ON THE STABILITY OF A JENSEN TYPE FUNCTIONAL EQUATION IN MULTI-NORMED SPACES

Kyoo-Hong Park a and Yong-Soo Jung b,*

ABSTRACT. In this paper we investigate the Hyers-Ulam stability of a Jensen type functional equation in multi-normed spaces and then extend the result to multi-normed left modules over a normed algebra \mathcal{A} .

1. Introduction

The study of stability problems originated from a question by S.M. Ulam [21] in 1940: Under what condition does there exist a homomorphism near an approximate homomorphism? In 1941, D.H. Hyers [8] gave a first affirmative answer to the question of Ulam for Banach spaces, which states that if $\delta > 0$ and $f: \mathcal{X} \to \mathcal{Y}$ is a mapping with \mathcal{X} a normed space, \mathcal{Y} a Banach space such that

$$||f(x+y) - f(x) - f(y)|| \le \delta$$

for all $x, y \in \mathcal{X}$, then there exists a unique additive mapping $T: \mathcal{X} \to \mathcal{Y}$ such that

$$||f(x) - T(x)|| \le \delta$$

for all $x \in \mathcal{X}$.

A generalized version of the theorem of Hyers for approximately additive mappings was first given by T. Aoki [1] in 1950. In 1978, Th.M. Rassias [18] independently introduced the unbounded Cauchy difference and was the first to prove the stability of the linear mapping between Banach spaces

During the past decades, a number of results concerning the stability have been obtained by various ways, and been applied to a number of functional equations and mappings [3, 7, 10, 19].

Received by the editors February 25, 2011. Revised April 26, 2011. Accepted April 29, 2011. 2000 Mathematics Subject Classification. 39B52, 39B72, 39B82.

 $[\]it Key\ words\ and\ phrases.$ Hyers-Ulam stability, multi-normed space, multi-normed module, Popoviciu's functional equation.

^{*}Corresponding author.

The stability of the classical Jensen functional equation

$$(1.1) 2f\left(\frac{x+y}{2}\right) = f(x) + f(y)$$

and of its generalizations were studied by numerous researchers (cf., e.g., [9, 11, 12, 15]).

T. Trif [20] studied the generalized Hyers-Ulam stability of the Jensen type functional equation for normed spaces (or is called the Popoviciu functional equation from [17]):

(1.2)
$$3f\left(\frac{x+y+z}{3}\right) + f(x) + f(y) + f(z)$$
$$= 2\left[f\left(\frac{x+y}{2}\right) + f\left(\frac{y+z}{2}\right) + f\left(\frac{z+x}{2}\right)\right].$$

In view of [20], we note that the Popoviciu functional equation (1.2) is equivalent to the Jensen functional equation (1.1).

In this paper, using some ideas from the earlier works [14, 16], we investigate the stability of the Popoviciu functional equation in multi-normed spaces and further, in multi-normed left module over normed algebra.

The notion of multi-normed space was introduced by H.G. Dales and M.E. Polyakov (see [5, 6, 13, 14]). This concept is somewhat similar to operator sequence space and has some connections with operator spaces and Banach lattices. Motivations for the study of multi-normed spaces and many examples were given in [6].

Let \mathbb{C}, \mathbb{R} and \mathbb{N} be the sets of complex, real numbers and positive integers, respectively. Let \mathcal{X} be a linear space over \mathbb{C} . For each $k \in \mathbb{N}$, we denote by \mathcal{X}^k the linear space $\mathcal{X} \oplus \cdots \oplus \mathcal{X}$ consisting of k-tuples (x_1, \cdots, x_k) , where $x_1, \cdots, x_k \in \mathcal{X}$. The linear operations on \mathcal{X}^k are defined coordinatewise. The zero element of either \mathcal{X} or \mathcal{X}^k is denoted by 0. We denote by \mathbb{N}_k the set $\{1, 2, 3, \cdots, k\}$ and by G_k the group of permutations on k symbols.

Definition 1.1. A multi-norm on $\{\mathcal{X}^k : k \in \mathbb{N}\}$ is a sequence

$$(\|\cdot\|_k) = (\|\cdot\|_k : k \in \mathbb{N})$$

such that $\|\cdot\|_k$ is a norm on \mathcal{X}^k for each $k \in \mathbb{N}$, such that $\|x\|_1 = \|x\|$ for each $x \in \mathcal{X}$, and such that for each $k \in \mathbb{N}$ $(k \ge 2)$, the following axioms are satisfied:

(i)
$$||x_{\sigma(1)}, \dots, x_{\sigma(k)}||_k = ||(x_1, \dots, x_k)||_k \quad (\sigma \in G_k; \ x_1, \dots, x_k \in \mathcal{X});$$

(ii)
$$\|(\alpha_1 x_1, \dots, \alpha_k x_k)\|_k \le (\max_{i \in \mathbb{N}_k} |\alpha_i|) \|(x_1, \dots, x_k)\|_k$$

$$(\alpha_1, \cdots, \alpha_k \in \mathbb{C}; \ x_1, \cdots, x_k \in \mathcal{X});$$

(iii)
$$\|(x_1,\dots,x_{k-1},0)\|_k = \|(x_1,\dots,x_{k-1})\|_{k-1} \quad (x_1,\dots,x_{k-1}\in\mathcal{X});$$

(iv)
$$\|(x_1, \dots, x_{k-1}, x_{k-1})\|_k = \|(x_1, \dots, x_{k-1})\|_{k-1} \quad (x_1, \dots, x_{k-1} \in \mathcal{X}).$$

In this case, we say that $((\mathcal{X}^k, \|\cdot\|_k) : k \in \mathbb{N})$ is a multi-normed space.

