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EXISTENCE OF PERIODIC SOLUTIONS FOR A GENERAL
CLASS OF p-LAPLACIAN EQUATIONS

YonGg-IN Kim

ABSTRACT. The existence of T-periodic solutions for a general class of p-Laplacian
equations is investigated. By using coincidence degree theory, some existence and
uniqueness results, which generalize some earlier works on this topic, are presented.

1. INTRODUCTION

In this paper, we study the solvability of the following p-Laplacian type nonlinear
periodic boundary value problem:

(1) (8p(a)) + 1(t, o) + g(t, z) = e(t)

(2) z(0) = «(T), «'(0)='(T),

where ¢,(u) = |ufP~2u with p > 1 and f, g and e are continuous functions and are
T-periodic in ¢ with f(¢,0) =0 for all t € R.

When p = 2, Eq(1) reduces to the following second order forced Rayleigh equa-
tion:

(3) ' + f(t,2') + g(t, z) = e(t).

The existence of periodic solutions of (1) and (3) has been an important research
focus for the study of dynamic behaviors of nonlinear second order differential equa-~
tions. See, for example, research papers {1-11] and the references therein. In [5], the
authors have discussed the existence of T-periodic solutions for equation (3). By
using degree theory, they have obtained the following results:

Theorem A. Assume that the following conditions are satisfied:
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(A1) There exists a d* > 0 such that
z(g(t,z) —e(t)) <0 VteR,|z|>d".
(A2) There exist my,mg > 0 such that

my < |f(t, )] < mylz| +me Vi, z€R and f(t,0)=0VteR.

T’
Then equation (3) has at least one T-periodic solution. Moreover, if the following

additional condition:
(Ag) (g(t,a:l) —_ g(t, 272)) (.’L‘] - :1,'2) <0 Vit x1,29 €R, 13 # )

holds, then equation (3) has a unique T-periodic solution.

In [9, Theorem 3.1], the authors have replaced the condition (A3) by the following
condition:

(A3)' There exist mj,ms > 0 and d* > 0 such that 0 < m; < 1/T? and one of
the following conditions holds:

(?) f(t,x) > 0Vt,z € R and g(t,z) — e(t) > —myz —maVEt € R, z > d*;

(i) f(t,xz) <OVt,z € R and g(t,z) —e(t) < —miz + meVt € R, z < —d*.

They have obtained the existence of at least one T-periodic solution for equation
(3). Moreover, they have shown that if in addition the condition (A3) holds, then
(3) has a unique T-periodic solution.

In this paper, we will obtain some sufficient conditions for the existence of at least
one T-periodic solution for equation (1). Moreover, under the additional condition
(Asz), we will show that (1) has a unique T-periodic solution. Our results cover and
improve the results of (5] and [9]. Also, they are new and more general even in case
p=2.

2. MAIN RESULTS

The following are the main results of this paper.

Theorem 1. Suppose that the functions f,g and e are continuous and T-periodic
int. Assume that (A1) and one of the following conditions hold:

(¢) There exist my, mg2 > 0 and 0 < a < p — 1 such that |f(t,u)| < ma|ul® +
maVt,u € R and f(t,0) =0Vt € R.

(i) f(t,x) is of constant sign Vt,z € R.

Then the problem (1)-(2) has at least one solution. If in addition the condition
(A3) holds and p > 2, then the problem (1)-(2) has a unique solution.
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If p = 2, then we get immediately from Theorem 1 the following result:

Corollary 1. Assume that (A;) and one of the following conditions hold:

(1) There exist my, mg > 0 and 0 < a < 1 such that |f(t,u)] < mi|ul® +
moVt,u€ R,

(11) f(t,x) is of constant sign Vt,z € R.

Then the problem (1)-(2) has at least one T-periodic solution. If in addition the
condition (As3) holds, then the problem (1)-(2) has a unique T-periodic solution.

Remark 1. Note that Corollary 1 generalizes Theorem A in [5] and the results
of [9]. Moreover, it removes the restriction m; < 2/T on f(t,z) in [5] and the
restriction on g(¢,z) in [9].

3. PRELIMINARY RESULTS

In this section, we introduce a well-known theorem about p-Laplacian-like oper-

ators and a Bellman-type inequality, which will be used in the proof of Theorem
1.

Let X = C% the space of all C!-functions which are T-periodic, i.e.,
X =C} = {z(t) € C'(R, R) : z(0) = z(T), £'(0) = '(T)} .
Lemma 1 ([8, Theorem 3.1]). Consider the following problem
(4) (@p(u)) = h(t,u,u),  u(0) =u(T), '(0)=-u/(T),

where ¢,(u) = |u|P~2u with p > 1 and h is a Caratheory function and T-periodic in
t.

Let €t be an open bounded set in C}. Suppose that the following conditions hold:
(¢) For each A € (0, 1), the problem

(5) ($p(u)) = AR(t,u,v)), weCT

has no solution on OS2,
(¢) The equation

1 (T
H(a) := —/ h(t,a,0)dt =0
T Jo
has no solution on OO NR.

