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ON THE STABILITY OF A JENSEN TYPE FUNCTIONAL
EQUATION IN MULTI-NORMED SPACES

Ky00-HONG PARK? AND YONG-S0O JUNG P»*

ABSTRACT. In this paper we investigate the Hyers-Ulam stability of a Jensen type
functional equation in multi-normed spaces and then extend the result to multi-
normed left modules over a normed algebra A.

1. INTRODUCTION

The study of stability problems originated from a question by S.M. Ulam [21] in
1940 : Under what condition does there exist a homomorphism near an approximate
homomorphism ¢ In 1941, D.H. Hyers [8] gave a first affirmative answer to the
question of Ulam for Banach spaces, which states that if § >0 and f: X — YV is a

mapping with X a normed space, Y a Banach space such that

1f(@+y) = flz) = fW)I <6
for all x,y € X, then there exists a unique additive mapping T : X — Y such that

If(z) =T(z)|| <6
forall x € X.

A generalized version of the theorem of Hyers for approximately additive map-
pings was first given by T. Aoki [1] in 1950. In 1978, Th.M. Rassias [18] indepen-
dently introduced the unbounded Cauchy difference and was the first to prove the
stability of the linear mapping between Banach spaces

During the past decades, a number of results concerning the stability have been
obtained by various ways, and been applied to a number of functional equations and

mappings [3, 7, 10, 19].
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The stability of the classical Jensen functional equation

(1) 21 (F3Y) = 1@) + 1)

and of its generalizations were studied by numerous researchers (cf., e.g., [9, 11, 12,
15]).
T. Trif [20] studied the generalized Hyers-Ulam stability of the Jensen type func-

tional equation for normed spaces (or is called the Popoviciu functional equation

from [17]):
(12) 3 (TS - f@) + F) + £(2)

o) () (5]

In view of [20], we note that the Popoviciu functional equation (1.2) is equivalent to

the Jensen functional equation (1.1).

In this paper, using some ideas from the earlier works [14, 16], we investigate the
stability of the Popoviciu functional equation in multi-normed spaces and further,
in multi-normed left module over normed algebra.

The notion of multi-normed space was introduced by H.G. Dales and M.E.
Polyakov (see [5, 6, 13, 14]). This concept is somewhat similar to operator se-
quence space and has some connections with operator spaces and Banach lattices.
Motivations for the study of multi-normed spaces and many examples were given in
[6].

Let C,R and N be the sets of complex, real numbers and positive integers, re-
spectively. Let X be a linear space over C. For each k € N, we denote by X* the
linear space X @ --- & X consisting of k-tuples (x1,--- ,x), where x1,--- ,x € X.
The linear operations on X* are defined coordinatewise. The zero element of either
X or X% is denoted by 0. We denote by Ny, the set {1,2,3,---  k} and by G}, the

group of permutations on k symbols.

Definition 1.1. A multi-norm on {X* : k € N} is a sequence

(- flx) = - fl = k€ N)
such that || || is a norm on X'* for each k € N, such that||z|; = ||z|| for each z € X,
and such that for each k € N (k > 2), the following axioms are satisfied:
(i) ”xa(l)f e 71'0(16)”16 = H(‘Tla T ’xk)Hk (U € Gy @1, ,ak € X);
(i) [(ea, - s axap)lle < (maxfail)[|(ey, - zp)
k
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(a1, o €C; xy,- -+ ,a € X);
(i) @1, s oh1, O) k= @1, s mpDllot (@1, s p1 € X);
(V) [[(zr, - ze-nze-)llk = (@, ap-1)lle—1 (21,0 261 € X).
In this case, we say that (X%, -|[x) : k € N) is a multi-normed space.

