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SUFFICIENT CONDITIONS FOR THE INTERSECTION
PROPERTY IN GENERALIZED LIÉNARD SYSTEMS

Yong-In Kim

Abstract. Some new results on the intersection property of all nonzero solutions
of a class of planar systems of Liénard type with vertical isoclines are obtained. The
results of this paper generalize some previous results on this field.

1. Introduction

In this paper, we consider the intersection property of all solutions of the following
generalized Liénard systems with vertical isoclines:

(1)





φp(x′) = y−F (x)
a(x) ,

y′ = −a(x)g(x),

where ′ = d/dt, φp(u) = |u|p−2u, p > 1 and

(2)





x′ = h(y)−F (x)
a(x) ,

y′ = −a(x)g(x),

with h(y) = m|y|k−1y, m > 0 and k ≥ 1. We assume throughout this paper that
F, a, g are continuous functions on R such that F (0) = g(0) = 0, xg(x) > 0 for all
x 6= 0 and a(x) > 0 for all x ∈ R. Moreover, we assume that smoothness conditions
for the existence and uniqueness of solutions for the initial value problem of (1) and
(2) are satisfied. The following second order p-Laplacian:

(3) (φp(x′))′ + f(x)x′ + g(x) = 0,

can be written as system (1) if we put a(x) = 1, F (x) =
∫ x
0 f(s)ds and y = φp(x′)+

F (x). In particular, if a(x) = 1, p = 2, then system (1) reduces to the so-called
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Liénard system

(4)

{
x′ = y − F (x),

y′ = −g(x),

which is equivalent to the following second order equation

(5) x′′ + f(x)x′ + g(x) = 0.

Let us consider system (1) or (2). It is easy to see that the origin is the unique
equilibrium and the vector field (1) or (2) must pass through the positive y-axis
from left to right and the positive x-axis from above to below and the negative y-
axis from right to left and the negative x-axis from below to above. Hence, in order
to study the global asymptotic stability of the zero solution, oscillation problem and
existence of periodic solutions of (1) or (2), it is important to find out the conditions
to decide whether all orbits of (1) or (2) intersect the vertical isocline y = F (x) or
h(y) = F (x). Indeed, this property is a crucial step for the proof of the existence
of periodic orbits and oscillation of all solutions of (1) or (2). We first recall some
previous results on this topic and some definitions. We say that system (1) or (2)
has property X+ if each positive orbit of (1) or (2) starting from (0, y0) with y0 > 0
crosses the vertical isocline y = F (x) or h(y) = F (x) with some x > 0 in finite
time. We say that system (1) or (2) has property X− if each positive orbit starting
from (0, y0) with y0 < 0 crosses the vertical isocline y = F (x) or h(y) = F (x) for
some x < 0. If system (1) or (2) has both property X+ and property X−, we say
that it has property X. Many results have been achieved on this topic for system
(4) and its equivalent form (5), see, for example, [1–11, 13–15] and the references
therein. Recently, Sugie et al [15] have obtained some explicit conditions for system
(2) (with a(x) = 1) to have property X+ and Hesaaraki et al [13] also have obtained
some implicit conditions for system (2) to have property X+. Some previous results
gave conditions on f to discuss the property X+. Moreover, Aghajani et al [12] have
obtained some new explicit sufficient conditions for system (4) to have property X+.
The main results of [12] are the following theorems:

Let

G(x) =
∫ x

0
g(s)ds,

ds

dt
=

|g(x)|√
2G(x)

, u =
√

2G(x) sgn(x).



SUFFICIENT CONDITIONS FOR THE INTERSECTION PROPERTY 247

Then system (4) is equivalent to the following canonical form of Liénard system:

(6)





du
ds = y − F ∗(u),

dy
ds = −u,

where F ∗(u) = F
(
G−1

(
u2/2

))
if u ≥ 0 and F ∗(u) = F

(
G−1

(−u2/2
))

if u < 0 and
G−1 is the inverse function of G(x)sgn(x).

Theorem A. Suppose that for some b > 0,

lim sup
u→+∞

(∫ u

b

F ∗(s) + 2s
s2

ds +
F ∗(u)

u

)
= +∞.