(#13) The Brouwer degree
dp[H, 2NR, 0] #0.
Then problem (4) has a solution in Q.
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Lemma 2 (Generalized Bellman’s inequality). Consider the following inequality:

¢
ly() < C+ M/0 ly(s)|Pds.

where C, M, 8 are nonnegative constants and t > 0. If 3 < 1, then for t € (0, To),
we have |y(t)| < D, where

CeMT(); , ifg=1,
D= .
(C*P+ MTo(1-8)™*, ifB<L

4. PROOF OF THEOREM 1

Let h(t,z,2’) = e(t) — f(t,z') - g(t,z). Then (4) reduces to (1)-(2) and (5)
reduces to
(6) (8p(z)) + Mf(t,2) + Ag(t,z) —e(t)] =0, A€ (0, 1)

We first show that the set of all possible T-periodic solutions of (6) is bounded.
Let z(t) be an arbitrary T-periodic solution of (6). Assume that

t) = = mi t,t , 7.
(t1) tgf%x(t), x(t2) ténlgglx(t), 1,t2 €[0,T)

Then we have
'(t) =2'(tz) =0, z'(t;) <0, z"(t2) >0.
Setting t = ¢; and t = {3 in (6) respectively and using f(¢,0) = 0 and ¢,('(t)))' =
(p ~ )|z’ (t)|P~22" (t), then we have
g(t1,z(t1)) —e(t1) 20 and g(t2,z(t2)) —e(t2) < 0.

Then from the assumption (A4;), we must have z(t;) < d* and z(tz) > —d*. Hence
by the periodicity of z(t), we get

—d* <z(ty) <z(t) S z(ty)) <d* VieR
This implies that z(t) is bounded and
Il = max o8] < d".

Next we show that z'(t) is bounded. Let y(t) = ¢p(z'(t)). Then z’ = ¢,(y), where
g=p/(p—1) > 1 is the exponent conjugate to p. Then it follows from (6) that

Y (t) = —Af(t 6q(y(1)) — Ag(t,z(t)) + Ae(t).
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First suppose that the condition () of Theorem 1 holds. Let z(t1) = max;efo 1) z(t)-
Then z'(t;) = 0 and hence y(t;) = 0. Thus from the above expression and the
assumption (i), for any ¢ € [0,T] with 0 < ¢; < ¢, we can write

WO = ly(ts) + [} y'(s)ds| < [} y/(s)lds < fi |/ (s)lds
= [TIAf(3, 8(y(s))) + Alg(s, 2(s)) — e(s)]|ds
< Jo 15 (s, q(y(s))lds + fi la(t, z(t)) — e()ldt

< T maxye(o,) ol <a+ 19t @) — e(t)| + Tma +my [ ly(s)|@Vds.

Let Dy = T maXec(o,r) |s1<a» [9(t, ) — e(t)| + Tmz and B = (¢ — ) = o/(p — 1).

Then from (7) we get

®) vO1 < Dy vms [ uo)Pas

Note that 0 < § < 1 since 0 < a < p—1 from the assumption (z). Now from Lemma
2, we obtain for t € (¢, T},

Iy(t)l < Dy,

where
Dye™ T, fa=p-1,

D2 = pol—a -g;—i—a
(l)1 p—1 + mlTpﬁrzl*a_l) i , if o< P 1.

If0<t<t,wehave 0 < t; <t+ T < 2T and from the T-periodicity of y(t), we
obtain

9)
O = lyE+ D) = lyt) + [Ty (s)ds| = | [5T7 /(5)ds]

H.Tfy (S),dS < ft+T y (5)’d8
TIN5, 8g(4(5))) + Ag(5,2(s)) — e(s)]Ids
ST (s, daly(s)))lds + [T lg(t, 2 (t)) — e(t)|dt

T -
< 2T maxyefo,r) jaj<a- [9(t, %) — e(t)] + 2Tma +my J5 [y(s)|@ds.
From the above inequality, we obtain for 0 <t < ¢,

=+T
(10) WOl =l + T <201+ ms [ (o).
0
Again from Lemma 2 this implies that for 0 < t < t;,
ly(t)| < Ds,
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where
2D e™T, fa=p-1,

D; = Bzl
pi—a

-]~y
((201)1’”“?4 + ’"—”%;11:—‘2‘1) . ifa<p-l.
Since D2 < D3, the above inequalities imply that

= < .
lylloo max, ly(t)] < D3

Next suppose that the condition (i) holds. Integratin'g (6) from 0 to T', we get
T T
| o+ [ loteo) - ewlar =0,
0 0
This implies that '
R @)de = (sgnf) fy F(t3'(®)dt
= ~(sgnf) Jo lo(t,2(t)) - e(®)lat
(11) < fo lo(t,z(8)) — e(®)lat
< Tmaxte{o,T],lmgsd~ lg(t, z) — e(?)]
< D.
From (11), we obtain for any ¢ € [0, T,
@ = lu(ts) + [ v/ (s)ds| = | Jf; ' (s)ds]

< f 1¥/(s)lds| < Jo 1y/(s)lds

(12) < JEINF(s,2(s)) + Alg(s, 2(5)) — e(s)]lds
< Jo 1f(s, @ (s)lds + [ |g(s, a(s)) — e(s)lds
< 2D,

It follows that
uy“oo <2D;.