Suppose that ((X*,] - ||x) : k¥ € N) is a multi-normed space and k € N. It is easy
to show that

(@) [[(z, - o)l = llzf] - (z € X);
k

b | < o < < K , oL ap € X).
(b) maxlz]| < [(z1, - ze)ll < ; lzall < koaxlas] - (w1, 2 € X)
It follows from (b) that if (X, ]| -||) is a Banach space, then (X* || -||z) is a Banach
space for each k € N; in this case, ((X*,]|-||#) : k¥ € N) is said to be a multi-Banach
space.
Now we recall two important examples of multi-norms for an arbitrary normed

space X (see, for details, [6]).
Example 1.2. The sequence (|| - | : & € N) on {X* : k € N} defined by
(@1, wp)lle = max [lzi|| (21, 2 € X)
1€Ng

is a multi-norm called the minimum multi-norm. The terminology minimum is
justified by (b).
Example 1.3. Let A be a non-empty set and let

{12 : k€N and A€ A)}

be the family of all multi-norms on {X* : k € N}. For k € N, we set
(s, 2k = sup | (z1,-- @)l (21,20 € X).
AEA

Then the sequence (||| - ||| : k¥ € N) is a multi-norm on {X* : k € N}, which is called
the mazimum multi-norm.
In the following, we need some fundamental ingredients which can be easily de-

duced from the triangle inequality for the norm || - || and (b).

Definition 1.4. Let ((X* |- |lx) : & € N) be a multi-normed space. A sequence

(zn,) in X is a multi-null sequence if, for each € > 0, there exists ng € N such that

sup H(xm to 7$n+k71)Hk <e (Tl > 77,0).
keN

Let x € X. We write that
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Limz, =«
n—oo

if (x, — ) is a multi-null sequence; in this case, we say that the sequence (x,) is

multi-convergent to x in X.

Definition 1.5. Let ((X* |- |lx) : & € N) be a multi-normed space. A sequence
{zp} in X is a multi-Cauchy sequence if, for each € > 0, there exists ng € N such
that

iug H(xm —Tn,y s Tmtk—1 — xn+k71)Hk <e (m7n > no).
S

We observe that if ((X*,] - ||x) : ¥ € N) is a multi-Banach space, then a multi-

Cauchy sequence is multi-convergent in X.

2. HYERS-ULAM STABILITY OF EQUATION (1.2)
IN MULTI-NORMED SPACES

In this section, X and )Y will be a complex linear space and a complex Banach
space, respectively. Given a function f: X - Yand acU={z€ C:|z| =1}, we
set
ar +ay + oz

Daf(a,y.2) i=3f () +af(@) + af ) + af(2)

s () ()

Theorem 2.1. Let (V¥,| - ||x) : k € N) be a multi-Banach space. If § > 0 and the
function f: X — Y satisfies
(2]-) 2‘111131 ||(le(x17ylvzl)7 T 7D1f(1:k7ykyzk))”k < d

€

forallxy, - Tk, Y1, Yk, 21, -+ , 2k € X, then there exists a unique additive map-
ping A : X — Y such that

(2.2) sup 1(f(z1) = f(0) = Alza), -+, f(ag) = £(0) = Az) [k <

ke

[SSRRST)

forallxy,--- o € X.

Proof. Let g : X — Y be the function defined by g(z) := f(z)— f(0). Then g(0) =0
and, since D1g(x,y,2) = D1 f(z,y, z) for all x,y,z € X, we have

(23) zug ||(Dlg(x17y1721)7 T 7Dlg(l‘k7yk72k))uk < 0
(S

for aHZL'l,"‘ s Ty Y1y Yk 21yt aszX'
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For each i = 1,2,--- , k, putting y; = z; and z; = —2z; in (2.3), we get

sup | (o(—20) —d9( = ).+ o200 — 9 (= ) ) <

for all 1, -+ , 2, € X. Replacing x; by —2z; for each ¢ = 1,2,--- |k in the above
relation yields
(2.4) Sup 1(g(4z1) —4g(x1), - -, g(dar) — 4g(xp)) ||k < 0
€
for all zq, -,z € X.
Next we prove by induction on n that for all x1,--- ,x; € X it holds that

n
(25)  supl|(2 " g(2"e1) = glan), o 2P g(2Men) — gla)) ik <6327
€ .