Suppose that $((\mathcal{X}^k, \|\cdot\|_k) : k \in \mathbb{N})$ is a multi-normed space and $k \in \mathbb{N}$. It is easy to show that

(a)
$$||(x, \dots, x)||_k = ||x||$$
 $(x \in \mathcal{X});$

(a)
$$\|(x, \dots, x)\|_k = \|x\| \quad (x \in \mathcal{X});$$

(b) $\max_{i \in \mathbb{N}_k} \|x_i\| \le \|(x_1, \dots, x_k)\|_k \le \sum_{i=1}^k \|x_i\| \le k \max_{i \in \mathbb{N}_k} \|x_i\| \quad (x_1, \dots, x_k \in \mathcal{X}).$

It follows from (b) that if $(\mathcal{X}, \|\cdot\|)$ is a Banach space, then $(\mathcal{X}^k, \|\cdot\|_k)$ is a Banach space for each $k \in \mathbb{N}$; in this case, $((\mathcal{X}^k, \|\cdot\|_k) : k \in \mathbb{N})$ is said to be a multi-Banach space.

Now we recall two important examples of multi-norms for an arbitrary normed space \mathcal{X} (see, for details, [6]).

Example 1.2. The sequence $(\|\cdot\|_k : k \in \mathbb{N})$ on $\{\mathcal{X}^k : k \in \mathbb{N}\}$ defined by

$$\|(x_1,\cdots,x_k)\|_k := \max_{i\in\mathbb{N}_k} \|x_i\| \quad (x_1,\cdots,x_k\in\mathcal{X})$$

is a multi-norm called the minimum multi-norm. The terminology minimum is justified by (b).

Example 1.3. Let Λ be a non-empty set and let

$$\{(\|\cdot\|_k^{\lambda}:k\in\mathbb{N} \text{ and } \lambda\in\Lambda)\}$$

be the family of all multi-norms on $\{\mathcal{X}^k : k \in \mathbb{N}\}$. For $k \in \mathbb{N}$, we set

$$\||(x_1, \dots, x_k)\||_k := \sup_{\lambda \in \Lambda} \|(x_1, \dots, x_k)\|_k^{\lambda} \quad (x_1, \dots, x_k \in \mathcal{X}).$$

Then the sequence $(\||\cdot\||_k : k \in \mathbb{N})$ is a multi-norm on $\{\mathcal{X}^k : k \in \mathbb{N}\}$, which is called the maximum multi-norm.

In the following, we need some fundamental ingredients which can be easily deduced from the triangle inequality for the norm $\|\cdot\|_k$ and (b).

Definition 1.4. Let $((\mathcal{X}^k, \|\cdot\|_k) : k \in \mathbb{N})$ be a multi-normed space. A sequence (x_n) in \mathcal{X} is a multi-null sequence if, for each $\varepsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that

$$\sup_{k\in\mathbb{N}} \|(x_n,\cdots,x_{n+k-1})\|_k < \varepsilon \quad (n\geq n_0).$$

Let $x \in \mathcal{X}$. We write that

$$\lim_{n \to \infty} x_n = x$$

if $(x_n - x)$ is a multi-null sequence; in this case, we say that the sequence (x_n) is multi-convergent to x in \mathcal{X} .

Definition 1.5. Let $((\mathcal{X}^k, \|\cdot\|_k) : k \in \mathbb{N})$ be a multi-normed space. A sequence $\{x_n\}$ in \mathcal{X} is a multi-Cauchy sequence if, for each $\varepsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that

$$\sup_{k \in \mathbb{N}} \|(x_m - x_n, \cdots, x_{m+k-1} - x_{n+k-1})\|_k < \varepsilon \quad (m, n \ge n_0).$$

We observe that if $((\mathcal{X}^k, \|\cdot\|_k) : k \in \mathbb{N})$ is a multi-Banach space, then a multi-Cauchy sequence is multi-convergent in \mathcal{X} .

