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ON THE STABILITY OF A JENSEN TYPE FUNCTIONAL
EQUATION IN MULTI-NORMED SPACES

Kyoo-Hong Park a and Yong-Soo Jung b, ∗

Abstract. In this paper we investigate the Hyers-Ulam stability of a Jensen type
functional equation in multi-normed spaces and then extend the result to multi-
normed left modules over a normed algebra A.

1. Introduction

The study of stability problems originated from a question by S.M. Ulam [21] in
1940 : Under what condition does there exist a homomorphism near an approximate
homomorphism ? In 1941, D.H. Hyers [8] gave a first affirmative answer to the
question of Ulam for Banach spaces, which states that if δ > 0 and f : X → Y is a
mapping with X a normed space, Y a Banach space such that

||f(x + y)− f(x)− f(y)|| ≤ δ

for all x, y ∈ X , then there exists a unique additive mapping T : X → Y such that

||f(x)− T (x)|| ≤ δ

for all x ∈ X .
A generalized version of the theorem of Hyers for approximately additive map-

pings was first given by T. Aoki [1] in 1950. In 1978, Th.M. Rassias [18] indepen-
dently introduced the unbounded Cauchy difference and was the first to prove the
stability of the linear mapping between Banach spaces

During the past decades, a number of results concerning the stability have been
obtained by various ways, and been applied to a number of functional equations and
mappings [3, 7, 10, 19].
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The stability of the classical Jensen functional equation

2f
(x + y

2

)
= f(x) + f(y)(1.1)

and of its generalizations were studied by numerous researchers (cf., e.g., [9, 11, 12,
15]).

T. Trif [20] studied the generalized Hyers-Ulam stability of the Jensen type func-
tional equation for normed spaces (or is called the Popoviciu functional equation
from [17]):

3f
(x + y + z

3

)
+ f(x) + f(y) + f(z)(1.2)

= 2
[
f
(x + y

2

)
+ f

(y + z

2

)
+ f

(z + x

2

)]
.

In view of [20], we note that the Popoviciu functional equation (1.2) is equivalent to
the Jensen functional equation (1.1).

In this paper, using some ideas from the earlier works [14, 16], we investigate the
stability of the Popoviciu functional equation in multi-normed spaces and further,
in multi-normed left module over normed algebra.

The notion of multi-normed space was introduced by H.G. Dales and M.E.
Polyakov (see [5, 6, 13, 14]). This concept is somewhat similar to operator se-
quence space and has some connections with operator spaces and Banach lattices.
Motivations for the study of multi-normed spaces and many examples were given in
[6].

Let C,R and N be the sets of complex, real numbers and positive integers, re-
spectively. Let X be a linear space over C. For each k ∈ N, we denote by X k the
linear space X ⊕ · · · ⊕ X consisting of k-tuples (x1, · · · , xk), where x1, · · · , xk ∈ X .
The linear operations on X k are defined coordinatewise. The zero element of either
X or X k is denoted by 0. We denote by Nk the set {1, 2, 3, · · · , k} and by Gk the
group of permutations on k symbols.

Definition 1.1. A multi-norm on {X k : k ∈ N} is a sequence

(‖ · ‖k) = (‖ · ‖k : k ∈ N)

such that ‖·‖k is a norm on X k for each k ∈ N, such that‖x‖1 = ‖x‖ for each x ∈ X ,
and such that for each k ∈ N (k ≥ 2), the following axioms are satisfied:

(i) ‖xσ(1), · · · , xσ(k)‖k = ‖(x1, · · · , xk)‖k (σ ∈ Gk; x1, · · · , xk ∈ X );
(ii) ‖(α1x1, · · · , αkxk)‖k ≤

(
max
i∈Nk

|αi|
)‖(x1, · · · , xk)‖k
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(α1, · · · , αk ∈ C; x1, · · · , xk ∈ X );
(iii) ‖(x1, · · · , xk−1, 0)‖k = ‖(x1, · · · , xk−1)‖k−1 (x1, · · · , xk−1 ∈ X );
(iv) ‖(x1, · · · , xk−1, xk−1)‖k = ‖(x1, · · · , xk−1)‖k−1 (x1, · · · , xk−1 ∈ X ).

In this case, we say that ((X k, ‖ · ‖k) : k ∈ N) is a multi-normed space.