7=1
for all z1,--- ,x), € X. Dividing both sides of (2.4) by 22 ensures the validity of (2.5)
for n = 1. Now, assume that the inequality (2.5) is true for some n € N. Replacing
x; in (2.4) by 22"z, for each i = 1,2,--- , k and then dividing both sides of (2.4) by
22(n+1) vields

iugu( n+1)g(22(n+1)$1) - 27211.9(22111,1)7
€

272 (@2 ) — 920y (97 | < 5272+

for all z1,--- ,zp € X and so
sup 12720 g (22 ) — g(ay), -+, 2720 g (220 ) — g () |1k
€N
< sup H( 2(n+1) (22(n+1)x1) - 2—2ng(22nx1)’
keN

L9720 g(Q2nH) gy 9=2mg92ng Y1

+sup 1(272"g(2%"21) — g(x1), -+, 27 2"g(2%"wk) — g(xk)) |k
S

n+1

< §22nt) +522 21—522 2j

for all zq, -,z € X. Th1s completes the proof of the inequality (2.5).

Let 21,22, -+ , 2k be any points in X'. By virtue of (2.5), we have
sup 1(272"g(2%" 1) — 272" g (2% 1), - -, 27" g(2% ) — 272" (2% wp)) I
€
< 9—2m sup H<2—2(n—m)g(22(n—m) . 22m$1) o g(22mx1),

keN
’2—2(n—m)g(22("—m) . 22mxk) - g(Qmek))”k
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< 2—2’"5%2—% <gm? (m < n)
= — 3 )
j=1

that is,

(2.6) sup 12727 g(2% @) — 272 g(22 M), -+, 272"g(2%y) — 272 (22 ) |
€

< 2_2’“% (m < n).

Let us fix © € X. Then it follows from (2.6) that

sup [|(272"g(2*"w) — 272"g(2°"2),

keN

2—2(n+k—1)g(22(n+k—1)x) _ 2_2(m+k_1)g(22(m+k_1)1'))Hk

I

S Sup H (27277,9(22711,) _ 272mg(22mx)’
keN

e 22(}1_1) (2—2ng(22n L Q2(k=1) ) _g=2mg(92m 22(k—1)x>>> H

< sup||(27"g(22"e) — 272"g(2a),
keN

k

. ’2—2ng(22n . 22(k—1)$) o 2—2mg(22m . 22(k_1>$))”k < 2—2m g (m < TL)

This inequality implies that {272"g(2?"z)} is a multi-Cauchy sequence and so it is
multi-convergent in ). Consequently, we can define the mapping A : X — ) by

A(z) := Lim 272"g(2%"z).

n—oo

Therefore, for any € > 0, there exists ng € N such that

sup 12729 (2% 2) = A(z),- -, 272 Dg(220 D) — A(2)) |, < &
S

for all n > ng. In particular, by (b), we have

Tim |27 2g(22") — A(x)]| =0,

say,
A(z) = lim 27%"g(2%"x)
n—oo
for all x € X.
Let x,y and z be any points in X. Putting x; = -+ = a, = 2%, y; = --- =
yr = 22"y and 2y = --- = 2z = 2?"z in (2.3) and dividing both sides by 22", we

obtain
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|D1A(, . 2)]| = lim 272" Dig(22e, 2y, 22°2) |
n—oo

< lim 272"§ = 0.

n—oo
Hence A satisfies (1.2) for all z,y,z € X. Since A(0) = 0, it follows that A is

additive. Moreover, by passing to the limit in (2.5) when n — oo, we see that

0
sup [|(A(z1) — g(@1), -+ Alwr) — g(@w) [k < 3
keN 3
which means the inequality (2.2) for all z1,--- , a2 € X.

Let A" : X — Y be another additive mapping satisfying (2.2). Using (2.2) and
(a), we get
1A(z) = A'(z)]| = 27| A2 ) — A'(2"2)|
<27"(|A@2") - f(2"x) — F(O)]| + [|f(2"2) — £(0) — A'(2"2)])

2
<27 -0,
- 3
for all z € X and n € N. Thus we conclude that A(z) = A'(z) for all z € X. This
proves the uniqueness of A. 0

Theorem 2.2. Let (¥, || - ||x) : k € N) be a multi-Banach space. If § > 0 and the
function f: X — Y satisfies

(27) 21111\)] ||(Do¢f(l'1,y1,21), T aDaf(mkvyk’Zk))Hk < o
(S

for all x1, - Tk, Y1, - , Yk, 21, -+ , 2k € X and for all a € U, then there exists a
unique C-linear mapping A : X — Y satisfying the inequality (2.2).

