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ZETA FUNCTIONS FOR ONE-DIMENSIONAL
GENERALIZED SOLENOIDS

Inhyeop Yi

Abstract. We compute zeta functions of 1-solenoids. When our 1-solenoid is
nonorientable, we compute Artin-Mazur zeta function and Lefschetz zeta function
of the 1-solenoid and its orientable double cover explicitly in terms of adjacency ma-
trices and branch points. And we show that Artin-Mazur zeta function of orientable
double cover is a rational function and a quotient of Artin-Mazur zeta function and
Lefschetz zeta function of the 1-solenoid.

1. Preliminary

In the theory of dynamical systems, the study of periodic orbits has been one of
main topics. An important tool for this purpose is the zeta function introduced by
Artin and Mazur [1]. Although Artin-Mazur zeta function is defined only when the
number of periodic orbits of period n is finite for every n ≥ 1 and this function is
defined as a formal power series so that in general it does not converge, Artin-Mazur
zeta function is one of the most useful invariants for topological conjugacy.

Later on, many different variations of Artin-Mazur zeta function were introduced
by several authors (we refer [2, 5]). One is Lefschetz zeta function or false zeta func-
tion introduced by Smale [6] using Lefschetz number instead of number of periodic
points of period n. While Artin-Mazur zeta function gives geometric information
about the periodic orbits of a dynamical system, Lefschetz zeta function counts
periodic orbits ‘algebraically’. Even though Lefschetz zeta function is similar to
Artin-Mazur zeta function, interrelation between them is relatively unknown. The
main goal of this paper is to find a relation between Artin-Mazur zeta function and
Lefschetz zeta function for 1-solenoids.
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As in the case of subshifts of finite type, iteration behaviors of 1-solenoids are
represented by their adjacency matrices. So they have relatively easy structure to
investigate periodic properties. But contrary to subshifts of finite type which are
generated by finite sets, 1-solenoids are inverse limits of finite directed graphs and
connecting maps. Thus they have nontrivial periodic structures around vertices of
graphs. Especially when the connecting maps do not preserve directions of graphs,
small neighborhoods of vertices of graphs are twisted by connecting maps in inverse
limit structure. We want to ignore geometric data of those twisted neighbors, and
this is where Lefschetz zeta function is called.

In Section 2, we briefly review the definition and basic properties of 1-solenoids
and their double covers. In Section 3, we modify the definitions of Lefschetz num-
ber and Lefschetz zeta function to 1-solenoids. Then we compute Artin-Mazur zeta
functions and Lefschetz zeta functions of a nonorientable 1-solenoid and its corre-
sponding orientable double cover to show that these two zeta functions are expressed
through adjacency matrices and orbits of branch points. And we check that, Artin-
Mazur zeta function of orientable double cover is a rational function and a quotient
of Artin-Mazur zeta function and Lefschetz zeta function of the 1-solenoid.

2. 1-solenoids and Their Orientable Double Covers

We review the definition and basic properties of one-dimensional generalized
solenoids of Williams. As general references for the notion of generalized solenoids
and their orientable double covers, we refer to [7, 8, 9, 10, 11].

One-dimensional Generalized Solenoids Let X be a directed graph with vertex
set V and edge set E , and f : X → X a continuous map. We define some axioms
which might be satisfied by (X, f).

Axiom 0. (Indecomposability) (X, f) is indecomposable.
Axiom 1. (Nonwandering) All points of X are nonwandering under f .
Axiom 2. (Flattening) There is k ≥ 1 such that for every x ∈ X there is an open

neighborhood U of x such that fk(U) is homeomorphic to (−ε, ε).
Axiom 3. (Expansion) There is a metric d compatible with the topology and positive

constants C and λ with λ > 1 such that for all n > 0 and all points x, y

on a common edge of X, if fn maps the interval [x, y] into an edge, then
d(fnx, fny) ≥ Cλnd(x, y).

Axiom 4. (Nonfolding) fn|X−V is locally one-to-one for every positive integer n.
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Axiom 5. (Markov) f(V) ⊆ V.

