S(um un+l’un+1) 44 S(um—l: Um,, um)

<7 S(uug,ur) 44+ S(u,ug, u)

,{.n

<

1 _ TS(U, u1, ul)'

By Lemma 2.15, {u,} is a Cauchy sequence. Since X is complete, {un} converges
to some point 2 € X. Let n € N be fixed. Then, since {u,} converges to z and
S(un, 2, 2) is lower semicontinuous at 2z in X, we have

Y3

1—r

S{tun, z,2) < lirrlnigxofS(un,um,um) < S{u, u,uy).
Assume that z # Tz. Then, by hypothesis, we have
0 < inf{S(x,z,2) + S(z,Tz,Tz) : z € X}

< inf{S(un, 2, 2) + S(un, Unt1,Uns1) : 1 € N}

< inf{
=0.

,rn
1— rs(uvul,ul) + rns(u,ulaul) ine N}

This is a contradiction. Therefore we have z = Tz. If v = Tv, we have
S(v,v,v) = S(Tv,T*v,T?v) < r- S(v,Tv,Tv) =7 - S(v,v,v)

and hence S(v,v,v) = 0. .0
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Corollary 4.2 ([9]). Let (X,d) be a complete metric space with a w-distance p and
let T be a self-mapping of X. Suppose that there exists r € [0,1) such that

(4.1) p(Tz,Ty) < - max{p(z,y),p(z, Tz), py, Ty), p(z, Ty), p(y, Tz)}
for every x,y € X and that
(4.2) inf{p(z,y) + p(z,Tz):2€ X} >0

for everyy € X with y # Ty. Then, there ezists z € X such that z = Tz. Moreover,
if v="Tv, then p(v,v) = 0.

Proof. By Lemma 2.4 in [9], for every z € X
sup{p(T'z,T?z) : i,j € NU {0}} < co.
Define D* : X x X x X — [0,00) by
D*(z,y, z) = max{d(z,y),d(y, 2), d(z, z)}
for all z,y,2 € X and define §: X x X x X — [0,00) by
S(z,y, z) = max{sup{p(T"z,T’z) : i, j € NU{0}},p(,¥), p(z, 2)}
for all z,y,2z € X. By Lemma 2.17, § is a w-D*-distance on X. Let ¢ € X. Then
we have, using Lemma 2.4, in (9],
S(Tz,T%z, T?z) = max{sup{p(T*z,T%z) : i,j € N}, p(Tz, T?x)}
= sup{p(T'z,TVz) : i,j € N}
< r-sup{p(Tiz,T?z) : i,5 € NU {0}}
=7 - max{sup{p(T'z,Tz) : i,j € NU{0}},p(z, Tx)}
=r-S(z,Tz,Tzx).
Since inf{S(z,y,y) + S(z,Tz,Tz) : z € X} > inf{p(z,y) + p(z,Tx) : z € X} for
every y € X with y # Ty, inf{S(z,y,y) + S(z,Tz,Tz) : z € X} > 0. So, all

conditions of Theorem 4.1 are satisfied. Therefore, there exists z € X such that
z = T'z. Moreover, if v = T'v, then S(v,v,v) = p(v,v) = 0. O

Corollary 4.3 ([2]). Let (X,d) be a complete metric space and let T : X — X be a
mapping such that

(4.3) d(Tz,Ty) < r - max{d(z,y), d(z, Tz),d(y, Ty), d(z, Ty), d(y, Tz)}

for all z,y € X and some r € [0,1). Then, T has a unique fized point.
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Proof. Since a metric d is a w-distance, (4.1) implies (4.3). By Lemma 2.5 in [9],
(4.2) is satisfied. Therefore, by Corollary 4.2, the result follows. g

Corollary 4.4. Let (X, d) be a complete metric space, let T be a continuous mapping
from X into itself, and let f : X — (—o0,00| be a proper lower semicontinuous
function, bounded from below. Assume that there exists a w-distance p on X such
that for any u € X with infzex f(z) < f(u), there exists v € X with v # u and

f(v) + max{p(T'u,v), p(Tu, Tv)} < f(u).

Then, there exists xo € X such that infzex f(z) = f(zo).

Proof. Define D* : X x X x X — R* by D*(x,y,2) = max{d(z,y),d(z, 2),d(y, 2)}
for all z,y,z € X and define §: X x X x X — R* by S(z,y, z) = max{p(Tz,Ty),
p(Tz,Tz),p(Tz,y), p(Tz,2)} for all z,y,z € X. Then, X,D*, S and f satisfy the
suppositions in Theorem 3.1. Therefore, Corollary 4.4 follows from Theorem 3.1. [

As a consequence of Corollary 4.4, we have the following Corollary.

Corollary 4.5 ([5]). Let (X,d) be a complete metric space, let T be a contin-
uous mapping from X into itself, and let f : X — (—o0,00] be a proper lower
semicontinuous function, bounded from below. Assume that for any u € X with
infzex f(x) = f(u), there exists v € X with v # u and

f(v) + max{d(Tu,v),d(Tu,Tv)} < f(u).

Then, there exists o € X such that infyex f(z) = f(x0).
The following is an example to support Theorem 4.1.

Example 4.6. Let X h,S,D* and T be as in Example 3.6. Taking r = 2/3, all
of conditions in Theorem 4.1 are satisfied. Therefore, there exists 0 € X such that
0="T0, If v=Tv = (1/2)v, then S(v,v,v) = h(v,v) =v =0.

Remark 4.7. Since S(z,y,2) = h(y, 2) is neither metric nor w-distance, theorems
in [2,5,9] cannot be applicable. Therefore, Theorem 4.1 is a generalization of the
corresponding results in [2,5,9)].
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