Suppose that ((X k, ‖ · ‖k) : k ∈ N) is a multi-normed space and k ∈ N. It is easy
to show that

(a) ‖(x, · · · , x)‖k = ‖x‖ (x ∈ X );

(b) max
i∈Nk

‖xi‖ ≤ ‖(x1, · · · , xk)‖k ≤
k∑

i=1

‖xi‖ ≤ k max
i∈Nk

‖xi‖ (x1, · · · , xk ∈ X ).

It follows from (b) that if (X , ‖ · ‖) is a Banach space, then (X k, ‖ · ‖k) is a Banach
space for each k ∈ N; in this case, ((X k, ‖ · ‖k) : k ∈ N) is said to be a multi-Banach
space.

Now we recall two important examples of multi-norms for an arbitrary normed
space X (see, for details, [6]).

Example 1.2. The sequence (‖ · ‖k : k ∈ N) on {X k : k ∈ N} defined by

‖(x1, · · · , xk)‖k := max
i∈Nk

‖xi‖ (x1, · · · , xk ∈ X )

is a multi-norm called the minimum multi-norm. The terminology minimum is
justified by (b).

Example 1.3. Let Λ be a non-empty set and let

{(‖ · ‖λ
k : k ∈ N and λ ∈ Λ)}

be the family of all multi-norms on {X k : k ∈ N}. For k ∈ N, we set

‖|(x1, · · · , xk)‖|k := sup
λ∈Λ

‖(x1, · · · , xk)‖λ
k (x1, · · · , xk ∈ X ).

Then the sequence (‖| · ‖|k : k ∈ N) is a multi-norm on {X k : k ∈ N}, which is called
the maximum multi-norm.

In the following, we need some fundamental ingredients which can be easily de-
duced from the triangle inequality for the norm ‖ · ‖k and (b).

Definition 1.4. Let ((X k, ‖ · ‖k) : k ∈ N) be a multi-normed space. A sequence
(xn) in X is a multi-null sequence if, for each ε > 0, there exists n0 ∈ N such that

sup
k∈N

‖(xn, · · · , xn+k−1)‖k < ε (n ≥ n0).

Let x ∈ X . We write that
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Lim
n→∞ xn = x

if (xn − x) is a multi-null sequence; in this case, we say that the sequence (xn) is
multi-convergent to x in X .

Definition 1.5. Let ((X k, ‖ · ‖k) : k ∈ N) be a multi-normed space. A sequence
{xn} in X is a multi-Cauchy sequence if, for each ε > 0, there exists n0 ∈ N such
that

sup
k∈N

‖(xm − xn, · · · , xm+k−1 − xn+k−1)‖k < ε (m,n ≥ n0).

We observe that if ((X k, ‖ · ‖k) : k ∈ N) is a multi-Banach space, then a multi-
Cauchy sequence is multi-convergent in X .

2. Hyers-Ulam Stability of Equation (1.2)
in Multi-normed Spaces

In this section, X and Y will be a complex linear space and a complex Banach
space, respectively. Given a function f : X → Y and α ∈ U = {z ∈ C : | z| = 1}, we
set

Dαf(x, y, z) := 3f
(αx + αy + αz

3

)
+ αf(x) + αf(y) + αf(z)

− 2
[
αf

(x + y

2

)
+ f

(αy + αz

2

)
+ f

(αz + αx

2

)]
.

Theorem 2.1. Let ((Yk, ‖ · ‖k) : k ∈ N) be a multi-Banach space. If δ ≥ 0 and the
function f : X → Y satisfies

(2.1) sup
k∈N

‖(D1f(x1, y1, z1), · · · , D1f(xk, yk, zk))‖k ≤ δ

for all x1, · · · , xk, y1, · · · , yk, z1, · · · , zk ∈ X , then there exists a unique additive map-
ping A : X → Y such that

(2.2) sup
k∈N

‖(f(x1)− f(0)−A(x1), · · · , f(xk)− f(0)−A(xk))‖k ≤ δ

3

for all x1, · · · , xk ∈ X .