Then system (6) has property X+ in the right half-plane.

Theorem B. Assume that G(+∞) = +∞ and that for some b > 0,

lim sup
x→+∞

(∫ x

b

(
F (s)g(s)

(2G(s))
3
2

+
g(s)
G(s)

)
ds +

F (x)√
2G(x)

)
= +∞.

Then system (4) has property X+ in the right half-plane.

In this paper, we generalize the results of [12] to system (1) and (2). Moreover,
our results are different from those of [15] when a(x) = 1.

2. Coordinates Transformations and Lemmas

First, by using coordinates and time transformations, we change system (1) and
(2) into the so called canonical forms. Let q = p

p−1 . Then q > 1 and 1
p + 1

q = 1.

Lemma 1. Define coordinates and time transformation T1 as

T1 : u =
(
pḠ(x)

) 1
p sgnx, y = y,

ds

dt
=

a(x)|g(x)|
(
pḠ(x)

) 1
q

,

where Ḡ(x) =
∫ x
0 aq(s)g(s)ds. Then, under the transformation T1, system (1) is

changed into the following form:

(7)

{
φp(u̇) = y − F ∗(u),

ẏ = −φp(u),

where u̇ = du
ds , ẏ = dy

ds and

F ∗(u) = F
(
Ḡ−1 (|u|p/p)

)

with Ḡ−1 > 0 if u > 0 and Ḡ−1 < 0 if u < 0.
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Lemma 2. Define coordinates and time transformation T2 as

T2 : u =
√

2Ḡ(x)sgnx, y = y,
ds

dt
=

a(x)|g(x)|√
2Ḡ(x)

,

where Ḡ(x) =
∫ x
0 a2(s)g(s)ds. Then under the transformation T2, system (2) is

changed into the following form:

(8)

{
u̇ = h(y)− F̄ ∗(u),

ẏ = −u,

where

F̄ ∗(u) = F
(
Ḡ−1

(
u2/2

))

with Ḡ−1 > 0 if u > 0 and Ḡ−1 < 0 if u < 0.

Lemma 3. If A, B are nonnegative numbers and p > 1, q = p
p−1 , then

Ap

p
+

Bq

q
≥ AB,

where the equality holds if and only if A = Bq−1.

The proofs of Lemma 1 ∼ Lemma 3 are straightforward, so we omit them.

3. Main Results and Proofs

Now, we can state the main results of this paper. For simplicity, we discuss only
the property X+ in the right half-plane.

Theorem 1. Define a positive constant λp by

λp =
p

(p− 1)
2(p−1)

p

.

Suppose that for some b > 0, we have

(9) lim sup
u→+∞

(∫ u

b

F ∗(s) + λps
p−1

sp
ds +

F ∗(u)
(p− 1)up−1

)
= +∞,

where F ∗ is defined in Lemma 1. Then system (1) has property X+ in the right
half-plane.

Remark. Note that if p = 2, then Theorem 1 reduces to Theorem A in [12]. Since
u =

(
pḠ(x)

)1/p for x ≥ 0, setting s =
(
pḠ(t)

)1/p and b =
(
pḠ(c)

)1/p in (9), we can
obtain the following corollary:
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Corollary 1. Assume that Ḡ(+∞) = +∞ and that for some c > 0, we have
(10)

lim sup
x→+∞




∫ x

c


F (t)aq(t)g(t)

(
pḠ(t)

) 2p−1
p

+
λpa

q(t)g(t)
pḠ(t)


 dt +

F (x)

(p− 1)
(
pḠ(x)

) p−1
p


 = +∞.

Then system (1) has property X+ in the right half-plane.

Remark. Note that if a(x) = 1, p = 2, then Corollary 1 reduces to Theorem B in
[12].

Theorem 2. Let µ = 2
√

m and suppose that for some b > 0, we have

(11) lim sup
u→+∞

(∫ u

b

F̄ ∗(s) + µs

sk+1
ds +

F̄ ∗(u)
kuk

)
= +∞,

where F̄ ∗ is defined in Lemma 2. Then system (2) has property X+ in the right
half-plane.

