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THE DIVISOR CLASS GROUP OF SURFACES
OVER FINITE FIELDS

Sangki Choi

Abstract. We investigate the divisor class group of surfaces over finite fields. For
some surfaces the divisor class group depends on the characteristic of the field. We
calculate the determinant of a matrix which will provide an information about the
divisor class group of the surfaces.

1. Introduction

Every ring in this paper is assumed to be commutative and noetherian.
Let (R, m) be a local ring with a maximal ideal m. An element f ∈ R is called a

determinant in R, if it is a determinant of an n× n matrix (n ≥ 2) with the entries
in the maximal ideal m.

It is due to Eisenbud that the unique factorization of a surface of embedding
dimension 3 can be computed by determinants.

Theorem 1.1 ([5, p. 124]). Let (R, m) be a 3-dimensional regular local ring and
S = R/(f) with f ∈ R. Then S is factorial if and only if f is not a determinant in
R.

Suppose that f is a determinant of an n × n matrix A with entries in m and
n ≥ 2. Let B be the (n− 1)× n matrix obtained from A by deleting the first row,
then the ideal I of (n− 1)× (n− 1) minors of B is unmixed of height 2. Thus I/(f)
is an unmixed ideal of height 1 in S that is not principal. So S is not factorial.

Therefore, for any noetherian local ring (R, m) and f ∈ R if S = R/(f) is
factorial, then f is not a determinant in R . The converse holds only for a regular
local ring with dimR ≤ 3. If dimR ≥ 4, then the converse is not true.
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Theorem 1.2 ([4, Theorem 2.4]). Let k be a real closed field and R be the 4-
dimensional regular local and R = k[x, y, z, w](x,y,z,w). Then f = x2 + y2 + z2 + w2

is not a determinant in R.

The divisor class group of k[x, y, z, w](x,y,z,w)/(x2 + y2 + z2 +w2) is infinite cyclic
[6].

It is due to Gauss that if R is factorial, then so is R[x]. But this is not true
for the formal power series ring R[[x]]. Gauss’s method cannot be applied to R[[x]]
since the units of R[x] and those of R[[x]] are different. Also the content of a formal
power series is not defined. Counterexamples have been found by Salmon ([10]),
Zinn-Justine and Danilov.

Example 1.3 ([14, 15]). Let R = F (u)[[x, y, z]]/(x2 + yi + uz2j), where F is a field
and x, y, z and u are variables. Then R is factorial for all odd (i, j) 6= (3, 3), but
R[[t]] is not factorial.

Surfaces of embedding dimension 3 were focused on due to following results by
Samuel and Scheja.

Theorem 1.4 ([11]). Let S be a locally Cohen-Macaulay factorial domain. If Sp[[x]]
is factorial for any height 2 prime ideal p in S, S[[x]] is factorial.

Theorem 1.5 ([13]). Let (R, m) be a complete local factorial domain with depth
R ≥ 3, then R[[x]] is factorial.

If (S, n) is a 2-dimensional local domain of embedding dimension 3, then the
divisor class group Cl(S) of S is generated by the classes of the height 1 prime ideals
that is not contained in ne(R) where e(R) is the multiplicity of R [3]. Note that for
the surfaces S = R/(f) of a 3-dimensional regular local ring (R, m), e(R) = o(f)
where o(f) = e if f ∈ me, f /∈ me+1. Hence Cl(S) is generated by the classes of the
height 1 prime ideals that is not contained in no(f). We calculate the divisor class
group of some of the surfaces of embedding dimension 3.

This paper focuses on the surfaces of embedding dimension 3 over a finite field.
Let F be a finite field and R = F [[x, y, z]]. We study surfaces satisfying one of the
following equations : x2 + y3 +az4 = 0, x2 + y3 + az3 = 0, x2 + y2 +azn = 0 (n ≥ 2,
a ∈ F ).

2. The Divisor Class Group over Finite Fields

For a 3-dimensional regular local ring (R,m) with m = (x, y, z), R/(x2 +y3 + z5)
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is factorial (cf. [9], [13], [3]). Also this is essentially the only nonregular factorial
ring when R/m is algebraically closed.

Theorem 2.1 ([7]). Let (S, n) be a 2-dimensional nonregular local ring such that
S/n is algebraically closed field of characteristic 6= 2, 3, 5. Then the completion Ŝ of
S is factorial if and only if S ∼= R/(x2 + y3 + z5) for some 3-dimensional regular
local ring R with a regular system of parameters x, y, z of R.

Let (S, n) be a 2-dimensional non-regular local ring with n = (x, y, z) and S/n

is real closed. Then Lipman further showed that S has a rational singularity and is
factorial if and only if one of the following equations holds in S: x2 + y3 + z5 = 0,
x2 + y3 + z4 = 0, x2 + y2 + zn = 0 (n ≥ 2).

Theorem 2.2 ([3, Theorem 2.2]). Let F be a field and a ∈ F . Then f = x2+y3+az4

is not a determinant in R = F [[x, y, z]] if and only if
√−a /∈ F . Equivalently,

S = F [[x, y, z]]/(x2 + y3 + az4) is factorial.

If α =
√−a ∈ F , then x2 + y3 + az4 is a determinant in R. Note that

x2 + y3 + az4 =
(

x + αz2 −y
y2 x− αz2

)

In this case the divisor class group Cl(S) of S is generated by the prime ideal
(x + αz2, y)S ([3, Theorem 3.2]).

Now consider the surface S over a finite field F . Then the divisor class group
Cl(S) of S depends on the characteristic of F .

Theorem 2.3. Let F be a finite field of characteristic p and S = F [[x, y, z]]/(x2 +
y3 + az4) for a ∈ F .