Proof. Let g : X → Y be the function defined by g(x) := f(x)−f(0). Then g(0) = 0
and, since D1g(x, y, z) = D1f(x, y, z) for all x, y, z ∈ X , we have

(2.3) sup
k∈N

‖(D1g(x1, y1, z1), · · · , D1g(xk, yk, zk))‖k ≤ δ

for all x1, · · · , xk, y1, · · · , yk, z1, · · · , zk ∈ X .
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For each i = 1, 2, · · · , k, putting yi = xi and zi = −2xi in (2.3), we get

sup
k∈N

∥∥∥
(
g(−2x1)− 4g

(
− x1

2

)
, · · · , g(−2xk)− 4g

(
− xk

2

))∥∥∥
k
≤ δ

for all x1, · · · , xk ∈ X . Replacing xi by −2xi for each i = 1, 2, · · · , k in the above
relation yields

(2.4) sup
k∈N

‖(g(4x1)− 4g(x1), · · · , g(4xk)− 4g(xk))‖k ≤ δ

for all x1, · · · , xk ∈ X .
Next we prove by induction on n that for all x1, · · · , xk ∈ X it holds that

(2.5) sup
k∈N

‖(2−2ng(22nx1)− g(x1), · · · , 2−2ng(22nxk)− g(xk))‖k ≤ δ

n∑

j=1

2−2j

for all x1, · · · , xk ∈ X . Dividing both sides of (2.4) by 22 ensures the validity of (2.5)
for n = 1. Now, assume that the inequality (2.5) is true for some n ∈ N. Replacing
xi in (2.4) by 22nxi for each i = 1, 2, · · · , k and then dividing both sides of (2.4) by
22(n+1) yields

sup
k∈N

‖(2−2(n+1)g(22(n+1)x1)− 2−2ng(22nx1),

· · · , 2−2(n+1)g(22(n+1)xk)− 2−2ng(22nxk))‖k ≤ δ2−2(n+1)

for all x1, · · · , xk ∈ X and so

sup
k∈N

‖(2−2(n+1)g(22(n+1)x1)− g(x1), · · · , 2−2(n+1)g(22(n+1)xk)− g(xk))‖k

≤ sup
k∈N

‖(2−2(n+1)g(22(n+1)x1)− 2−2ng(22nx1),

· · · , 2−2(n+1)g(22(n+1)xk)− 2−2ng(22nxk))‖k

+ sup
k∈N

‖(2−2ng(22nx1)− g(x1), · · · , 2−2ng(22nxk)− g(xk))‖k

≤ δ2−2(n+1) + δ
n∑

j=1

2−2j = δ
n+1∑

j=1

2−2j

for all x1, · · · , xk ∈ X . This completes the proof of the inequality (2.5).
Let x1, x2, · · · , xk be any points in X . By virtue of (2.5), we have

sup
k∈N

‖(2−2ng(22nx1)− 2−2mg(22mx1), · · · , 2−2ng(22nxk)− 2−2mg(22mxk))‖k

≤ 2−2m sup
k∈N

‖(2−2(n−m)g(22(n−m) · 22mx1)− g(22mx1),

· · · , 2−2(n−m)g(22(n−m) · 22mxk)− g(22mxk))‖k
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≤ 2−2m δ
n−m∑

j=1

2−2j ≤ 2−2m δ

3
(m < n),

that is,

sup
k∈N

‖(2−2ng(22nx1)− 2−2mg(22mx1), · · · , 2−2ng(22nxk)− 2−2mg(22mxk))‖k(2.6)

≤ 2−2m δ

3
(m < n).

Let us fix x ∈ X . Then it follows from (2.6) that

sup
k∈N

‖(2−2ng(22nx)− 2−2mg(22mx),

· · · , 2−2(n+k−1)g(22(n+k−1)x)− 2−2(m+k−1)g(22(m+k−1)x))‖k

≤ sup
k∈N

∥∥∥
(
2−2ng(22nx)− 2−2mg(22mx),

· · · ,
1

22(k−1)

(
2−2ng(22n · 22(k−1)x)− 2−2mg(22m · 22(k−1)x)

))∥∥∥
k

≤ sup
k∈N

‖(2−2ng(22nx)− 2−2mg(22mx),

· · · , 2−2ng(22n · 22(k−1)x)− 2−2mg(22m · 22(k−1)x))‖k ≤ 2−2m δ

3
(m < n).

This inequality implies that {2−2ng(22nx)} is a multi-Cauchy sequence and so it is
multi-convergent in Y. Consequently, we can define the mapping A : X → Y by

A(x) := Lim
n→∞ 2−2ng(22nx).

