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BUYING AND SELLING RULES FOR A SIMPLE TRANSACTION
OF A MEAN-REVERTING ASSET

Dong-Hoon Shin

Abstract. We consider an optimal trading rule in this paper. We assume that
the underlying asset follows a mean-reverting process and the transaction consists
of one buying and one selling. To maximize the profit, we find price levels to buy
low and to sell high. Associated HJB equations are used to formulate the value
function. A verification theorem is provided for sufficient conditions. We conclude
the paper with a numerical example.

1. Introduction

A simplest trading strategy in financial market is to buy law and to sell high a
share. However, it is controvertial to decide appropriate price levels of the share
to buy or sell in practical market. This paper contributes to find the price levels
of the share when it is governed by a mean-reverting model. A mean reversion
process is one of the often and widely used models in financial markets to formulate
the movement of an asset price that tends to converge an equibrilium of the prices.
Poterba and Summers [9] applied variance ratio test to detect mean reversion in
stock prices and market returns for US and seventeen countries. Frankel and Rose [4]
examined derivations from purchasing power parity to show strong evidence of mean-
reversion in real exchange rates of various countries. Fama and French [3] tested a
standard economic argument that profitability is mean reverting. A mean reversion
process, or Ornstein-Uhlenbeck process (named after Ornstein and Uhlenbeck [8]),
has a drift term that brings the variable being modeled back to an equilibrium level.
The variable tends to oscillate around this equilibrium.

Consider the price of stock S(t) = eX(t) where X(t) is the mean-reversion process
which satisfies the following:
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dX(t) = a(b−X(t))dt + σdw(t),

where a is the rate of reversion, b is the equilibrium level, σ is the volatility, and w(t)
is a standard Brownian motion. We consider a trading rule consisting of buying and
selling a share.
The problem is to find good price levels to buy and sell the share. We aim at
maximizing our profit through transactions. A basic strategy is to buy low and sell
high. However, picking an appropriate buying and selling price levels is difficult in
practice.

Prior to this study, Guo and Zhang [2] used a smooth-fit technicque to character-
ize the optimal selling rule under a model with hybrid GMB. Zhang and Zhang [10]
studied the problem finding the buying and selling levels assuming infinitively buy-
ing and selling. Song, Yin and Zhang [7] calculated the level pairs with a stochastic
approximation methods.

In this article, we consider the trading rule that allows a round trip transactions,
i.e., only buy once and sell once. Let the thresholds pair (x1, x2) be the pair of
buying price level and selling price level. We will determine the value of (x1, x2)
based on the parameters, a, b, σ, a discount factor ρ, and transaction discount factor
K.

The rest of this paper is arranged as follows. Section 2 begins with the mean
reversion model and the setup of the problem. Section 3 presents some properties of
the value functions. Section 4 introduces a verification theorem which demonstrates
the optimality of the trading rule. Section 5 includes numerical examples to show
the dependency of (x1, x2) and values of value functions on various parameters. In
the last section, we compare the result of [10] with our results.

2. Problem Formulation

Let X(t) ∈ R denote a mean-reverting process governed by

(1) dX(t) = a(b−X(t))dt + σdw(t), X(0) = x

where a > 0 is the rate of reversion, b is the equilibrium level, σ > 0 is the volatility,
and w(t) is a standard Brownian motion. Let

0 ≤ τ ≤ δ

denote stopping times of a buying decision τ and a selling decision δ. The net
position is flat(no stock holding) at t ∈ [0, τ) ∪ [δ,∞) and long(one share of stock
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holding) at t ∈ [τ, δ).
The asset price is given by S(t) = expX(t). Suppose that 0 < K < 1 is the

percentage of slippage or commission per transaction and the discount factor ρ > 0.
We aim to maximize the reward functions

J1(x,Λ1) = E[e−ρδS(δ)(1−K)− e−ρτS(τ)(1 + K)],
J2(x,Λ2) = E[e−ρδS(δ)(1−K)]

where Λ1 = {τ, δ} and Λ2 = {δ}. For i = 1, 2, let Vi(x) be the value functions with
X(0) = x and initial net position i. Therefore, we have

Vi(x) = sup
Λi

Ji(x,Λi).