Proof. Put o = 1 in (2.7). Then it follows from Theorem 2.1 that there exists a
unique additive mapping A : X — ) satisfying the inequality (2.2).
For each i = 1,2,--- |k, setting y; = x; = x and z; = —2z in (2.7) and then

considering (a), we get
(2.8) H3f(0)—i—af(—2x)—4f<— %x)” <6

forall zx € X. Put € := 6 +3|f(0)||. From (2.8) and the triangle inequality, it follows
that

o
— — - — <
(2.9) Haf( 2x) 4f( 2z>H_z—:
for all z € X. Substituting —2z for x in (2.9) yields

(2.10) lof (4z) — Af(az)| < e
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for all z € X. Using induction on n € N with (2.10), we see that

(2.11) af(22z) — 4f(22" Daz)|| < e
for all x € X.

Now letting v = 1 in (2.11) and then replacing x by ax in the result, we obtain
(2.12) 1£(22az) — 47 (22" Dag) | < e

for all z € X. By (2.11) and (2.12), we get
1£(2*"ax) — af(2°"2)| < || f(2*"ax) — 4f(2°" Vo))
+ laf(2°rz) — 4f (22" Vaz)| < 2,
that is,
(2.13) | f(2*"ax) — af(2®z)| < 2e.
for all x € & which implies
lim 2727 £(22az) — af(22"2)]| = 0,
for all x € X. Hence we conclude that
Alaz) = lim 272 f(2"az) = lim 272"af(2*"z) = aA(x)
foralla € U and x € X.

Clearly, A(0z) = 0 = 0A(z) for all x € X. Now, let A € C (XA # 0), and let
N € N greater than |A|. By applying a geometric argument, we see that there exists
A1, A2 € U such that 2% = A1 + A2. By the additivity of A, we get A(%m) = %A(w)
for all x € X. Therefore

AQ) = A(N 2. §x> _ NA(l 2. Ax) _ gA((Al +o)2)

2 2 N
N N A
for all x € A, so that A is C-linear. O

3. STABILITY OF EQUATION (1.2) IN MULTI-NORMED MODULES

In this section, we extend the Hyers-Ulam stability of the Popoviciu’s functional
equation to multi-normed left modules over a normed algebra and obtain some
related results. For the sake of convenience, we use the same symbol || - || in order
to represent the norms on a normed algebra and a normed module.

Consider first some definitions and examples:
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Definition 3.1. Let (A, || - ||) be a normed algebra such that ((A*, |- ||z) : k € N)

is a multi-normed space. ((A*,]| - ||x) : k € N) is called a multi-normed algebra if
[(a1b1, -+ s axbi)|lk < (a1, ar)llk [[(br, -+, br) |k
for k € N and ay,---,ax, by, ,bp € A. Furthermore, the multi-normed algebra

((A* || -1l%) : k € N) is said to be a multi-Banach algebra if ((A*,||-||x): k € N)is a
multi-Banach space.

Example 3.2. Let p,qg € R with 1 < p < ¢ < 0o and A = ¢P. The algebra A is a
Banach sequence algebra with respect to coordinatewise multiplication of sequences
(see [4, Example 4.2.42]). Let (|| - ||x : ¥ € N) be the standard (p, ¢)-multi-norm on
{A¥ :n € N} (see [6]). Then ((A*,[ - ||x) : k € N) is a multi-Banach algebra.

Definition 3.3. Let (A, ||-||) be a normed algebra. Let (M, ||-||) be a normed left A-
module such that ((M¥, ||-||x) : k& € N) is a multi-normed space. ((M*, ||-||l) : k € N)
is said to be a multi-normed left A-module if there exists a positive constant K such
that ||(az1,- -, axp)||xr < K|la| ||(z1,- - ,zk)||x for all @ € A and x1,--- , 2 € M.
Moreover, we says that the multi-normed left A-module ((M*, || -||x) : k € N) is a
multi-Banach left A-module if ((M*,]-||x) : k € N) is a multi-Banach space.

Example 3.4. Let (A, - ||) be a normed algebra and ((A*,||-|x) : k¥ € N) a
multi-normed algebra. Then ((A*, || -||%) : ¥ € N) is a multi-normed left A-module.