Therefore, for any ε > 0, there exists n0 ∈ N such that

sup
k∈N

‖(2−2ng(22nx)−A(x), · · · , 2−2(n+k−1)g(22(n+k−1)x)−A(x))‖k < ε

for all n ≥ n0. In particular, by (b), we have

lim
n→∞ ‖2

−2ng(22nx)−A(x)‖ = 0,

say,

A(x) = lim
n→∞ 2−2ng(22nx)

for all x ∈ X .
Let x, y and z be any points in X . Putting x1 = · · · = xk = 22nx, y1 = · · · =

yk = 22ny and z1 = · · · = zk = 22nz in (2.3) and dividing both sides by 22n, we
obtain
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‖D1A(x, y, z)‖ = lim
n→∞ 2−2n‖D1g(22nx, 22ny, 22nz)‖

≤ lim
n→∞ 2−2nδ = 0.

Hence A satisfies (1.2) for all x, y, z ∈ X . Since A(0) = 0, it follows that A is
additive. Moreover, by passing to the limit in (2.5) when n →∞, we see that

sup
k∈N

‖(A(x1)− g(x1), · · · , A(xk)− g(xk))‖k ≤ δ

3

which means the inequality (2.2) for all x1, · · · , xk ∈ X .
Let A

′
: X → Y be another additive mapping satisfying (2.2). Using (2.2) and

(a), we get

‖A(x)−A
′
(x)‖ = 2−n‖A(2nx)−A

′
(2nx)‖

≤ 2−n(‖A(2nx)− f(2nx)− f(0)‖+ ‖f(2nx)− f(0)−A
′
(2nx)‖)

≤ 2−n 2
3

δ.

for all x ∈ X and n ∈ N. Thus we conclude that A(x) = A
′
(x) for all x ∈ X . This

proves the uniqueness of A. ¤

Theorem 2.2. Let ((Yk, ‖ · ‖k) : k ∈ N) be a multi-Banach space. If δ ≥ 0 and the
function f : X → Y satisfies

(2.7) sup
k∈N

‖(Dαf(x1, y1, z1), · · · , Dαf(xk, yk, zk))‖k ≤ δ

for all x1, · · · , xk, y1, · · · , yk, z1, · · · , zk ∈ X and for all α ∈ U , then there exists a
unique C-linear mapping A : X → Y satisfying the inequality (2.2).

Proof. Put α = 1 in (2.7). Then it follows from Theorem 2.1 that there exists a
unique additive mapping A : X → Y satisfying the inequality (2.2).

For each i = 1, 2, · · · , k, setting yi = xi = x and zi = −2x in (2.7) and then
considering (a), we get

(2.8)
∥∥∥3f(0) + αf(−2x)− 4f

(
− α

2
x
)∥∥∥ ≤ δ

for all x ∈ X . Put ε := δ+3‖f(0)‖. From (2.8) and the triangle inequality, it follows
that

(2.9)
∥∥∥αf(−2x)− 4f

(
− α

2
x
)∥∥∥ ≤ ε

for all x ∈ X . Substituting −2x for x in (2.9) yields

(2.10) ‖αf(4x)− 4f(αx)‖ ≤ ε
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for all x ∈ X . Using induction on n ∈ N with (2.10), we see that

(2.11) ‖αf(22nx)− 4f(22(n−1)αx)‖ ≤ ε

for all x ∈ X .
Now letting α = 1 in (2.11) and then replacing x by αx in the result, we obtain

(2.12) ‖f(22nαx)− 4f(22(n−1)αx)‖ ≤ ε

for all x ∈ X . By (2.11) and (2.12), we get

‖f(22nαx)− αf(22nx)‖ ≤ ‖f(22nαx)− 4f(22(n−1)αx)‖
+ ‖αf(22nx)− 4f(22(n−1)αx)‖ ≤ 2ε,

that is,

(2.13) ‖f(22nαx)− αf(22nx)‖ ≤ 2ε.