2. Hyers-Ulam Stability of Equation (1.2) in Multi-normed Spaces

In this section, \mathcal{X} and \mathcal{Y} will be a complex linear space and a complex Banach space, respectively. Given a function $f: \mathcal{X} \to \mathcal{Y}$ and $\alpha \in U = \{z \in \mathbb{C} : |z| = 1\}$, we set

$$D_{\alpha}f(x,y,z) := 3f\left(\frac{\alpha x + \alpha y + \alpha z}{3}\right) + \alpha f(x) + \alpha f(y) + \alpha f(z)$$
$$-2\left[\alpha f\left(\frac{x+y}{2}\right) + f\left(\frac{\alpha y + \alpha z}{2}\right) + f\left(\frac{\alpha z + \alpha x}{2}\right)\right].$$

Theorem 2.1. Let $((\mathcal{Y}^k, \|\cdot\|_k) : k \in \mathbb{N})$ be a multi-Banach space. If $\delta \geq 0$ and the function $f : \mathcal{X} \to \mathcal{Y}$ satisfies

(2.1)
$$\sup_{k \in \mathbb{N}} \|(D_1 f(x_1, y_1, z_1), \cdots, D_1 f(x_k, y_k, z_k))\|_k \le \delta$$

for all $x_1, \dots, x_k, y_1, \dots, y_k, z_1, \dots, z_k \in \mathcal{X}$, then there exists a unique additive mapping $A: \mathcal{X} \to \mathcal{Y}$ such that

(2.2)
$$\sup_{k \in \mathbb{N}} \|(f(x_1) - f(0) - A(x_1), \cdots, f(x_k) - f(0) - A(x_k))\|_k \le \frac{\delta}{3}$$

for all $x_1, \dots, x_k \in \mathcal{X}$.

Proof. Let $g: \mathcal{X} \to \mathcal{Y}$ be the function defined by g(x) := f(x) - f(0). Then g(0) = 0 and, since $D_1g(x, y, z) = D_1f(x, y, z)$ for all $x, y, z \in \mathcal{X}$, we have

(2.3)
$$\sup_{k \in \mathbb{N}} \| (D_1 g(x_1, y_1, z_1), \cdots, D_1 g(x_k, y_k, z_k)) \|_k \le \delta$$

for all $x_1, \dots, x_k, y_1, \dots, y_k, z_1, \dots, z_k \in \mathcal{X}$.

For each $i = 1, 2, \dots, k$, putting $y_i = x_i$ and $z_i = -2x_i$ in (2.3), we get

$$\sup_{k\in\mathbb{N}} \left\| \left(g(-2x_1) - 4g\left(-\frac{x_1}{2} \right), \cdots, g(-2x_k) - 4g\left(-\frac{x_k}{2} \right) \right) \right\|_k \le \delta$$

for all $x_1, \dots, x_k \in \mathcal{X}$. Replacing x_i by $-2x_i$ for each $i = 1, 2, \dots, k$ in the above relation yields

(2.4)
$$\sup_{k \in \mathbb{N}} \|(g(4x_1) - 4g(x_1), \cdots, g(4x_k) - 4g(x_k))\|_k \le \delta$$

for all $x_1, \dots, x_k \in \mathcal{X}$.

Next we prove by induction on n that for all $x_1, \dots, x_k \in \mathcal{X}$ it holds that

$$(2.5) \qquad \sup_{k \in \mathbb{N}} \| (2^{-2n} g(2^{2n} x_1) - g(x_1), \cdots, 2^{-2n} g(2^{2n} x_k) - g(x_k)) \|_k \le \delta \sum_{i=1}^n 2^{-2i}$$

for all $x_1, \dots, x_k \in \mathcal{X}$. Dividing both sides of (2.4) by 2^2 ensures the validity of (2.5) for n = 1. Now, assume that the inequality (2.5) is true for some $n \in \mathbb{N}$. Replacing x_i in (2.4) by $2^{2n}x_i$ for each $i = 1, 2, \dots, k$ and then dividing both sides of (2.4) by $2^{2(n+1)}$ yields

$$\sup_{k \in \mathbb{N}} \| (2^{-2(n+1)}g(2^{2(n+1)}x_1) - 2^{-2n}g(2^{2n}x_1), \\ \cdots, 2^{-2(n+1)}g(2^{2(n+1)}x_k) - 2^{-2n}g(2^{2n}x_k)) \|_k \le \delta 2^{-2(n+1)}$$

for all $x_1, \dots, x_k \in \mathcal{X}$ and so

$$\begin{split} \sup_{k \in \mathbb{N}} & \| (2^{-2(n+1)}g(2^{2(n+1)}x_1) - g(x_1), \cdots, 2^{-2(n+1)}g(2^{2(n+1)}x_k) - g(x_k)) \|_k \\ \leq \sup_{k \in \mathbb{N}} & \| (2^{-2(n+1)}g(2^{2(n+1)}x_1) - 2^{-2n}g(2^{2n}x_1), \\ & \cdots, 2^{-2(n+1)}g(2^{2(n+1)}x_k) - 2^{-2n}g(2^{2n}x_k)) \|_k \\ & + \sup_{k \in \mathbb{N}} & \| (2^{-2n}g(2^{2n}x_1) - g(x_1), \cdots, 2^{-2n}g(2^{2n}x_k) - g(x_k)) \|_k \\ \leq \delta 2^{-2(n+1)} + \delta \sum_{j=1}^n 2^{-2j} = \delta \sum_{j=1}^{n+1} 2^{-2j} \end{split}$$

for all $x_1, \dots, x_k \in \mathcal{X}$. This completes the proof of the inequality (2.5).

