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ON THE RADIUS OF CONVERGENCE OF SOME
NEWTON–TYPE METHODS IN BANACH SPACES

Ioannis K. Argyros a and Säıd Hilout b

Abstract. We determine the radius of convergence for some Newton–type methods
(NTM) for approximating a locally unique solution of an equation in a Banach
space setting. A comparison is given between the radii of (NTM) and Newton’s
method (NM). Numerical examples further validating the theoretical results are
also provided in this study.

1. Introduction

In this study we are concerned with the problem of approximating a locally unique
solution x? of equation

(1.1) F (x) = 0,

where F is a Fréchet–differentiable operator defined on a open convex subset D of
a Banach space X with values in a Banach space Y.

The field of computational sciences has seen a considerable development in mathe-
matics, engineering sciences and economic equilibrium theory. For example, dynamic
systems are mathematically modeled by difference or differential equations and their
solutions usually represent the states of the systems. For the sake of simplicity, as-
sume that a time–invariant system is driven by the equation ẋ = T (x), for some
suitable operator T , where x is the state. Then the equilibrium states are deter-
mined by solving equation (1.1). Similar equations are used in the case of discrete
systems. The unknowns of engineering equations can be functions (difference, dif-
ferential and integral equations), vectors (systems of linear or nonlinear algebraic
equations), or real or complex numbers (single algebraic equations with single un-
knowns). Except in special cases, the most commonly used solution methods are
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c© 2011 Korean Soc. Math. Educ.

219



220 I.K. Argyros & S. Hilout

iterative–when starting from one or several initial approximations a sequence is con-
structed that converges to a solution of the equation. Iteration methods are also
applied for solving optimization problems. In such cases, the iteration sequences
converge to an optimal solution of the problem at hand. Since all of these methods
have the same recursive structure, they can be introduced and discussed in a gen-
eral framework. We note that in computational sciences, the practice of numerical
analysis for finding such solutions is essentially connected to variants of Newton’s
method.

The most popular method for generating a sequence approximating x? is un-
doubtedly the quadratically convergent Newton’s method (NM)

(1.2) xn+1 = xn − F ′(xn)−1 F (xn), (n ≥ 0), (x0 ∈ D).

Here, F ′(x) ∈ L(X ,Y), (x ∈ D), the space of bounded linear operators from X into
Y denotes the Fréchet–derivative of operator F [3].

An other method for approximating x? is the cubically convergent Newton–type
method (NTM) given by

(1.3) yn = xn − F ′(xn)−1 F (xn), (n ≥ 0), (x0 ∈ D)
xn+1 = yn − F ′(xn)−1 F (yn).

(NM) requires the computation of inverse and one function evaluation at each step.
There are few situations when one computes the inverse of a matrix. However,
(NTM) requires the computation of one inverse and two functions evaluation. Note
also that in the case of (NTM), one always computes the solution of a linear system
(which is by far more easy to compute than the inverse). The local/semilocal con-
vergence results for (NM) has been examined by many authors [1]–[4], [9]–[12]. The
semilocal convergence of (NTM) has been studied in [2]–[7]. A survey of results on
(NTM) is given in [3], [4] and the references there.

Here, we are interested in the local convergence of (NTM). Rheinboldt [11], Traub
and Woźniakowsi [12] used the L–Lipschitz condition (L > 0):

(1.4) ‖ F ′(x?)−1 (F ′(x)− F ′(y)) ‖≤ L ‖ x− y ‖ for all x, y ∈ D
to provide the radius of convergence for (NM) given by

r =
2

3L
.

In view of (1.4), there always exists L0 > 0 such that

(1.5) ‖ F ′(x?)−1 (F ′(x)− F ′(x?)) ‖≤ L0 ‖ x− x? ‖ for all x ∈ D.
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Note that

(1.6) L0 ≤ L

holds in general and
L

L0
can be arbitrarily large [2]–[4]. Argyros [2], [3] used a

combination of (1.4) and (1.5) to provide the radius of convergence of (NM) by the
following

rA =
2

2L0 + L
.

Note that

(1.7) r ≤ rA.

Moreover, inequality (1.7) is strict if L0 < L. In [2], [3], Argyros provided a larger
ball using the more precise (1.5) instead of (1.4) to provide a tighter upper bound
on the norm ‖ F ′(x)−1 F ′(x?) ‖ (x ∈ D). The same approach leads to tighter error
bounds on the distances ‖ xn+1 − xn ‖, ‖ xn − x? ‖ (n ≥ 0) and at least as precise
information on the uniqueness of the solution x?.

The results under Lipschitz–type conditions are extended in the p–Hölder case
(p ∈ (0, 1]) by assuming

(1.8) ‖ F ′(x?)−1 (F ′(x)− F ′(y)) ‖≤ L ‖ x− y ‖p for all x, y ∈ D

and

(1.9) ‖ F ′(x?)−1 (F ′(x)− F ′(x?)) ‖≤ L0 ‖ x− x? ‖p for all x ∈ D.