for all x ∈ X which implies

lim
n→∞ 2−2n‖f(22nαx)− αf(22nx)‖ = 0,

for all x ∈ X . Hence we conclude that

A(αx) = lim
n→∞ 2−2nf(22nαx) = lim

n→∞ 2−2nαf(22nx) = αA(x)

for all α ∈ U and x ∈ X .
Clearly, A(0x) = 0 = 0A(x) for all x ∈ X . Now, let λ ∈ C (λ 6= 0), and let

N ∈ N greater than |λ|. By applying a geometric argument, we see that there exists
λ1, λ2 ∈ U such that 2 λ

N = λ1 + λ2. By the additivity of A, we get A(1
2x) = 1

2A(x)
for all x ∈ X . Therefore

A(λx) = A

(
N

2
· 2 · λ

N
x

)
= NA

(
1
2
· 2 · λ

N
x

)
=

N

2
A((λ1 + λ2)x)

=
N

2
(λ1 + λ2)A(x) =

N

2
· 2 · λ

N
A(x) = λA(x)

for all x ∈ A, so that A is C-linear. ¤

3. Stability of Equation (1.2) in Multi-normed Modules

In this section, we extend the Hyers-Ulam stability of the Popoviciu’s functional
equation to multi-normed left modules over a normed algebra and obtain some
related results. For the sake of convenience, we use the same symbol ‖ · ‖ in order
to represent the norms on a normed algebra and a normed module.

Consider first some definitions and examples:
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Definition 3.1. Let (A, ‖ · ‖) be a normed algebra such that ((Ak, ‖ · ‖k) : k ∈ N)
is a multi-normed space. ((Ak, ‖ · ‖k) : k ∈ N) is called a multi-normed algebra if

‖(a1b1, · · · , akbk)‖k ≤ ‖(a1, · · · , ak)‖k ‖(b1, · · · , bk)‖k

for k ∈ N and a1, · · · , ak, b1, · · · , bk ∈ A. Furthermore, the multi-normed algebra
((Ak, ‖ · ‖k) : k ∈ N) is said to be a multi-Banach algebra if ((Ak, ‖ · ‖k) : k ∈ N) is a
multi-Banach space.

Example 3.2. Let p, q ∈ R with 1 ≤ p ≤ q < ∞ and A = `p. The algebra A is a
Banach sequence algebra with respect to coordinatewise multiplication of sequences
(see [4, Example 4.2.42]). Let (‖ · ‖k : k ∈ N) be the standard (p, q)-multi-norm on
{Ak : n ∈ N} (see [6]). Then ((Ak, ‖ · ‖k) : k ∈ N) is a multi-Banach algebra.

Definition 3.3. Let (A, ‖·‖) be a normed algebra. Let (M, ‖·‖) be a normed left A-
module such that ((Mk, ‖·‖k) : k ∈ N) is a multi-normed space. ((Mk, ‖·‖k) : k ∈ N)
is said to be a multi-normed left A-module if there exists a positive constant K such
that ‖(ax1, · · · , axk)‖k ≤ K‖a‖ ‖(x1, · · · , xk)‖k for all a ∈ A and x1, · · · , xk ∈ M.
Moreover, we says that the multi-normed left A-module ((Mk, ‖ · ‖k) : k ∈ N) is a
multi-Banach left A-module if ((Mk, ‖ · ‖k) : k ∈ N) is a multi-Banach space.

Example 3.4. Let (A, ‖ · ‖) be a normed algebra and ((Ak, ‖ · ‖k) : k ∈ N) a
multi-normed algebra. Then ((Ak, ‖ · ‖k) : k ∈ N) is a multi-normed left A-module.

Example 3.5. Let (A, ‖ · ‖) be a normed algebra and ((Ak, ‖ · ‖k) : k ∈ N) a
multi-normed algebra. Let I be a closed left ideal of A, let M = A/I, and let
a 7→ a + I denote the canonical mapping of A onto M. Then the normed linear
space (M, ‖ · ‖) becomes a normed left A-module with the module multiplication
given by ax = ab + I, where b ∈ x ∈ M, a ∈ A. Now, it is easy to see that
((Mk, ‖ · ‖k) : k ∈ N) is a multi-normed left A-module.

Definition 3.6. Let A be an algebra. A left A-module M is said to be unitary if
A has a unit element e and ex = x for all x ∈M.