Let x_1, x_2, \dots, x_k be any points in \mathcal{X} . By virtue of (2.5), we have

$$\sup_{k \in \mathbb{N}} \| (2^{-2n} g(2^{2n} x_1) - 2^{-2m} g(2^{2m} x_1), \cdots, 2^{-2n} g(2^{2n} x_k) - 2^{-2m} g(2^{2m} x_k)) \|_{k}
\leq 2^{-2m} \sup_{k \in \mathbb{N}} \| (2^{-2(n-m)} g(2^{2(n-m)} \cdot 2^{2m} x_1) - g(2^{2m} x_1),
\cdots, 2^{-2(n-m)} g(2^{2(n-m)} \cdot 2^{2m} x_k) - g(2^{2m} x_k)) \|_{k}$$

$$\leq 2^{-2m} \delta \sum_{j=1}^{n-m} 2^{-2j} \leq 2^{-2m} \frac{\delta}{3} \quad (m < n),$$

that is,

(2.6)
$$\sup_{k \in \mathbb{N}} \| (2^{-2n} g(2^{2n} x_1) - 2^{-2m} g(2^{2m} x_1), \cdots, 2^{-2n} g(2^{2n} x_k) - 2^{-2m} g(2^{2m} x_k)) \|_k$$

$$\leq 2^{-2m} \frac{\delta}{3} \quad (m < n).$$

Let us fix $x \in \mathcal{X}$. Then it follows from (2.6) that

$$\begin{split} \sup_{k \in \mathbb{N}} & \| (2^{-2n} g(2^{2n} x) - 2^{-2m} g(2^{2m} x), \\ & \cdots, 2^{-2(n+k-1)} g(2^{2(n+k-1)} x) - 2^{-2(m+k-1)} g(2^{2(m+k-1)} x)) \|_k \\ & \leq \sup_{k \in \mathbb{N}} \left\| \left(2^{-2n} g(2^{2n} x) - 2^{-2m} g(2^{2m} x), \\ & \cdots, \frac{1}{2^{2(k-1)}} \left(2^{-2n} g(2^{2n} \cdot 2^{2(k-1)} x) - 2^{-2m} g(2^{2m} \cdot 2^{2(k-1)} x) \right) \right) \right\|_k \\ & \leq \sup_{k \in \mathbb{N}} \| (2^{-2n} g(2^{2n} x) - 2^{-2m} g(2^{2m} x), \\ & \cdots, 2^{-2n} g(2^{2n} \cdot 2^{2(k-1)} x) - 2^{-2m} g(2^{2m} \cdot 2^{2(k-1)} x)) \|_k \leq 2^{-2m} \frac{\delta}{3} \quad (m < n). \end{split}$$

This inequality implies that $\{2^{-2n}g(2^{2n}x)\}$ is a multi-Cauchy sequence and so it is multi-convergent in \mathcal{Y} . Consequently, we can define the mapping $A: \mathcal{X} \to \mathcal{Y}$ by

$$A(x) := \lim_{n \to \infty} 2^{-2n} g(2^{2n} x).$$

Therefore, for any $\varepsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that

$$\sup_{k \in \mathbb{N}} \| (2^{-2n} g(2^{2n} x) - A(x), \cdots, 2^{-2(n+k-1)} g(2^{2(n+k-1)} x) - A(x)) \|_k < \varepsilon$$

for all $n \ge n_0$. In particular, by (b), we have

$$\lim_{n \to \infty} \|2^{-2n} g(2^{2n} x) - A(x)\| = 0,$$

say,

$$A(x) = \lim_{n \to \infty} 2^{-2n} g(2^{2n} x)$$

for all $x \in \mathcal{X}$.

Let x, y and z be any points in \mathcal{X} . Putting $x_1 = \cdots = x_k = 2^{2n}x$, $y_1 = \cdots = y_k = 2^{2n}y$ and $z_1 = \cdots = z_k = 2^{2n}z$ in (2.3) and dividing both sides by 2^{2n} , we obtain

$$||D_1 A(x, y, z)|| = \lim_{n \to \infty} 2^{-2n} ||D_1 g(2^{2n} x, 2^{2n} y, 2^{2n} z)||$$

$$\leq \lim_{n \to \infty} 2^{-2n} \delta = 0.$$

Hence A satisfies (1.2) for all $x, y, z \in \mathcal{X}$. Since A(0) = 0, it follows that A is additive. Moreover, by passing to the limit in (2.5) when $n \to \infty$, we see that

$$\sup_{k \in \mathbb{N}} \|(A(x_1) - g(x_1), \cdots, A(x_k) - g(x_k))\|_k \le \frac{\delta}{3}$$

which means the inequality (2.2) for all $x_1, \dots, x_k \in \mathcal{X}$.