3. Properties of the Value Functions

In this section, we discuss various properties of the value functions and solve the
stopping problem with a smooth fit principle. Note that

V1(x) ≥ J1(x,Λ1) = J2(x,Λ2)−Ee−ρτS(τ)(1 + K)

In particular, setting τ = 0, we have the inequality

(2) V1(x) ≥ V2(x)− ex(1 + K).

Otherwise, we similarly obtain

(3) V2(x) ≥ ex(1−K).

The next lemma guarantees the bounds of Vi(x).

Lemma 3.1. There exist constants K1,K2 and K3 such that

0 ≤ V1(x) ≤ K1 and
0 ≤ V2(x) ≤ K2e

x + K3.

Proof. It is clear that Vi(x) are nonnegative by definition. We first find the upper
bounds. From Dynkin’s formula, we have

Ee−ρδS(δ)− Ee−ρτS(τ) = E

∫ δ

τ
e−ρteX(t)(A− aX(t))dt,

where A = σ2/2 + ab− ρ. Note that ex(A− ax) is bounded above on R. Let C be
an upper bound. It follows that

(4) Ee−ρδS(δ)−Ee−ρτS(τ) ≤ CE

∫ δ

τ
e−ρtdt.
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-
x1

v1(x)=v2(x)−ex(1+K) ρv1(x)−Mv1(x) = 0

-
x2

ρv2(x)−Mv2(x) = 0v2(x) =ex(1−K)

Figure 1. Thicken lines are Continuation Regions

Using the definition of J1(x,Λ1), we have

J1(x,Λ1) ≤ Ee−ρδS(δ)− Ee−ρτS(τ)

≤ CE

∫ δ

τ
e−ρtdt

≤ C

∫ ∞

0
e−ρtdt =

C

ρ
:= K1

This implies that 0 ≤ V1(x) ≤ K1.
Similarly, we have the inequality

J2(x,Λ2) ≤ Ee−ρδS(δ)(1−K).

As in (4), we can take τ = 0 and show that

Ee−ρδeX(δ) − ex ≤ C

ρ
.

It implies that

V2(x) ≤ (1−K)
(
ex +

C

ρ

)
:= K2e

x + K3.

This completes the proof. ¤

Let M denote the generator of X(t). That is,

M = a(b− x)
∂

∂x
+

σ2

2
∂2

∂x2
.

The associated HJB equations have the form:

(5)
{

min{ρv1(x)−Mv1(x), v1(x)− v2(x) + ex(1 + K)} = 0
min{ρv2(x)−Mv2(x), v2(x)− ex(1−K)} = 0

Recall that we decide to buy when the price is low and sell when the price is high.
We say the low price as S1 and the high price as S2. Let xj = log(Sj), j = 1, 2. Then
the continuation region for i = 1 should be (x1,∞) on which ρv1(x)−Mv1(x) = 0.
If x < x1, v1(x) = v2(x) − ex(1 + K). Similarly, the continuation region for i = 2
should be (−∞, x2) on which ρv2(x)−Mv2(x) = 0. If x > x2, v2(x) = ex(1−K).
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Note that we need two restrictions for the values of x1 and x2 from the HJB
equation. The stock trade, buying at S1 = ex1 and selling at S2 = ex2 , is expected
to be positive with the slippage cost. Therefore, it implies ex2(1−K) > ex1(1+K),
i.e.,

x2 − x1 > log
1 + K

1−K
.

In addition, (ρ −M)v2(x) = 0 on (−∞, x1). Since v1(x) = v2(x) − ex(1 + K), and
(ρ −M)v1(x) ≥ 0 on (−∞, x1), we have (ρ −M)ex ≤ 0 on (−∞, x1). Similarly,
since v2(x) = ex(1−K), and (ρ−M)v2(x) ≥ 0 on (x2,∞), we have (ρ−M)ex ≥ 0
on (x2,∞). These implies

x1 ≤ 1
a

(σ2

2
+ ab− ρ

)
≤ x2.