Let X be the inverse limit space

X = X
f←− X

f←− · · · = {
(x0, x1, x2, . . . ) ∈

∞∏

0

X | f(xn+1) = xn

}
.

Suppose that Y is a topological space. We call Y a 1-dimensional generalized
solenoid or 1-solenoid if there exists a directed graph X and a continuous map
f : X → X such that (X, f) satisfies all six Axioms and X is homeomorphic to Y .
And (X, f) is called a presentation of Y . If we can choose the direction of each edge
in X so that the connection map f : X → X is orientation preserving or reversing,
then we call (X, f) an orientable presentation, and Y an orientable solenoid. We
call a point x ∈ X a non-branch point if x has an open neighborhood which is
homeomorphic to an open interval, and branch point otherwise.

Remark 2.1. Axiom 0 means that X cannot be split into two nonempty, closed,
f -invariant subsets.

By a path in X we mean a finite sequence e
s(1)
1 · · · es(n)

n of edges such that, for
1 ≤ i < n, s(i) = ±1 represents the direction of ei and the terminal vertex of e

s(i)
i

is the initial vertex of e
s(i+1)
i+1 . Let E∗ denote the path set of X. Then the wrapping

rule f̌ : E → E∗ associated with f is given by

f̌ : ei 7→ e
s(i,1)
i,1 · · · es(i,l(i))

i,l(i) ,

and the adjacency matrix M = MX,f of (E , f̌) is given by

M(i, j) = number of copies of e±1
j in f̌(ei).

Proposition 2.2 ([8, 10]). Suppose that (X, f) is a presentation of 1-solenoids.
Then (X, f) and (X, fn) are topologically conjugate for every positive integer n.

Therefore, for the purpose of computing zeta functions, we can replace (X, f)
with (X, fn) where n is a positive integer such that for every x ∈ X there is an open
neighborhood Ux such that fn(Ux) is an open interval by Flattening Axiom.

Standing Assumption. In this paper, we always assume that (X, f) is a presen-
tation of a 1-solenoid such that every point x ∈ X has a neighborhood Ux such that
f(Ux) is an interval.

Remark 2.3. Suppose that (X, f) is a presentation of 1-solenoids. Then there is
a bijection between the set of fixed points of (X, fn) and that of (X, fn) for every
natural number n.
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Orientable Double Covers of 1-solenoids Let (X, f) be a presentation of a 1-
solenoid X. Then, imitating the construction of orientable double covers of nonori-
entable manifolds and path lifting property of Algebraic Topology, we can construct
a new directed graph X̃, a lifting f̃ : X̃ → X̃ of f : X → X and a double covering
map p : X̃ → X such that f ◦ p = p ◦ f̃ .

If (X, f) is not orientable, then (X̃, f̃) is an orientable presentation of a 1-solenoid,
and the induced map p : X̃ → X is a double covering map. The new presentation
(X̃, f̃) (X̃, respectively) is called an orientable double cover of (X, f) (X, respec-
tively) [11].

Because the construction of orientable double cover is too technical, we refer
to [11] for accurate description, and we mention only relevant properties and an
example. See also [3, 12].

Proposition 2.4 ([11]). Suppose that (X, f) is a presentation of a 1-solenoid. Then
(X̃, f̃) is an orientable double cover of (X, f).

(1) If (X, f) is orientable, then (X̃, f̃) is the disjoint union of orientable presen-
tations (X1, f1) and (X2, f2) of 1-solenoids such that p|X1 is an orientation-
preserving homeomorphism, p|X2 is an orientation-reversing homeomorph-
ism, and (Xi, fi) is topologically conjugate to (X, f), i = 1, 2.

(2) If (X, f) is nonorientable, then (X̃, f̃) is an orientable presentation of a
1-solenoid.

Suppose that (X, f) is a presentation of a nonorientable 1-solenoid with the edge
set E and that (X̃, f̃) is its orientable double cover with the edge set Ẽ and the
covering map p : X̃ → X. Let M be the n × n adjacency matrix of

(E , f̌
)
, and M̃

the 2n× 2n adjacency matrix of
(
Ẽ ,

ˇ̃
f
)
.