Let $A': \mathcal{X} \to \mathcal{Y}$ be another additive mapping satisfying (2.2). Using (2.2) and (a), we get

$$||A(x) - A'(x)|| = 2^{-n} ||A(2^n x) - A'(2^n x)||$$

$$\leq 2^{-n} (||A(2^n x) - f(2^n x) - f(0)|| + ||f(2^n x) - f(0) - A'(2^n x)||)$$

$$\leq 2^{-n} \frac{2}{3} \delta.$$

for all $x \in \mathcal{X}$ and $n \in \mathbb{N}$. Thus we conclude that A(x) = A'(x) for all $x \in \mathcal{X}$. This proves the uniqueness of A.

Theorem 2.2. Let $((\mathcal{Y}^k, \|\cdot\|_k) : k \in \mathbb{N})$ be a multi-Banach space. If $\delta \geq 0$ and the function $f: \mathcal{X} \to \mathcal{Y}$ satisfies

(2.7)
$$\sup_{k \in \mathbb{N}} \| (D_{\alpha} f(x_1, y_1, z_1), \cdots, D_{\alpha} f(x_k, y_k, z_k)) \|_{k} \le \delta$$

for all $x_1, \dots, x_k, y_1, \dots, y_k, z_1, \dots, z_k \in \mathcal{X}$ and for all $\alpha \in U$, then there exists a unique \mathbb{C} -linear mapping $A: \mathcal{X} \to \mathcal{Y}$ satisfying the inequality (2.2).

Proof. Put $\alpha = 1$ in (2.7). Then it follows from Theorem 2.1 that there exists a unique additive mapping $A: \mathcal{X} \to \mathcal{Y}$ satisfying the inequality (2.2).

For each $i=1,2,\cdots,k$, setting $y_i=x_i=x$ and $z_i=-2x$ in (2.7) and then considering (a), we get

(2.8)
$$\left\| 3f(0) + \alpha f(-2x) - 4f\left(-\frac{\alpha}{2}x\right) \right\| \le \delta$$

for all $x \in \mathcal{X}$. Put $\varepsilon := \delta + 3||f(0)||$. From (2.8) and the triangle inequality, it follows that

(2.9)
$$\left\| \alpha f(-2x) - 4f\left(-\frac{\alpha}{2}x\right) \right\| \le \varepsilon$$

for all $x \in \mathcal{X}$. Substituting -2x for x in (2.9) yields

for all $x \in \mathcal{X}$. Using induction on $n \in \mathbb{N}$ with (2.10), we see that

$$\|\alpha f(2^{2n}x) - 4f(2^{2(n-1)}\alpha x)\| \le \varepsilon$$

for all $x \in \mathcal{X}$.

Now letting $\alpha = 1$ in (2.11) and then replacing x by αx in the result, we obtain

$$||f(2^{2n}\alpha x) - 4f(2^{2(n-1)}\alpha x)|| \le \varepsilon$$

for all $x \in \mathcal{X}$. By (2.11) and (2.12), we get

$$||f(2^{2n}\alpha x) - \alpha f(2^{2n}x)|| \le ||f(2^{2n}\alpha x) - 4f(2^{2(n-1)}\alpha x)|| + ||\alpha f(2^{2n}x) - 4f(2^{2(n-1)}\alpha x)|| \le 2\varepsilon,$$

that is,

$$(2.13) ||f(2^{2n}\alpha x) - \alpha f(2^{2n}x)|| \le 2\varepsilon.$$

for all $x \in \mathcal{X}$ which implies

$$\lim_{n \to \infty} 2^{-2n} \| f(2^{2n} \alpha x) - \alpha f(2^{2n} x) \| = 0,$$

for all $x \in \mathcal{X}$. Hence we conclude that

$$A(\alpha x) = \lim_{n \to \infty} 2^{-2n} f(2^{2n} \alpha x) = \lim_{n \to \infty} 2^{-2n} \alpha f(2^{2n} x) = \alpha A(x)$$

for all $\alpha \in U$ and $x \in \mathcal{X}$.

Clearly, A(0x) = 0 = 0A(x) for all $x \in \mathcal{X}$. Now, let $\lambda \in \mathbb{C}$ ($\lambda \neq 0$), and let $N \in \mathbb{N}$ greater than $|\lambda|$. By applying a geometric argument, we see that there exists $\lambda_1, \lambda_2 \in U$ such that $2\frac{\lambda}{N} = \lambda_1 + \lambda_2$. By the additivity of A, we get $A(\frac{1}{2}x) = \frac{1}{2}A(x)$ for all $x \in \mathcal{X}$. Therefore

$$A(\lambda x) = A\left(\frac{N}{2} \cdot 2 \cdot \frac{\lambda}{N}x\right) = NA\left(\frac{1}{2} \cdot 2 \cdot \frac{\lambda}{N}x\right) = \frac{N}{2}A((\lambda_1 + \lambda_2)x)$$
$$= \frac{N}{2}(\lambda_1 + \lambda_2)A(x) = \frac{N}{2} \cdot 2 \cdot \frac{\lambda}{N}A(x) = \lambda A(x)$$

for all $x \in \mathcal{A}$, so that A is C-linear.