For the next step, we solve the solution ρvi(x) −Mvi(x) = 0 with i = 1, 2. Let
β =

√
2a/σ and η(t) = tρ/a−1 exp (−t2/2). Then the general solution is given by

C1

∫ ∞

0
η(t)e−β(b−x)tdt + C2

∫ ∞

0
η(t)eβ(b−x)tdt

for some constants C1, C2. (See [1] for the detail.) In view of the above lemma,
v2(−∞) should be bounded which implies C2 = 0. Similarly, the bound of v1(∞)
implies C1 = 0. Therefore, we have

(6)
v1(x) = C2

∫ ∞

0
η(t)eβ(b−x)tdt

v2(x) = C1

∫ ∞

0
η(t)e−β(b−x)tdt.

Note that both v1 and v2 are C2 functions on (x1,∞) and (−∞, x2), respectively.
Therefore, we apply the smooth fit principle at x1 and x2 which requires

(7)





v1(x1) = v2(x1)− ex1(1 + K),
v′1(x1) = v′2(x1)− ex1(1 + K),
v2(x2) = ex2(1−K),
v′2(x2) = ex2(1−K).

From the v2(x) of (7), we have v2(x2) = v′2(x2). Combining v2(x) in (6), we get
an equation for x2 such that

(8)
∫ ∞

0
η(t)e−β(b−x2)tdt =

∫ ∞

0
η(t)βte−β(b−x2)tdt.

Moreover, it is easy to find C1 by plugging x2 into the v2(x) equation on (7) and
finally we get v2(x) on (−∞, x2).
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After the v2(x) is determined from an explicit x2 and C1, we use it to solve v1(x).
In particular, the combination of (6) and (7) gives the following:

(9)





C2

∫ ∞

0
η(t)eβ(b−x1)tdt = C1

∫ ∞

0
η(t)e−β(b−x1)tdt− ex1(1 + K),

C2

∫ ∞

0
−βtη(t)eβ(b−x1)tdt = C1

∫ ∞

0
βtη(t)e−β(b−x1)tdt− ex1(1 + K).

Canceling C2, we attain

(10)

( ∫ ∞

0
η(t)eβ(b−x1)tdt

)−1{
C1

∫ ∞

0
η(t)e−β(b−x1)tdt− ex1(1 + K)

}

=
( ∫ ∞

0
−βtη(t)eβ(b−x1)tdt

)−1{
C1

∫ ∞

0
βtη(t)e−β(b−x1)tdt− ex1(1 + K)

}
.

where C1 = ex2(1+K)(
∫∞
0 η(t)eβ(b−x2)tdt)−1. The solution x1 of the above equation

also gives C2 by plugging x1 into (7), and we have v1(x).

4. Verification Theorem

In this section, we give a verification theorem to show that the solutions vi(x) of
(5) are equal to the value functions Vi(x) for i = 1, 2 respectively, and the sequences
of optimal stopping times are given by (x1, x2).

Theorem 4.1. Let (x1, x2) be a solution to (8) and (10) satisfying

x1 ≤ 1
a

(σ2

2
+ ab− ρ

)
≤ x2 and x2 − x1 > log

(1 + K

1−K

)
.

Let 



v1(x) =





C2

∫ ∞

0
η(t)eβ(b−x)tdt, if x ≥ x1,

C1

∫ ∞

0
η(t)e−β(b−x)tdt− ex(1 + K), if x < x1,

v2(x) =





C1

∫ ∞

0
η(t)e−β(b−x)tdt, if x < x2,

ex(1−K), if x ≥ x2,

with C1, C2 which are determined by (x1, x2) as in (9). If the following inequalities
{

v1(x) ≥ v2 − ex(1 + K),
v2(x) ≥ ex(1−K),

hold on the interval (x1, x2), then

vi(x) = Vi(x)
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for i = 1, 2. Moreover, let
Λ∗1 = {τ∗, δ∗}

where the stopping times τ∗ = inf{t ≥ 0 : X(t) ≤ x1}, δ∗ = inf{t ≥ τ∗ : X(t) ≤ x2},
and

Λ∗2 = {δ∗}
where the stopping times δ∗ = inf{t ≥ 0 : X(t) ≤ x2}. Then Λ∗1 and Λ∗2 are optimal.

To prove the theorem, we need the following lemma.

Lemma 4.2. Given z1 and z2, let θ1 = inf{t : X(t) ≤ z1} and θ2 = inf{t : X(t) ≥
z2}. Then

P (θ1 < ∞) = P (θ2 < ∞) = 1.