Proposition 2.5 ([11]). Let M and M̃ be as above. Then there are two n × n

nonnegative integer matrices M1 and M2 such that

M = M1 + M2 and M̃ =
(

M1 M2

M2 M1

)
.

The matrices M1 and M2 are given by

M1(i, j) = number of copies of ej in f̌(ei) and

M2(i, j) = number of copies of e−1
j in f̌(ei).

Example 2.6. Suppose that X is Figure 1. Then its double cover X̃ is given by
Figure 2.
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Figure 1. Directed graph X for a nonorientable solenoid
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Figure 2. Double cover of X

When f : X → X is given by

A 7→ B−1AB, B 7→ CB−1A, and C 7→ BCB−1,

(X, f) is a presentation of a nonorientable solenoid. And the lifting f̃ : X̃ → X̃ is
given by

A1 7→ B2A1B1, B1 7→ C1B2A1, C1 7→ B1C1B2 and

A2 7→ B2A2B1, B2 7→ A2B1C2, C2 7→ B1C2B2.

So we have

M1 =




1 1 0
1 0 1
0 1 1


 , M2 =




0 1 0
0 1 0
0 1 0


 , M =




1 2 0
1 1 1
0 2 1




and

M̃ =




1 1 0 0 1 0
1 0 1 0 1 0
0 1 1 0 1 0
0 1 0 1 1 0
0 1 0 1 0 1
0 1 0 0 1 1




.

3. Zeta Functions

We compute Artin-Mazur zeta functions and Lefschetz zeta functions for nonori-
entable 1-solenoids and their orientable double coverings.

Definition 3.1 ([1, 6]). Suppose that Y is a set and that g : Y → Y is a function
with the property that Nm < ∞ for every m = 1, 2, . . . where Nm = Nm(g) is the



146 Inhyeop Yi

number of periodic points of period m. The Artin-Mazur zeta function ζ = ζg of
(Y, g) is defined as the formal power series

ζg(t) = exp

( ∞∑

m=1

Nm

m
tm

)
.

Remark 3.2. Since there is a bijection between fixed points of fn and f
n by Re-

mark 2.3, it is straightforward that Artin-Mazur zeta function of (X, f) and that of
(X, f) are the same. So to compute Artin-Mazur zeta function of a 1-solenoid, we
concentrate on its presentation.

Smale [6] defined another zeta function, called Lefschetz zeta function or false
zeta function, using Lefschetz number of a fixed point. The Lefschetz zeta function
of a diffeomorphism on a compact manifold counts the periodic points ‘algebraically’.

Let M be a compact smooth manifold and h : M → M a differentiable map. If
p ∈ M is an isolated fixed point of h, then Lefschetz number of p is

L(p, h) = sign of det(I −Dh(p))

where I is the identity map on M .
Since 1-solenoids and their presentations are defined as topological objects with-

out differentiable structures, we need to modify the definition of Lefschetz number to
use Lefschetz zeta function in 1-solenoids. We follow Smale’s argument of orientation
preserving/reversing.

Theorem 3.3 ([6]). Let M and h : M → M be as above. For p ∈ Fix(h), L(p, h) =
(−1)u∆ where u is the dimension of unstable manifold W u(p) of h at p and ∆ = +1
if h preserves orientation on W u(p) and ∆ = −1 if h reverses it.

Suppose that (X, f) is a presentation of a 1-solenoid and that p ∈ X is a fixed
point of f . When p is a branch point of X, we select a small neighborhood U of p

such that U = ∪Ii where Ii is a 1-simplex and {Ii − {p}} is a disjoint set. Then we
divide U into two classes UL, the set of 1-simplices in U which are on the ‘ left’ of p,
and UR, the set of 1-simplices on the ‘ right’ of p. By Nonfolding Axiom, Flattening
Axiom and Standing Assumption, if image of a 1-simplex I ∈ UL under f includes
a 1-simplex in Uα, where α = L or R, then image of every 1-simplex in UL includes
the same 1-simplex in Uα, and image of every 1-simplex in UR under f includes
a 1-simplex in Uβ where β = L or R and α 6= β. So the following definition is a
natural adjustment of Lefschetz number to 1-solenoids:
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Definition 3.4. Let (X, f) be a presentation of a 1-solenoid and that p ∈ X a fixed
point of f . If p is a branch point of X, we define

L(p, f) =

{
−1 if image of UL under f includes a simplex in UL

1 if images of UL includes a simplex UR.