3. Stability of Equation (1.2) in Multi-normed Modules

In this section, we extend the Hyers-Ulam stability of the Popoviciu's functional equation to multi-normed left modules over a normed algebra and obtain some related results. For the sake of convenience, we use the same symbol $\|\cdot\|$ in order to represent the norms on a normed algebra and a normed module.

Consider first some definitions and examples:

Definition 3.1. Let $(\mathcal{A}, \|\cdot\|)$ be a normed algebra such that $((\mathcal{A}^k, \|\cdot\|_k) : k \in \mathbb{N})$ is a multi-normed space. $((\mathcal{A}^k, \|\cdot\|_k) : k \in \mathbb{N})$ is called a *multi-normed algebra* if

$$\|(a_1b_1,\cdots,a_kb_k)\|_k \leq \|(a_1,\cdots,a_k)\|_k \|(b_1,\cdots,b_k)\|_k$$

for $k \in \mathbb{N}$ and $a_1, \dots, a_k, b_1, \dots, b_k \in \mathcal{A}$. Furthermore, the multi-normed algebra $((\mathcal{A}^k, \|\cdot\|_k) : k \in \mathbb{N})$ is said to be a multi-Banach algebra if $((\mathcal{A}^k, \|\cdot\|_k) : k \in \mathbb{N})$ is a multi-Banach space.

Example 3.2. Let $p, q \in \mathbb{R}$ with $1 \leq p \leq q < \infty$ and $\mathcal{A} = \ell^p$. The algebra \mathcal{A} is a Banach sequence algebra with respect to coordinatewise multiplication of sequences (see [4, Example 4.2.42]). Let $(\|\cdot\|_k : k \in \mathbb{N})$ be the standard (p,q)-multi-norm on $\{A^k : n \in \mathbb{N}\}$ (see [6]). Then $((\mathcal{A}^k, \|\cdot\|_k) : k \in \mathbb{N})$ is a multi-Banach algebra.

Definition 3.3. Let $(\mathcal{A}, \|\cdot\|)$ be a normed algebra. Let $(\mathcal{M}, \|\cdot\|)$ be a normed left \mathcal{A} -module such that $((\mathcal{M}^k, \|\cdot\|_k) : k \in \mathbb{N})$ is a multi-normed space. $((\mathcal{M}^k, \|\cdot\|_k) : k \in \mathbb{N})$ is said to be a multi-normed left \mathcal{A} -module if there exists a positive constant K such that $\|(ax_1, \dots, ax_k)\|_k \leq K\|a\| \|(x_1, \dots, x_k)\|_k$ for all $a \in \mathcal{A}$ and $x_1, \dots, x_k \in \mathcal{M}$. Moreover, we says that the multi-normed left \mathcal{A} -module $((\mathcal{M}^k, \|\cdot\|_k) : k \in \mathbb{N})$ is a multi-Banach left \mathcal{A} -module if $((\mathcal{M}^k, \|\cdot\|_k) : k \in \mathbb{N})$ is a multi-Banach space.

Example 3.4. Let $(\mathcal{A}, \|\cdot\|)$ be a normed algebra and $((\mathcal{A}^k, \|\cdot\|_k) : k \in \mathbb{N})$ a multi-normed algebra. Then $((\mathcal{A}^k, \|\cdot\|_k) : k \in \mathbb{N})$ is a multi-normed left \mathcal{A} -module.

Example 3.5. Let $(\mathcal{A}, \|\cdot\|)$ be a normed algebra and $((\mathcal{A}^k, \|\cdot\|_k) : k \in \mathbb{N})$ a multi-normed algebra. Let I be a closed left ideal of \mathcal{A} , let $\mathcal{M} = \mathcal{A}/I$, and let $a \mapsto a + I$ denote the canonical mapping of \mathcal{A} onto \mathcal{M} . Then the normed linear space $(\mathcal{M}, \|\cdot\|)$ becomes a normed left \mathcal{A} -module with the module multiplication given by ax = ab + I, where $b \in x \in \mathcal{M}, a \in \mathcal{A}$. Now, it is easy to see that $((\mathcal{M}^k, \|\cdot\|_k) : k \in \mathbb{N})$ is a multi-normed left \mathcal{A} -module.

Definition 3.6. Let \mathcal{A} be an algebra. A left \mathcal{A} -module \mathcal{M} is said to be *unitary* if \mathcal{A} has a unit element e and ex = x for all $x \in \mathcal{M}$.

Throughout this section, let $(\mathcal{A}, \|\cdot\|)$ be a unital normed algebra with unit e, \mathcal{M}_1 a unitary left \mathcal{A} -module and $(\mathcal{M}_2, \|\cdot\|)$ a unitary Banach left \mathcal{A} -module.