Since u =
(
2Ḡ(x)

)1/2 for x ≥ 0, setting s =
(
2Ḡ(t)

)1/2 and b =
(
2Ḡ(d)

)1/2 in
(11), we can obtain the following corollary:

Corollary 2. Assume that Ḡ(+∞) = +∞ and that for some d > 0,

(12) lim sup
x→+∞




∫ x

d


F (t)a2(t)g(t)

(
2Ḡ(t)

) k+2
2

+
µa2(t)g(t)
(
2Ḡ(t)

) k+1
2


 dt +

F (x)

k
(
2Ḡ(x)

) k
2


 = +∞.

Then system (2) has property X+ in the right half-plane.

Proof of Theorem 1. By Lemma 1, we need only to consider system (7). We still
denote s by t for simplicity. We prove the theorem by contradiction. Suppose
that there exists a solution (u(t), y(t)) of system (7) whose orbit remains in the
region D = {(u, y) : u ≥ 0, and y > F ∗(u)} for all t > 0, which implies that
u̇(t) > 0∀ t > 0. Let (u0, y0) = (u(0), y(0)). Since system (7) has no critical points
in this region D, we have

lim
t→+∞u(t) = +∞,

and so we may assume that u0 > 0 is sufficiently large. We may also assume that
y0 ≤ 0 since

y(t) ≤ y0 − up−1
0 t → −∞, as t → +∞.

Therefore, we may assume that

u(t) ≥ u0 > 0 and y(t) ≤ y0 ≤ 0 for t ≥ 0.
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Define a function L(t) by

L(t) =
∫ u(t)

b

F ∗(s)
sp

ds +
y(t)

(p− 1)up−1(t)
.

By using (7) and Lemma 3, we obtain

d

dt
L(t) =

F ∗(u(t))u̇(t)
up(t)

− (p− 1)up−2(t)u̇(t)y(t)− up−1(t)ẏ(t)
(p− 1)u2(p−1)(t)

=
(y(t)− φp(u̇(t))) u̇(t)

up(t)
− y(t)u̇(t)

up(t)
− 1

p− 1

= −(p− 1)(u̇(t))p + up(t)
(p− 1)up(t)

≤ − pu̇(t)up−1(t)

(p− 1)
2(p−1)

p up(t)
= − pu̇(t)

(p− 1)
2(p−1)

p u(t)
= −λpu̇(t)

u(t)
,

where we set

Ap = p(p− 1)(u̇(t))p, Bq = qup(t)

in Lemma 3. This implies that

d

dt

(
L(t) +

∫ u(t)

b

λpds

s

)
≤ 0,

which again implies that

d

dt

(∫ u(t)

b

F ∗(s) + λps
p−1

sp
ds +

y(t)
(p− 1)up−1(t)

)
≤ 0.

We have therefore
∫ u(t)

b

F ∗(s) + λps
p−1

sp
ds +

y(t)
(p− 1)up−1(t)

≤
∫ u0

b

F ∗(s) + λps
p−1

sp
ds +

y0

(p− 1)up−1
0

< +∞ for t ≥ 0.

Since y(t) > F ∗(u(t)) by the assumption and u(t) → +∞ as t → +∞, we obtain

lim sup
u→+∞

(∫ u

b

F ∗(s) + λps
p−1

sp
ds +

F ∗(u)
(p− 1)up−1

)
< +∞,

which contradicts the assumption of Theorem 1. ¤

Proof of Theorem 2. By Lemma 2, we need only to consider system (8). We again
denote s by t and prove the theorem by contradiction. Suppose that there exists
an orbit (u(t), y(t)) of system (8) which remains in the region D̄ = {(u, y) : u ≥
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0 and h(y) > F̄ ∗(u)} for all t > 0. Like the analysis in the proof of Theorem 1, we
may assume that

u(t) ≥ u0 > 0, and y(t) ≤ y0 ≤ −1 for t ≥ 0.

For b > 0 fixed, define a function H(t) by

H(t) =
∫ u(t)

b

F̄ ∗(s)
sk+1

ds +
h(y(t))
kuk(t)

.