Proof. See the proof of Lemma 6 in [10]. ¤

Proof of the Theorem. We need two steps to prove. First, we show that vi(x) ≥
Ji(x,Λi) for all Λi, i = 1, 2. As the second, we show that vi(x) = Ji(x,Λ∗i ). There-
fore, vi(x) = Vi(x) and Λ∗i is optimal.
It is easy to show that v1(x) ≥ 0 on (x1,∞) since C2 > 0 in (6). Note that
v1 ∈ C2(R \ {x1}) and v2 ∈ C2(R \ {x2}) satisfying




ρvi(x)−Mvi(x) ≥ 0,
v1(x) ≥ v2(x)− ex(1 + K)},
v2(x) ≥ ex(1−K),

for all x ∈ R and,



ρv1(x)−Mv1(x) ≥ 0, on (x1,∞),
v1(x) ≥ v2(x)− ex(1 + K)}, on (−∞, x1),
ρv2(x)−Mv2(x) ≥ 0, on (−∞, x2),
v2(x) ≥ ex(1−K), on (x2,∞).

Using ρvi(x)−Mvi(x) ≥ 0, Dynkin’s formula and Fatou’s lemma as in Øksendal
(2003, p. 226), for any stopping times 0 ≤ θ1 ≤ θ2, we have

(11) Ee−ρθ1vi(Xθ1) ≥ Ee−ρθ2vi(Xθ2)

a.s., for i = 1 or 2. Given Λ1 = (τ, δ), we have

v1(x) ≥ Ee−ρτv1(X(τ))
≥ Ee−ρτ (v2(X(τ))− S(τ)(1 + K))
= Ee−ρτ (v2(X(τ))−Ee−ρτS(τ)(1 + K)
≥ Ee−ρδ[S(δ)(1−K)]− Ee−ρτ [S(τ)(1 + K)]
= E[e−ρδS(δ)(1−K)− e−ρτS(τ)(1 + K)]

from (2) and (11). We have v1(x) ≥ J1(x,Λ1) which implies that v1(x) ≥ V1(x).
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Similarly, we can show that v2(x) ≥ V2(x).
Next, we construct the equalities. Define a stopping time

τ∗ =
{

0 if x ≤ x1

inf{t ≥ 0 : X(t) = x1}, if x > x1

Then, τ∗ < ∞, a.s. by Lemma 4.2. Using Dynkin’s formula, we have

v1(x) = Ee−ρτ∗v1(X(τ∗))
= Ee−ρτ∗(v2(X(τ∗))− S(τ∗)(1 + K))
= Ee−ρτ∗(v2(X(τ∗))− Ee−ρτ∗S(τ∗)(1 + K).

Let δ∗ = inf{t ≥ τ∗ : X(t) = x2}. Then, δ∗ < ∞ a.s. by Lemma 4.2, and

Ee−ρτ∗v2(X(τ∗)) = Ee−ρδ∗v2(X(δ∗))
= Ee−ρδ∗(S(δ∗)(1−K))

Therefore, it follows that

v1(x) = E[e−ρδ∗S(δ∗)(1−K)− e−ρτ∗S(τ∗)(1 + K)].

and it is positive by the second hypothesis of this theorem.
Similarly, we have

v2(x) = E[e−ρδ∗S(δ∗)(1−K)].

This completes the proof. ¤

5. A Numerical Example

In this section, we demonstrate a numerical example with the following:

a = 0.8, b = 2, σ = 0.5, ρ = 0.01, K = 0.01

As the result of solving (7), we have (x1, x2) = (1.5058, 2.2434). It implies that the
low stock price S1 = expx1 = 4.5078 and the high price S2 = expx2 = 9.4253.

The probability or the frequency for the price to increase from S1 to S2 are closely
connected to the price levels S1 and S2.
The corresponding value functions V1(x) and V2(x) are plotted in Figure 2. As
we see in the picture, V1(x) is uniformly bounded and V2(x) is increasing with an
exponential growth rate.