(1) If p = 2, then S is not factorial for any a.
(2) If p is an odd prime, then S is factorial only for |F ∗|/2 elements a ∈ F ∗.

Proof. Consider the group-homomorphism, ε2 : F ∗ −→ F ∗, ε2(a) = a2.

(1) If p = 2, then |F ∗| is odd. So ε2 is an automorphism. So for any a ∈ F ∗,
α =

√−a ∈ F . Thus x2 + y3 + az4 is a determinant in F [[x, y, z]] and S is
not factorial by Theorem 2.2.

(2) If p is odd, then |F ∗| is even. So ε2 is not surjective. Also only for a
half of elements in F ∗, a /∈ im(ε2). For those a,

√−a /∈ F and S =
F [[x, y, z]]/(x2 + y3 + az4) is factorial by Theorem 2.2.

¤
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Now consider the surface S = Zp[[x, y, z]]/(x2 + y3 + z4) over the prime field Zp.
Note that the equation T 2 + 1 = 0 has no roots in Zp if and only if p is a prime
integer of the form 4n + 3.

If p = 2, then α = 1 is a solution.
If p is a prime integer of the form 4n + 1, then α = (p−1

2 )! is a solution.
On the other hand, if p is a prime integer of the form 4n+3, then p is irreducible

in the ring of Gaussian integers Z[i]. So the equation T 2 + 1 = 0 has no roots in Zp.

Corollary 2.4. Let p be a prime integer and S = Zp[[x, y, z]]/(x2 + y3 + z4). Then
S is factorial if and only if p is a prime integer of the form 4n + 3.

Theorem 2.5 ([3, Theorem 2.2]). Let F be a field and a ∈ F . Then f = x2+y3+az3

is not a determinant in R = F [[x, y, z]] if and only if 3
√

a /∈ F . Equivalently,
S = F [[x, y, z]]/(x2 + y3 + az3) is factorial.

If β = 3
√

a ∈ F , then x2 + y3 + az3 is a determinant in R. Note that

x2 + y3 + az3 =
(

x −(y + βz)
y2 − βyz + β2z2 x

)

Also if β = 3
√

a ∈ F , then the divisor class group Cl(S) of S is generated by the
prime ideal (x, y + βz)S ([3, Theorem 3.2]).

Theorem 2.6. Let F be a finite field of characteristic p and S = F [[x, y, z]]/(x2 +
y3 + az3) for a ∈ F .

(1) If p = 3, then S is not factorial for any a.
(2) If p is a prime integer of the form 3n + 1, then S is factorial only for 2

3 |F ∗|
elements a ∈ F ∗.

(3) For a prime integer p of the form 3n + 2, put m = [F : Zp]. If m is odd,
then S is not factorial for any a. If m is even, then S is factorial only for
2
3 |F ∗| elements a ∈ F ∗.

Proof. Consider the group-homomorphism, ε3 : F ∗ −→ F ∗, ε3(a) = a3.

(1) If p = 3, then gcd(|F ∗|, 3) = 1. So ε3 is an automorphism. So for any
a ∈ F ∗, β = 3

√
a ∈ F . Thus x2 + y3 +az3 is a determinant in F [[x, y, z]] and

S is not factorial by Theorem 2.5.
(2) If p ≡ 1 ( mod 3), then 3||F ∗|. So ε3 is not surjective. Also only for

2
3F of elements a in F ∗, a /∈ im(ε3). For those a, 3

√
a /∈ F and S =

F [[x, y, z]]/(x2 + y3 + az3) is factorial by Theorem 2.2.
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(3) If p ≡ 2(mod 3) and m is odd, ε3 is surjective. Also if p ≡ 2(mod 3) and m

is even, ε3 is not surjective. Hence the conclusion follows.

¤

For the surface S = Zp[[x, y, z]]/(x2 + y3 + az3) over the prime field Zp, Theorem
2.6 can be restated as follows.

Corollary 2.7. Let p be a prime integer and S = Zp[[x, y, z]]/(x2 + y3 + az3) for
a ∈ Zp. Then S is factorial if and only if p ≡ 1(mod 3) and a /∈ im(ε3) where
ε3 : Zp −→ Zp, ε3(a) = a3.

Let F be a field and m ≥ 2. If i =
√−1 ∈ F , then x2 +y2 +azm is a determinant

in F [[x, y, z]] for any a ∈ F . Note that

x2 + y2 + azm =
(

x + iy −z
azm−1 x− iy

)
.

If m is even,
√−1 /∈ F and

√−a /∈ F , then x2 + y2 + azm is not a determinant
in F [[x, y, z]] ([3, Theorem 2.4]). So S = F [[x, y, z]]/(x2 + y2 + azm) is factorial.

If m is odd,
√−1 /∈ F ,

√−a /∈ F and F is real, then S = F [[x, y, z]]/(x2+y2+azm)
is factorial ([3, Theorem 2.4]).

If a field F is of characteristic p = 2 or p ≡ 1(mod 4), then
√−1 ∈ F . So we can

formulate the above result as follows.

Theorem 2.8. Let F be a field of characteristic p = 2 or p ≡ 1(mod 4). Then
S = F [[x, y, z]]/(x2 + y2 + azm) is not factorial for any a ∈ F and m ≥ 2.

If a prime integer p is of the form 4n + 3, then
√−1 /∈ Zp and |Z∗p| is even. So

we obtain the following theorem.

Theorem 2.9. Let p be a prime integer of the form 4n + 3, and m even. Then
S = Zp[[x, y, z]]/(x2 + y2 + azm) is factorial only for |Z∗p|/2 elements a ∈ Z∗p.
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