Recall [16] that an additive mapping $f: \mathcal{M}_1 \to \mathcal{M}_2$ is said to be \mathcal{A} -linear if f(ax) = af(x) for all $a \in \mathcal{A}$ and $x \in \mathcal{M}_1$.

Given a function $f: \mathcal{M}_1 \to \mathcal{M}_2$ and $a \in \mathcal{A}$ with ||a|| = 1, we put

$$D_a f(x, y, z) := 3f\left(\frac{ax + ay + az}{3}\right) + af(x) + af(y) + af(z)$$
$$-2\left[af\left(\frac{x + y}{2}\right) + f\left(\frac{ay + az}{2}\right) + f\left(\frac{az + ax}{2}\right)\right]$$

for all $x, y, z \in \mathcal{M}_1$.

Theorem 3.7. Let $((\mathcal{M}_2^k, \|\cdot\|_k) : k \in \mathbb{N})$ be a multi-Banach left A-module. If $\delta \geq 0$ and the function $f : \mathcal{M}_1 \to \mathcal{M}_2$ satisfies

(3.1)
$$\sup_{k \in \mathbb{N}} \|(D_a f(x_1, y_1, z_1), \cdots, D_a f(x_k, y_k, z_k))\|_{k} \le \delta$$

for all $x_1, \dots, x_k, y_1, \dots, y_k, z_1, \dots, z_k \in \mathcal{M}_1$ and for all $a \in \mathcal{A}$ with ||a|| = 1, then there exists a unique \mathcal{A} -linear mapping $A : \mathcal{M}_1 \to \mathcal{M}_2$ satisfying the inequality (2.2).

Proof. Using Theorem 2.2, it follows from the inequality (3.1) for $a = \alpha e$, $\alpha \in U$, that there exists a unique \mathbb{C} -linear mapping $A : \mathcal{M}_1 \to \mathcal{M}_2$ defined by

$$A(x) = \lim_{n \to \infty} 2^{-2n} f(2^{2n} x)$$

for all $x \in \mathcal{M}_1$ such that the inequality (2.2) is valid.

The substitution a for α in (2.8) \sim (2.13) and the same process yield

(3.2)
$$||f(2^{2n}ax) - af(2^{2n}x)|| \le 2\varepsilon$$

for all $x \in \mathcal{M}_1$ which gives

$$\lim_{n \to \infty} 2^{-2n} \| f(2^{2n} ax) - a f(2^{2n} x) \| = 0,$$

for all $x \in \mathcal{M}_1$. Thus, we see that

$$A(ax) = \lim_{n \to \infty} 2^{-2n} f(2^{2n} ax) = \lim_{n \to \infty} 2^{-2n} a f(2^{2n} x) = aA(x)$$

for all $a \in \mathcal{A}$ with ||a|| = 1 and all $x \in \mathcal{M}_1$. Since A is \mathbb{C} -linear and A(ax) = aA(x) for each element $a \in \mathcal{A}$ with ||a|| = 1, we have, for all $a \in \mathcal{A} \setminus \{0\}$ and all $x \in \mathcal{M}_1$,

$$A(ax) = A\left(\|a\| \frac{a}{\|a\|} x\right) = \|a\| A\left(\frac{a}{\|a\|} x\right) = \|a\| \frac{a}{\|a\|} A(x) = aA(x).$$

Therefore, the unique \mathbb{C} -linear mapping $A: \mathcal{M}_1 \to \mathcal{M}_2$ is an \mathcal{A} -linear mapping, as desired.

Theorem 3.8. Let \mathcal{A} be a Banach *-algebra, $pos(\mathcal{A})$ the set of positive elements of \mathcal{A} and $((\mathcal{M}_2^k, \|\cdot\|_k) : k \in \mathbb{N})$ a multi-Banach left \mathcal{A} -module. If the function $f: \mathcal{M}_1 \to \mathcal{M}_2$ satisfies the inequality (3.1) for all $x_1, \dots, x_k, y_1, \dots, y_k, z_1, \dots, z_k \in \mathcal{M}_1$ and all $a \in pos(\mathcal{A})$ with $\|a\| = 1$ and a = i, then there exists a unique \mathcal{A} -linear mapping $A: \mathcal{M}_1 \to \mathcal{M}_2$ satisfying the inequality (2.2).