If p is a nonbranch point, we define

L(p, f) =

{
−1 if f preserves orientation on a small neighborhood of p

1 if f reverses it.

We imitate Smale’s definition of Lefschetz zeta functions for diffeomorphisms on
compact smooth manifolds to 1-solenoids.

Definition 3.5 ([6]). Suppose that (X, f) is a presentation of a 1-solenoid and that
p ∈ X is a fixed point of f with the corresponding Lefschetz number L(p, f). The
Lefschetz zeta function ζ̃f of (X, f) is defined as

ζ̃f (t) = exp

( ∞∑

m=1

Lm

m
tm

)
where Lm =

∑

p∈Fix(fm)

L(p, fm).

When a 1-solenoid is orientable, Artin-Mazur zeta function and Lefschetz zeta
function of the solenoid have a simple relation. Smale [6] proved the same relation
for Anosov diffeomorphisms on manifolds, and we follow his argument.

Proposition 3.6. If (X, f) is an orientable presentation of a 1-solenoid, then

ζ̃f (t) =

{
1

ζf (t) if f is orientation preserving
1

ζf (−t) if f is orientation reversing.

Proof. If f is orientation preserving, then Lefschetz number of any periodic point is
−1. So Lm = −Nm and

ζ̃f (t) = exp

( ∞∑

m=1

Lm

m
tm

)
= exp

( ∞∑

m=1

−Nm

m
tm

)
= exp

(
−

∞∑

m=1

Nm

m
tm

)
=

1
ζf (t)

.

If f is orientation reversing, then f2m−1 is orientation reversing and f2m orientation
preserving for every m ≥ 1. Hence Lm = (−1)m+1Nm and

ζ̃f (t) = exp

( ∞∑

m=1

(−1)m+1Nm

m
tm

)
= exp

(
−

∞∑

m=1

Nm

m
(−t)m

)
=

1
ζf (−t)

.

¤
We need a few lemmas to compute zeta functions of nonorientable 1-solenoids.
The following lemma is trivial from Linear Algebra:
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Lemma 3.7. Let (X, f) be a nonorientable presentation of a 1-solenoid and (X̃, f̃)
its orientable double cover with their corresponding adjacency matrices M̃ and M ,
respectively. For the square nonnegative integer matrices M1 and M2 given in Propo-
sition 2.5, we let D = M1 −M2. Then

det(I − tM̃) = det(I − tM) · det(I − tD).

Let us divide X into two relatively disjoint parts X+ and X− such that f |X+

is orientation-preserving and f |X− is orientation-reversing. Then M1 and M2 are
matrices representing f |X+ : X+ → X and f |X− : X− → X. Hence we can obtain
the number of fixed points of f from the trace of M = M1+M2 and sum of Lefschetz
numbers of fixed points of f from negative of the trace of D.

Because a branch point b is a periodic point by Markov Axiom and it is included
in different edges as a common boundary point, b will appear several times in tr(Mm)
and tr(Dm) as a periodic point in different edges. Thus we have to remove the extra
part of b from tr(Mm) and tr(Dm).

Remark 3.8. Suppose that b is a branch point of X with a period m. Then, by
Standing Assumption, there is a small open neighborhood Ub of b such that fm(Ub)
is homeomorphic to an open interval by Flattening Axiom. So there is a set of small
1-simplices Ii in X such that

(1) Ub = ∪Ii,
(2) {Ii − {b}} is a disjoint set,
(3) each Ii is a subset of an edge of X, and
(4) by Flattening Axiom, there are at most four and at least two 1-simplices Ibi

in {Ii} such that Ibi
and fm(Ibi

) are contained in the same edge of X.