Throughout this section, let (A, ‖ ·‖) be a unital normed algebra with unit e, M1

a unitary left A-module and (M2, ‖ · ‖) a unitary Banach left A-module.
Recall [16] that an additive mapping f : M1 → M2 is said to be A-linear if

f(ax) = af(x) for all a ∈ A and x ∈M1.
Given a function f : M1 →M2 and a ∈ A with ‖a‖ = 1, we put
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Daf(x, y, z) := 3f

(
ax + ay + az

3

)
+ af(x) + af(y) + af(z)

− 2
[
af

(
x + y

2

)
+ f

(
ay + az

2

)
+ f

(
az + ax

2

)]

for all x, y, z ∈M1.

Theorem 3.7. Let ((Mk
2, ‖ · ‖k) : k ∈ N) be a multi-Banach left A-module. If δ ≥ 0

and the function f : M1 →M2 satisfies

(3.1) sup
k∈N

‖(Daf(x1, y1, z1), · · · , Daf(xk, yk, zk))‖k ≤ δ

for all x1, · · · , xk, y1, · · · , yk, z1, · · · , zk ∈ M1 and for all a ∈ A with ‖a‖ = 1, then
there exists a unique A-linear mapping A : M1 →M2 satisfying the inequality (2.2).

Proof. Using Theorem 2.2, it follows from the inequality (3.1) for a = αe, α ∈ U,

that there exists a unique C-linear mapping A : M1 →M2 defined by

A(x) = lim
n→∞ 2−2nf(22nx)

for all x ∈M1 such that the inequality (2.2) is valid.
The substitution a for α in (2.8)∼(2.13) and the same process yield

(3.2) ‖f(22nax)− af(22nx)‖ ≤ 2ε

for all x ∈M1 which gives

lim
n→∞ 2−2n‖f(22nax)− af(22nx)‖ = 0,

for all x ∈M1. Thus, we see that

A(ax) = lim
n→∞ 2−2nf(22nax) = lim

n→∞ 2−2naf(22nx) = aA(x)

for all a ∈ A with ‖a‖ = 1 and all x ∈M1. Since A is C-linear and A(ax) = aA(x)
for each element a ∈ A with ‖a‖ = 1, we have, for all a ∈ A \ {0} and all x ∈M1,

A(ax) = A

(
‖a‖ a

‖a‖x

)
= ‖a‖A

(
a

‖a‖x

)
= ‖a‖ a

‖a‖ A(x) = aA(x).

Therefore, the unique C-linear mapping A : M1 →M2 is an A-linear mapping, as
desired. ¤

Theorem 3.8. Let A be a Banach ∗-algebra, pos(A) the set of positive elements of
A and ((Mk

2, ‖·‖k) : k ∈ N) a multi-Banach left A-module. If the function f : M1 →
M2 satisfies the inequality (3.1) for all x1, · · · , xk, y1, · · · , yk, z1, · · · , zk ∈ M1 and
all a ∈ pos(A) with ‖a‖ = 1 and a = i, then there exists a unique A-linear mapping
A : M1 →M2 satisfying the inequality (2.2).
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Proof. By the same reasoning as in the proof of Theorem 2.2, there exists a unique
additive mapping A : M1 → M2 defined by A(x) = limn→∞ 2−2nf(22nx) for all
x ∈ M1 such that the inequality (2.2) holds. Following the same method as in the
proof of Theorem 3.7, we see that

A(ax) = lim
n→∞ 2−2nf(22nax) = lim

n→∞ 2−2naf(22nx) = aA(x)

for all a ∈ pos(A) with ‖a‖ = 1 or a = i, and x ∈ M1. For any element a ∈ A,
a = a1 + ia2, where a1 = a+a∗

2 and a2 = a−a∗
2i are self-adjoint elements, furthermore,

a = a1
+ − a1

− + ia2
+ − ia2

−, where a1
+, a1

−, a2
+, a2

− ∈ pos(A) (see [2, Lemma
38.8]). Therefore, we have

A(ax) = A(a1
+x− a1

−x + ia2
+x− ia2

−x)

= a1
+A(x)− a1

−A(x) + a2
+A(ix)− a2

−A(ix)

= a1
+A(x)− a1

−A(x) + ia2
+A(x)− ia2

−A(x)

= (a1
+ − a1

− + ia2
+ − ia2

−)A(x)

= aA(x)

for all a ∈ A and all x ∈M1 which completes the proof of the theorem. ¤
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