Now we vary each parameters at a time and observe the dependence of (x1, x2).
First we vary the equilibrium parameter b to get the associated (x1, x2). Intuitively,
larger b would result larger rewards and larger threshold pairs (x1, x2). Table 1
confirms this observation. For the monotonely increased b, the result gives the



BUYING AND SELLING RULES FOR A SIMPLE TRANSACTION 137

10

x

3.02.52.01.51.00.5

15

20

5

V1(x)                   

V2(x)                   

Figure 2. The value functions V1(x) and V2(x)

b 1 1.5 2 2.5 3
x1 0.5058 1.0058 1.5058 2.0058 2.5058
x2 1.2434 1.7434 2.2434 2.7434 3.2434

V1(1) 0.2935 0.8226 2.2266 4.4785 7.9976
V2(1) 2.8066 3.5680 4.9721 7.2239 10.7431

Table 1. The thresholds (x1, x2) for varying b

monotonely increased (x1, x2). We added the values (V1(1), V2(1)) to observe the
values of the associated value functions.
Next, we vary the rate of reversion a in Table 2. A larger a implies smaller difference
between the threshold levels (x1, x2). Because the oscillating of the stock price tends
to bounce more narrowly on a range for a larger a, it is natural that the gap between
buying price and selling price is decreased.
In Table 3, we vary the volatility σ. Larger σ implies greater range for the stock
price S(t) = exp(x(t)). Intuitively larger volatility makes further gap between a
high price of stock and a low price of stock, and it is showed this as well.
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a 0.6 0.7 0.8 0.9 1
x1 1.5015 1.5026 1.5058 1.5099 1.5143
x2 2.3695 2.2991 2.2434 2.1982 2.1606

V1(1) 2.6378 2.4044 2.2266 2.0860 1.9714
V2(1) 5.3827 5.1498 4.9721 4.8314 4.7169

Table 2. (x1, x2) with varying a

σ 0.3 0.4 0.5 0.6 0.7
x1 1.5531 1.5242 1.5058 1.5031 1.5177
x2 1.9374 2.0848 2.2434 2.4134 2.5928

V1(1) 1.3231 1.7414 2.2266 2.8003 3.4828
V2(1) 4.0686 4.4869 4.9721 5.5475 6.2282

Table 3. (x1, x2) with varying σ

ρ 0.001 0.005 0.01 0.015 0.02
x1 1.5080 1.5071 1.5058 1.5045 1.5032
x2 2.2541 2.2494 2.2434 2.2375 2.2316

V1(1) 2.2813 2.2569 2.2266 2.1966 2.1669
V2(1) 5.0268 5.0024 4.9721 4.9421 4.9123

Table 4. (x1, x2) with varying ρ

K 0.001 0.005 0.01 0.015 0.02
x1 1.5284 1.5183 1.5058 1.4936 1.4815
x2 2.2434 2.2434 2.2434 2.2434 2.2434

V1(1) 2.2963 2.2653 2.2266 2.1879 2.1492
V2(1) 5.0173 4.9972 4.9721 4.9470 4.9218

Table 5. (x1, x2) with varying K

In Table 4, we vary the discount rate ρ. Large ρ implies smaller reward functions,
and smaller (x1, x2) and Table 4 shows that.
As the last, we vary the slippage rate K in Table 5. The result shows that x1

is monotonely decreasing in K and x2 stays constantly. This is because lager K

discourages stock translations and has to be returned by smaller x1. Comparing with
the result of the paper [10] under the same condition, we got the result (x1, x2) =
(1.1998, 1.6385) whose x1 level is slightly less than the result in [10]. It’s because
our V1(x) doesn’t associate with V1(x), and this makes V2(x) smaller, so even V1(x).
Indeed, our (V1(1), V2(1)) = (0.3846, 3.1303) which are both less than the values
of (V1(1), V2(1)) in [10] whose value of (V1(1), V2(1)) was (0.607, 3.364) under the
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five variables condition a = 0.8, b = 2, σ = 0.5, ρ = 0.5,K = 0.01. In practice, the
profit function having one trade is obviously smaller than the profit function having
infinitive trades. In advance, studying about a problem having finite multiple trades,
or applying this result to real data should be interesting subjects.

6. Conclusion

Through this paper, we solved quasi-algebraic equations for the two threshold
levels. We showed that the two thresholds lead to the optimal stopping times to buy
and sell a share.
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