Let us denote Jb = {Ibi} and n(b) = #Jb. Then b is counted n(b) times as a periodic
point of period m in tr(Mm). We will use Jb and n(b) to adjust extra part in tr(Mm).

Lemma 3.9. If L(b, fp(b)) = −1, then L(b, fkp(b)) = −1 and L(fk(b), fp(b)) = −1
for every natural number k. And if L(b, fp(b)) = 1, then L(b, fkp(b)) = (−1)k+1 and
L(fk(b), fp(b)) = 1.

Proof. Let b be a branch point with the minimal period p(b). If L(b, fp(b)) = −1,
then fp(b) and fkp(b), for every k ≥ 1, map ‘ left-hand side’ simplices of b to a left-
hand side simplex and ‘ right-hand side’ simplices to a right-hand side simplex. And
if L(b, fp(b)) = 1, fp(b) maps left-hand side simplices of b to a right-hand side simplex
and vice versa. But f2p(b) maps left-hand side of b to a left-hand side simplex and
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right-hand side to a right-hand side simplex.
Note that f(b) is also a branch point with the minimal period p(b). Then f : Ub →

Uf(b) and f : Ufp(b)(Ub)
→ Ufp(b)+1(Ub)

have the same orientation preserving/reversing
property. So fp(b) : Ub → Ufp(b)(Ub)

and fp(b) : Uf(b) → Ufp(b)+1(Ub)
have the same

Lefschetz number at b and f(b). ¤

Lemma 3.10. Suppose Ibi and Jb are as above. Let p(b) be the minimal period of b

and m a period of b so that m = kp(b) for some natural number k. Define

lm(Ibi) =

{
+1 if fm|Ibi

is orientation preserving
−1 if fm|Ibi

is orientation reversing.

If L(b, fm) = −1, then
∑

Ibi
∈Jb

lm(Ibi) ∈ {0, 1, 2} and
∑

Ibi
∈Jb

lm(Ibi) + n(b) = 4. If
L(b, fm) = 1, then

∑
Ibi
∈Ib

lm(Ibi
) = −2 and

∑
Ibi
∈Jb

lm(Ibi
) + n(b) = 0.

Proof. Let Ub be the neighborhood of b constructed in Remark 3.8, and fm(Ub) ⊂
e1 ∪ e2 where e1 and e2 are (possibly the same) edges of X. Then each Ibi ∈ Jb is
the initial or the terminal part of e1 or e2.

We consider L(b, fm) = −1 case first. If Jb has four elements, then e1 6= e2 and
Jb = {I1i, I1t, I2i, I2t} where 1 and 2 represent the edges I∗ are included and i and t

represent initial and terminal part, respectively. By Flattening Axiom and Markov
Axiom, fm(I1i) = fm(I1t) ⊂ e1 is either the initial part or the terminal part of e1,
and fm(I2i) = fm(I2t) ⊂ e2 is also either the initial part or the terminal part of e2.
So if fm(I1i) = fm(I1t) is the initial part of e1, then fm|I1i is orientation preserving
and fm|I1t is orientation reversing. And if fm(I1i) = fm(I1t) is the terminal part of
e1, then we will have opposite result for fm|I1∗ . Hence we have

∑
I∗∈Jb

lm(I∗) = 0.
If Jb has three elements, then e1 6= e2 and Jb = {I1i, I1t, I2} such that fm(I1i) =

fm(I1t). Thus, as in the above case, fm|I1i is orientation preserving and fm|I1t

is orientation reversing, or vice versa. And by Expansion Axiom and Flattening
Axiom, fm(I2) includes I2 so that fm|I2 is orientation preserving. Thence we have∑

I∗∈Jb
lm(I∗) = 1.

If Jb has two elements I1 and I2, then by Expansion and Flattening Axioms
fm(I∗) includes I∗. So fm|I∗ is orientation preserving, and

∑
I∗∈Jb

lm(I∗) = 2.
Let L(b, fm) = 1 and fm(Ub) ⊂ e1 ∪ e2. Assume I1i, I1t ∈ Jb. Then there are two

cases: Both of I1i and I1t are included in the same side of b, say left-hand side. Or
one is on the left-hand side of b and the other is on the right-hand side.