Since y(t) ≤ −1 and k ≥ 1, we have |y(t)| ≥ 1 and h′(y(t)) = mk|y(t)|k−1 ≥ mk.
Now using (8) and Lemma 3 with p = q = 2, we have

d

dt
H(t) =

F̄ ∗(u(t))u̇(t)
uk+1(t)

+
uk(t)h′(y(t))ẏ(t)− kuk−1(t)h(y(t))u̇(t)

ku2k(t)

= −ku̇2(t) + h′(y(t))u2(t)
kuk+1(t)

≤ −ku̇2(t) + mku2(t)
kuk+1(t)

= − u̇2(t) + mu2(t)
uk+1(t)

≤ −2
√

mu̇(t)u(t)
uk+1(t)

= −µu̇(t)
uk(t)

,

which implies

d

dt

(
H(t) +

∫ u(t)

b

µ

sk
ds

)
≤ 0.

Hence, for t ≥ 0, we obtain
∫ u(t)

b

F̄ ∗(s) + µs

sk+1
ds +

h(y(t))
kuk(t)

≤
∫ u0

b

F̄ ∗(s) + µs

sk+1
ds +

h(y0)
kuk

0

< +∞.

Since h(y(t)) > F̄ ∗(u(t)) and u(t) → +∞ as t → +∞, we get

lim sup
u→+∞

(∫ u

b

F̄ ∗(s) + µs

sk+1
ds +

F̄ ∗(u)
kuk

)
< +∞.

This contradicts the assumption of Theorem 2. ¤

4. Examples

Example 1. Let us consider system (1). Let aq(x) = 1
1+x2 , g(x) = 2x. Then

Ḡ(x) = ln(1 + x2) and Ḡ(+∞) = +∞. Assume that for x ≥ 0 and some δ ∈ [0, 1),

we have F (x) ≥ −δλp

(
pḠ(x)

) p−1
p = −δλp

(
p ln(1 + x2)

) p−1
p . Then we get for u ≥ 0,

F ∗(u) ≥ −δλpu
p−1 and

F ∗(u)
(p− 1)up−1

≥ − δλp

(p− 1)
.
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This yields
∫ u

b

F ∗(s) + λps
p−1

sp
ds +

F ∗(u)
(p− 1)up−1

≥
∫ u

b

(1− δ)λp

s
ds− δλp

p− 1

= (1− δ)λp ln
u

b
− δλp

p− 1
.

Hence we have

lim sup
u→+∞

[∫ u

b

F ∗(s) + λps
p−1

sp
ds +

F ∗(u)
(p− 1)up−1

]
= +∞.

Therefore, by Theorem 1, system (1) has property X+ in the right half-plane.

Example 2. Let us consider system (2). First, if k = 1, assume that for x ≥ 0 and
some δ ∈ [0, 1), F (x) ≥ −2δ

√
2mḠ(x). Then we have for u ≥ 0,

∫ u

b

F̄ ∗(s) + 2
√

ms

s2
ds +

F̄ ∗(u)
u

≥
∫ u

b

2(1− δ)
√

m

s
ds− 2δ

√
m

= 2(1− δ)
√

m ln
(u

b

)
− 2δ

√
m,

which implies

lim sup
u→+∞

[∫ u

b

F̄ ∗(s) + 2
√

ms

s2
ds +

F̄ ∗(u)
u

]
= +∞.

Second, if k > 1, we assume that for x ≥ 0 and some δ ∈ [0, 1),

F (x) ≥ −2δ
√

2mḠ(x)

and that Ḡ(+∞) = +∞ and lim supx→+∞ F (x)/
(
2Ḡ(x)

)k/2 = +∞. Then this im-
plies for u ≥ 0,

F̄ ∗(u) ≥ −2δ
√

mu and lim sup
u→+∞

F̄ ∗(u)
uk

= +∞.

In this case, we have

lim sup
u→+∞

[∫ u

b

F̄ ∗(s) + 2
√

ms

sk+1
ds +

F̄ ∗(u)
kuk

]
≥ lim sup

u→+∞
F̄ ∗(u)
kuk

= +∞.

Hence, by Theorem 2, system (2) has property X+ in the right half-plane.
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