Since 2D; < D3, we get in any case, [|y|lco < Ds. This implies that [|z'[|ec < Dg_l =
DY®1_ We have therefore

2] := |zlloo + lla'||oo < d* + DYV = M.

Thus we have shown that the set of all T-periodic solutions z(t) of (6) is bounded,
ie, |lz(t)]] < M. Now set Q@ = {z € X : ||z|| < M}. Then equation (6) has no
solution on 92 for A € (0, 1). Thus the condition (i) of Lemma 1 is satisfied. For
z=+M € OQNR, since M > d* and f(t,0) = 0, it follows from the assumption
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(A1) that H(xM) = L [T h(t,+M,0)dt = X [ [e(t) - g(t,£M))dt # 0. Hence
the condition (i) of Lemma 1 is also satisfied. Since QNR = (-M, M) C R and
H(—M)H(M) < 0, by Brouwer degree theory, dg[H,2 N R,0] = &1 # 0. This
shows that the condition (ii¢) of Lemma 1 is again satisfied. Now Lemma 1 implies
that problem (1)-(2) has a solution in 2.

To prove uniqueness of a solution of (1)-(2), we further assume that the condition
(A3) holds and p > 2. Let z)(¢) and z(t) be any two solutions of (1)-(2). Let
u(t) = z1(t) — z2(t), v(t) = n(t) — y2(t) =: dp(z’(t)) — dp(x5(t)). Then it follows
from (1) and &’ = @q(y) with ¢ = p/(p — 1) that
{ w(t) = ¢q(y1(t)) — ¢q(v2(t)),

(t) = [£(t, 8a(wa(8))) - F(talr O] +o(t,22(8)) = g(t,1(2))

We first show that u(t) < 0Vt € [0, 7). If, on the contrary, there exits a tg € [0,7)
such that u(to) = maxe(o, ) u(t) = T1(to) — 2(to) > 0, then
u'(to) = ¢q(y1(t0)) — ¢q(y2(t0)) = 0,

which implies that y(to) = y2(te) and u”(to) < 0.
Note that since p > 2, we have ¢ = p/(p — 1) < 2. We define |u|9%2 = 1 for
=0,q=2and |u|92 = 400 for u = 0, ¢ < 2. Then it follows from (A3), (13) and
y1(to) = y2(to) that

u(to) = (q(y1(t))) le=to — (Bq(y2(£))) le=to
= (g — DIy (t0)17 241 (t0) — (¢ — Dly2(to)1?ya(t0))
= (g — Dly1(to)|* w1 (to) — y3(to)]
= (g — 1)y (t0)|972v' (o)
= (g = Dl ()1972[f (to, $q(y2(t0))) — f(to, ¢q(y1(t0)))]
+(g — Dly1(to)|92[g(to, z2(to)) — g(to, z1(t0))]
= (g — D)ls1(t0)|*[g(to, z2(t0)) — g(to, z1(t0))]

> 0(or = +00),

(13)

which is a contradiction. Hence max,cpo 7 u(t) < 0. Similarly, exchanging the role
of 1 and z3, we can show that maxycjoqju(t) > 0. This implies that u(t) = 0.
Therefore, the problem (1)-(2) has at most one solution. The proof of Theorem 1 is
now complete. O
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Remark 2. If 1 < p < 2, we can only show the existence of at least one T-periodic
solution for problem (1)-(2), but do not know if the uniqueness still holds even if in
addition (Agz) is satisfied. This is an open question for readers.

Example 1. For p > 2, consider the following equation
(14) (¢p(z)) + (1 +sin® z')|2/|* 12’ — 23 = sint,

where 0 < @ < p—1. Then T = 2, |f(t,u)] = (1+sin® u)|u|® < 2ul®, g(t,z) = —z°
and e(t) = sint. Theorem 1 now implies that equation (14) has a unique 27-periodic
solution. But in this example, the assumption m; < 2/2x in (A2) of Theorem A
does not hold. Therefore, Theorem 1 improves Theorem A even in case p = 2.

Example 2. For p > 2, let f(t,z') = |z'|sin® 2/, g(t,z) = —¢(z) with [ > 1, and
e(t) = cost. Then f(t,z’) is of constant sign and satisfies f(¢,0) = 0. Theorem 1
implies that problem (1)-(2) has a unique 27-periodic solution. In this case, the
assumption m; < 2/2x in (A43) again does not hold.
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