If I1i and I1t are included in the left-hand side, then L(b, fm) = 1 implies that
fm(I1∗) is mapped to the right-hand side. So fm(I1∗) is not included in e1, and
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I1i, I1t /∈ Jb. Hence we conclude that I1i, I1t ∈ Jb implies I1t ⊂ fm(I1i) and I1i ⊂
fm(I1t) so that fm(Ub) is a subset of e1 and Jb = {I1i, I1t}.

If Jb has more than two elements, then two of them are included in the same
edge of X and any remaining simplex cannot be an element of Jb. Therefore, when
L(b, fm) = 1, Jb has two elements I1, I2. And it is obvious that fm|I∗ is orientation
reversing as L(b, fm) = 1. ¤

Combining Lemmas 3.9 and 3.10, we have the following: Let p(b) be the minimal
period of b. If L(b, fp(b)) = −1, then fkp(b) is orientation preserving at b for every
k ≥ 1 so that ∑

lp(b)(Ibi) =
∑

lkp(b)(Ibi) ∈ {0, 1, 2}.
And if L(b, fp(b)) = 1, then f (2k−1)p(b) is orientation reversing and f2kp(b) is orienta-
tion preserving at b for every k ≥ 1 so that

∑
lp(b)(Ibi) =

∑
l(2k−1)p(b)(Ibi) = −2 and

∑
l2p(b)(Ibi

) =
∑

l2kp(b)(Ibi
) ∈ {0, 1, 2}.

Let us denote s1(b) =
∑

lp(b)(Ibi) and s2(b) =
∑

l2p(b)(Ibi).

Proposition 3.11. Suppose that (X, f) is a nonorientable presentation of a 1-
solenoid and (X̃, f̃) is its orientable double cover. Then Artin-Mazur zeta function
of (X̃, f̃) is given by

ζf̃ (t) =
ζf (t)
ζ̃f (t)

.

Proof. We compute ζ̃f (t), ζf (t) and ζf̃ (t) separately to show the quotient relation
among them.
ζ̃f (t): Let D = M1 − M2 be the matrix in Lemma 3.7. If p is a nonbranch fixed
point of fm and I is a small neighborhood of p properly contained in an edge of X,
then, on the diagonal of Dm, p is counted +1 when fm is orientation preserving on
I and −1 when fm is orientation reversing on I. Hence Lefschetz number of each
nonbranch fixed point of fm is counted once in −tr(Dm).

Suppose that b is a branch point of X with a period m and that Jb = {Ibi} is as
in Remark 3.8. Since b is a common boundary point of Ib1 ⊂ eb1 and Ib2 ⊂ eb2 , b is
counted

∑
Ibi
∈Jb

lm(Ibi) times in tr(Dm) instead of −L(b, fm). Thus

Lm =
∑

p∈Fix(fm)

L(p, fm) = −
{

tr(Dm)−
∑

b

(∑
lm(Ibi) + L(b, fm)

)}
.
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Then by Lemma 3.9 we have

Lm =
∑

p∈Fix(fm)

L(p, fm)

= −tr(Dm)

+
∑

b

s1(b) + L
(
b, fp(b)

)

︸ ︷︷ ︸
p(b) divides m and

L(b,fp(b))=−1

+
∑

b

s1(b) + L
(
b, fp(b)

)

︸ ︷︷ ︸
m=(2k−1)p(b) and

L(b,fp(b))=1

+
∑

b

s2(b) + L
(
b, f2p(b)

)

︸ ︷︷ ︸
m=2kp(b) and

L(b,fp(b))=1

= −tr(Dm) +
∑

s1(b)− 1
︸ ︷︷ ︸

p(b) divides m and

L(b,fp(b))=−1

+
∑

s1(b) + 1
︸ ︷︷ ︸

m=(2k−1)p(b) and

L(b,fp(b))=1

+
∑

s2(b)− 1
︸ ︷︷ ︸
m=2kp(b) and

L(b,fp(b))=1

and

ζ̃f (t) = exp

( ∞∑

m=1

Lm

m
tm

)

= det(I − tD)

· 1
∏

L(b)=−1

(
1− tp(b)

) s1(b)−1
p(b)

·

∏
L(b)=1

(
1 + tp(b)

) s1(b)+1
2p(b)

∏
L(b)=1

(
1− tp(b)

) s1(b)+1
2p(b)

· 1
∏

L(b)=1

(
1− t2p(b)

) s2(b)−1
2p(b)

.