Proof. By the same reasoning as in the proof of Theorem 2.2, there exists a unique additive mapping $A: \mathcal{M}_1 \to \mathcal{M}_2$ defined by $A(x) = \lim_{n \to \infty} 2^{-2n} f(2^{2n}x)$ for all $x \in \mathcal{M}_1$ such that the inequality (2.2) holds. Following the same method as in the proof of Theorem 3.7, we see that

$$A(ax) = \lim_{n \to \infty} 2^{-2n} f(2^{2n} ax) = \lim_{n \to \infty} 2^{-2n} a f(2^{2n} x) = aA(x)$$

for all $a \in pos(\mathcal{A})$ with ||a|| = 1 or a = i, and $x \in \mathcal{M}_1$. For any element $a \in \mathcal{A}$, $a = a_1 + ia_2$, where $a_1 = \frac{a+a^*}{2}$ and $a_2 = \frac{a-a^*}{2i}$ are self-adjoint elements, furthermore, $a = a_1^+ - a_1^- + ia_2^+ - ia_2^-$, where $a_1^+, a_1^-, a_2^+, a_2^- \in pos(\mathcal{A})$ (see [2, Lemma 38.8]). Therefore, we have

$$A(ax) = A(a_1^+x - a_1^-x + ia_2^+x - ia_2^-x)$$

$$= a_1^+A(x) - a_1^-A(x) + a_2^+A(ix) - a_2^-A(ix)$$

$$= a_1^+A(x) - a_1^-A(x) + ia_2^+A(x) - ia_2^-A(x)$$

$$= (a_1^+ - a_1^- + ia_2^+ - ia_2^-)A(x)$$

$$= aA(x)$$

for all $a \in \mathcal{A}$ and all $x \in \mathcal{M}_1$ which completes the proof of the theorem.

References

- 1. T. Aoki: On the stability of the linear transformation in Banach spaces. *J. Math. Soc. Japan* **2** (1950), 64-66.
- 2. F.F. Bonsall & J. Duncan: Complete normed algebras. Berlin-Heidelberg-New York, 1973.
- 3. S. Czerwik: On the stability of the quadratic mapping in normed spaces. *Abh. Math. Sem. Univ. Hamburg* **62** (1992), 59-64.
- 4. H.G. Dales: *Banach Algebras and Automatic Continuity*. London Mathematical Society Monographs, New Series, 24. Oxford University Press, Oxford, 2000.
- 5. H.G. Dales & M.S. Moslehian: Stability of mappings on multi-normed spaces. *Glasgow Math. J.* **49** (2007), no. 2, 321-332.
- 6. H.G. Dales & M.E. Polyakov: Multi-normed spaces and multi-Banach algebras. preprint.
- P. Găvruţă: A generalization of the Hyers-Ulam-Rassias Stability of approximately additive mappings. J. Math. Anal. Appl. 184 (1994), 431-436.
- 8. D.H. Hyers: On the stability of the linear functional equation. *Proc. Natl. Acad. Sci.* **27** (1941), 222-224.
- S.-M. Jung: Hyers-Ulam-Rassias stability of Jensens equation and its application. Proc. Amer. Math. Soc. 126 (1998), 3137-3143.

- Hyers-Ulam-Rassias Stability of Functional equations in Mathematical Analysis. Hadronic Press, Inc., Palm Harbor, Florida, 2001.
- 11. Z. Kominek: On a local stability of the Jensen functional equation. *Demonstratio Math.* **22** (1989), 499-507.
- 12. Y.-H. Lee & K.-W. Jun: A generalization of the Hyers-Ulam-Rassias stability of Jensens equation. J. Math. Anal. Appl. 238 (1999), 305-315.
- 13. M.S. Moslehian, K. Nikodem & D. Popa: Asymptotic aspect of the quadratic functional equation in multi-normed spaces. *J. Math. Anal. and Appl.* **355** (2009), no. 2, 717-724.
- 14. M.S. Moslehian: Superstability of higher derivations in multi-Banach algebras. *Tamsui Oxford J. Math. Sciences* **24** (2008), no. 4, 417-427.
- 15. L. Li, J. Chung & D. Kim: Stability of Jensen equations in the space of generalized functions. J. Math. Anal. Appl. 299 (2004), 578-586.
- 16. C. Park: On the stability of the linear mapping in Banach modules. J. Math. Anal. Appl. 275 (2002), 711-720.
- 17. T. Popoviciu: Sur certaines inégalités qui caractérisent les fonctions convexes. *Ştiint. Univ. Al. I. Cuza Iaşi Secţ. Ia Mat.* 11 (1965), 155-164.
- 18. Th.M. Rassias: On the stability of the linear mapping in Banach spaces. *Proc. Amer. Math. Soc.* **72** (1978), 297-300.
- 19. _____(Ed.): "Functional Equations and Inequalities". Kluwer Academic, Dordrecht, Boston, London, 2000.
- 20. T. Trif: Hyers-Ulam-Rassias stability of a Jensen type functional equation. *J. Math. Anal. Appl.* **250** (2000), 579-588
- 21. S.M. Ulam: A Collection of Mathematical Problems. Interscience Publ., New York, 1960.

^aDepartment of Mathematics Education, Seowon University, Cheonju, Chungbuk 361-742, Korea

 $Email\ address: {\tt parkkh@seowon.ac.kr}$

^bDepartment of Mathematics, Sun Moon University, Asan, Chungnam 336-708, Korea *Email address*: ysjung@sunmoon.ac.kr