Example 3.5. Let (A, | - ||) be a normed algebra and ((A*,| - |z) : ¥ € N) a
multi-normed algebra. Let I be a closed left ideal of A, let M = A/I, and let
a — a + I denote the canonical mapping of A onto M. Then the normed linear
space (M, || - ||) becomes a normed left A-module with the module multiplication
given by ar = ab + I, where b € z € M,a € A. Now, it is easy to see that
(M| - |Ix) : k € N) is a multi-normed left A-module.

Definition 3.6. Let A be an algebra. A left A-module M is said to be unitary if

A has a unit element e and ex = z for all x € M.

Throughout this section, let (A, ||-||) be a unital normed algebra with unit e, M;
a unitary left A-module and (Ma, || - ||) a unitary Banach left .A-module.

Recall [16] that an additive mapping f : M; — My is said to be A-linear if
flax) =af(z) for all @ € A and z € M;.

Given a function f: M; — My and a € A with |la|| = 1, we put
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ML) af(o)+ af() + af(2)

A ) (5]

Theorem 3.7. Let (M5, ] -1lx) : k € N) be a multi-Banach left A-module. If § > 0
and the function f: My — My satisfies

(3.1) 21111\)] |(Daf(x1,y1,21), -+, Daf(@h, Yis 2)) |l < 0
€

Daf(xvyvz) = 3f<

for all x,y,z € Mj.

forall x1, -+ g, Y1, Yk, 21, , 2k € My and for all a € A with ||| = 1, then
there exists a unique A-linear mapping A : My — Ma satisfying the inequality (2.2).

Proof. Using Theorem 2.2, it follows from the inequality (3.1) for a = ae, a € U,
that there exists a unique C-linear mapping A : M1 — M defined by
A(z) = lim 272" f(22z)
n—oo
for all x € M such that the inequality (2.2) is valid.
The substitution a for a in (2.8)~(2.13) and the same process yield
(3.2) 12" az) — af(2*"z)|| < 2¢
for all z € M; which gives
lim 2720 £(2az) — af(2*"z) | =0,
n—od
for all x € My. Thus, we see that
Alaz) = lim 272" f(2*"ax) = lim 2" *"af(2*"z) = aA(x)
n—oo n—oo

for all a € A with ||a|| =1 and all z € M;. Since A is C-linear and A(az) = aA(z)
for each element a € A with ||a|| = 1, we have, for all a € A\ {0} and all z € M,
a a a
Ataa) = A(lal 252 ) = lall 4( 250) = llall 125 (o) = aA(e)
fal fal fal
Therefore, the unique C-linear mapping A : M; — My is an A-linear mapping, as
desired. g

Theorem 3.8. Let A be a Banach x-algebra, pos(A) the set of positive elements of
A and (M5, |- |lx) : k € N) a multi-Banach left A-module. If the function f : My —
My satisfies the inequality (3.1) for all x1,- -+ ,Tp, Y1, , Yk, 21, , 2k € My and
all a € pos(A) with ||a|| =1 and a = i, then there exists a unique A-linear mapping
A My — My satisfying the inequality (2.2).
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Proof. By the same reasoning as in the proof of Theorem 2.2, there exists a unique
additive mapping A : M; — My defined by A(x) = lim, .o 272" f(22"x) for all
x € My such that the inequality (2.2) holds. Following the same method as in the
proof of Theorem 3.7, we see that
Alaz) = lim 272" f(2*"azx) = lim 27 *"af(2*"z) = aA(z)
n—oo n—oo
for all @ € pos(A) with |la]] =1 or a = i, and x € M;. For any element a € A,
ata*
2

and ay = *57~ are self-adjoint elements, furthermore,

a = a1 +1iag, where a1 =
a= a1t — a1~ +iay" —iay”, where a1, a1, a2, a2~ € pos(A) (see [2, Lemma

38.8]). Therefore, we have
Aaz) = Ala1 T — a1~z +ias T — ias” x)
=a1tA(z) — a1 A(z) + as T A(iz) — ag” A(ix)
=a1 T A(z) — a1 A(z) +dax T A(z) — iay” A(x)
= (1" —a1” +iaxt —iaxT)A(x)
= aA(x)

for all @ € A and all x € M7 which completes the proof of the theorem. O
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