ζf (t): Let M be the adjacency matrix of (X, f) and Jb as in Remark 3.8 for a
branch point b of X. We remind that Jb with n(b) = #Jb is the collection of small
1-simplices Ii containing b as their boundary point such that Ii and fp(b)(Ii) are
included in a same edge of X.

In tr(Mm), every nonbranch periodic point of period m is counted once. But a
branch point b of period m, which is an intersection of several different edges of X,
is counted n(b) times in tr(Mm). Hence if we subtract n(b)− 1 from tr(Mm), then
b will be counted once as a periodic point of period m. Therefore

Nm = tr(Mm)−
∑

p(b)|m and
L(b)=−1

(n(b)− 1)

−
∑

m=(2n−1)p(b)
and L(b)=1

(n(b)− 1)−
∑

m=2np(b)
and L(b)=1

(n(b)− 1)
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and

ζf (t) = exp

( ∞∑

m=1

Nm

m
tm

)

=

∏
L(b)=−1

(
1− tp(b)

)n(b)−1
p(b) · ∏

L(b)=1

(
1− tp(b)

)n(b)−1
2p(b) · ∏

L(b)=1

(
1− t2p(b)

)n(b)−1
2p(b)

det(I − tM) · ∏
L(b)=1

(
1 + tp(b)

)n(b)−1
2p(b)

.

ζf̃ (t): As in the case of tr(Mm), we have to remove over-counted parts of branch
points in X̃ from tr(M̃m). We remind that a point in X̃ is a branch point if and
only if it is a fiber of a branch point in X.

Let b be a branch point of X with its fibers b1, b2 in X̃. Then orientability of
(X̃, f̃) and Flattening Axiom imply n(bi) = #Jbi = 2 so that bi is counted twice
as a fixed point in M̃kp(bi). Hence we only need to know what is p(bi). And it is
straightforward from the construction of (X̃, f̃), referring [11], that

(1) p(bi) = p(b) if L(b, fp(b)) = −1
(2) p(bi) = 2p(b) if L(b, fp(b)) = 1.

Thus the number of periodic points of period m in (X̃, f̃) is

Ñm = tr(M̃m)−
∑

p(bi)|m and
L(b)=−1

(2− 1)−
∑

p(bi)|m and
L(b)=1

(2− 1)

= tr(M̃m)−
∑

p(b)|m and
L(b)=−1

2(2− 1)−
∑

2p(b)|m and
L(b)=1

2(2− 1)

and zeta function of (X̃, f̃) is

ζf̃ (t) = exp

(
Ñm

m
tm

)
=

∏
L(b)=−1

(
1− tp(b)

) 2(2−1)
p(b) · ∏

L(b)=1

(
1− t2p(b)

) 2(2−1)
2p(b)

det(I − tM̃)
.

Recall that by Lemma 3.10

(1) if L(b, fp(b)) = −1, then s1(b) + n(b) = 4
(2) if L(b, fp(b)) = 1, then s1(b) + n(b) = 0 and s2(b) + n(b) = 4

And by Lemma 3.7

det(I − tM̃) = det(I − tM) · det(I − tD).
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Therefore

ζf̃ (t) =

∏
L(b)=−1

(
1− tp(b)

) 2(2−1)
p(b) · ∏

L(b)=1

(
1− t2p(b)

) 2(2−1)
2p(b)

det(I − tM̃)

=

∏
L(b)=−1

(
1− tp(b)

) s1(b)+n(b)−2
p(b) · ∏

L(b)=1

(
1− t2p(b)

) s2(b)+n(b)−2
2p(b)

det(I − tM) · det(I − tD)

=

∏
L(b)=−1

(
1− tp(b)

) s1(b)+n(b)−2
p(b) · ∏

L(b)=1

(
1− t2p(b)

) s2(b)+n(b)−2
2p(b)

det(I − tM) · det(I − tD)

·

∏
L(b)=1

(
1− tp(b)

) s1(b)+n(b)
2p(b)

∏
L(b)=1

(
1 + tp(b)

) s1(b)+n(b)
2p(b)

=

∏
L(b)=−1

(
1− tp(b)

)n(b)−1
p(b) · ∏

L(b)=1

(
1− t2p(b)

)n(b)−1
2p(b) · ∏

L(b)=1

(
1− tp(b)

)n(b)−1
2p(b)

det(I − tM) · ∏
L(b)=1

(
1 + tp(b)

)n(b)−1
2p(b)

·

∏
L(b)=−1

(
1− tp(b)

) s1(b)−1
p(b) · ∏

L(b)=1

(
1− t2p(b)

) s2(b)−1
2p(b) · ∏

L(b)=1

(
1− tp(b)

) s1(b)+1
2p(b)

det(I − tD) · ∏
L(b)=1

(
1 + tp(b)

) s1(b)+1
2p(b)

= ζf (t) · 1
ζ̃f (t)

.

¤

Remark 3.12. Franks [4] showed similar results for an Axiom A diffeomorphism
on a manifold.

Proposition 3.13. Suppose that (X, f) and (X̃, f̃) are as above. Then ζf̃ (t) is a
rational function.

Proof. To show that ζf̃ (t) is a rational function, we look at the orbit of a branch
point and the numerator of ζf̃ (t),

(1)
∏

L(b)=−1

(
1− tp(b)

) 2(2−1)
p(b) ·

∏

L(b)=1

(
1− t2p(b)

) 2(2−1)
2p(b)

.
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Let b be a branch point with the minimal period p(b) and L(b) = 1. Then,
for 1 ≤ k < p(b), fk(b) is also a branch point with the minimal period p(b) and

L(fk(b)) = L(b) by Lemma 3.9. So
(
1− tp(b)

) 2(2−1)
p(b) =

(
1− tp(fk(b))

) 2(2−1)

p(fk(b)) implies

that there are p(b) copies of
(
1− tp(b)

) 2(2−1)
p(b) inside the first product of (1). Hence

the first product is equal to
∏

O(b) with L(b)=−1

(
1− tp(b)

)2(2−1)

where O(b) is the orbit of b. And by the same argument, the second product of (1)
is equal to ∏

O(b) with L(b)=1

(
1− t2p(b)

)(2−1)

Therefore the numerator of Artin-Mazur zeta function of (X̃, f̃) is a polynomial,
and it is a rational function. ¤

Corollary 3.14. Let (X, f) and (X̃, f̃) be as above. Then Lefschetz zeta function
of (X̃, f̃) is a rational function given by

ζ̃f̃ (t) =
ζ̃f (−t)
ζf (−t)

.

Proof. Since (X̃, f̃) is orientable, ζ̃f̃ (t) = 1/ζf̃ (−t) by Proposition 3.6. Then it is
trivial by Proposition 3.11. ¤
Example 3.15. Suppose that (X, f) and (X̃, f̃) are as in Example 2.6. Then two
branch points b1, b2 of X are periodic points of minimal period 2. For i = 1, 2,
we have L(bi, f

2m) = −1 from the wrapping rule, si(bi) = 1 from the fact that
f2 is orientation preserving, and n(bi) = 3 as each bi is the vertex of Y-shaped
simplex. Hence Artin-Mazur zeta function and Lefschetz zeta function for (X, f)
and Artin-Mazur zeta function for (X̃, f̃) are

ζf (t) =
1− t2

1− 3t
, ζ̃f (t) = (1− t)(1− t2), and ζf̃ (t) =

1
(1− 3t)(1− t)

.
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