If p = 1, conditions (1.8) and (1.9) are reduced to (1.4) and (1.5), respectively. In
the p–Hölder case, the radius of convergence ([2]–[4], [10]) is

rp =
(

1 + p

(1 + p) L0 + L

)1/p

.

From now, we denote by

U(x?, R) = {x ∈ X : ‖ x− x? ‖< R}

the open ball centered at x? and of radius R > 0, whereas U(x?, R) denotes its
closure. The paper is organized as follows: Section 2 contains the local convergence
analysis of (NTM), whereas the applications are given in Section 3.
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2. Local Convergence Analysis of (NTM)

It is convenient for us to introduce some constants, functions and sequences.
In view of (1.6), there exists c ≥ 1, such that

(2.1) L = cL0.

Define function fc on [0, c] by

(2.2) fc(t) = t

(
((1+p) (1− t

c
)+t)1+p−((1+p) (1− t

c
))1+p

)
−(1+p)2+p (1− t

c
)3+p

for each fixed c ≥ 1 and p ∈ (0, 1].
We have fc(0) = −(1 + p)2+p < 0, fc(c) = c2+p ≥ 1 > 0 and fc is continuous

on [0, c]. It follows from the intermediate value theorem that there exists a zero of
function fc in (0, c). Denote by tc the minimal zero of fc in (0, c).

Clearly, we have

(2.3) t1 ≤ tc for all c ≥ 1.

We need an Ostrowski–type representation for (NTM) [2]–[4].

Lemma 2.1. If (NTM) is well defined for all n ≥ 0, F (x?) = 0 and F ′(x?)−1 ∈
L(Y,X ), then,
(2.4)

xn+1 − x?

= (F ′(x?)−1 F ′(xn))−1 F ′(x?)−1

∫ 1

0
(F ′(xn)− F ′(θ yn + (1− θ) x?)) dθ×

(F ′(x?)−1 F ′(xn))−1 F ′(x?)−1

∫ 1

0
(F ′(xn)− F ′(θ xn + (1− θ) x?)) dθ (xn − x?)

holds for all n ≥ 0.

Proof. Using (1.3) and Taylor’s formula, we get in turn

xn+1 − x?

= yn − x? − F ′(xn)−1 (F (yn)− F (x?))

= F ′(xn)−1

∫ 1

0
(F ′(xn)− F ′(θ yn + (1− θ)x?)) dθ (yn − x?)

= F ′(xn)−1

∫ 1

0
(F ′(xn)− F ′(θ yn + (1− θ)x?)) dθ (xn − x? − F ′(xn)−1 F (xn))

and since
xn − x? − F ′(xn)−1 F (xn)

= F ′(xn)−1

∫ 1

0
(F ′(xn)− F ′(θ xn + (1− θ) x?)) dθ (xn − x?),
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we obtain (2.4). That completes the proof of Lemma 2.1. ¤
We can show the following local convergence result for (NTM).

Theorem 2.2. Let F : D ⊆ X −→ Y be a Fréchet–differentiable operator. Let
x? ∈ D, such that F (x?) = 0 and F ′(x?)−1 ∈ L(Y,X ). Let p ∈ (0, 1], such that
p–Hölder conditions (1.8) and (1.9) hold. Denotes by tc the minimal zero of fc in
(0, c) and suppose U(x?, r?) ⊆ D, where

r? =
(

(1 + p) c

L

)1/p

.

Then, sequence {xn} generated by (NTM) is well defined, remains in U(x?, rc)
for all n ≥ 0, where

(2.5) rc =
(

tc

L

)1/p

and {xn} converges to x? ∈ U(x?, rc) solution of (1.1), provided that x0 ∈ U(x?, rc).
Moreover, for en =‖ xn − x? ‖ (n ≥ 0), the following estimate holds:

(2.6) en+1 ≤ an+1,

where, scalar iteration {an} (n ≥ 0) is given by

an+1 =
L

(1− L

c
ep
n)2

((
1 +

Lep
n

(1 + p) (1− L

c
ep
n)

)1+p

− 1
)

e1+p
n

1 + p
.

Furthemore, the solution x? is unique in U(x?, r?).

Proof. Let x ∈ U(x?, r0 = (
c

L
)1/p). Then, using (1.9), we obtain

(2.7) ‖ F ′(x?)−1 (F ′(x)− F ′(x?)) ‖≤ L0 ‖ x− x? ‖p<
L

c

c

L
= 1.

It follows from (2.7) and the Banach Lemma of invertible operators [3], [4], [9],
F ′(x)−1 ∈ L(Y,X ) and

(2.8) ‖ F ′(x)−1 F ′(x?) ‖≤ 1

1− L

c
‖ x− x? ‖p

.

By hypothesis x0 ∈ U(x?, rc) ⊆ U(x?, r0). Hence, (2.8) for x = x0 gives

(2.9) ‖ F ′(x0)−1 F ′(x?) ‖≤ 1

1− L

c
‖ x0 − x? ‖p

.
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Using (2.4) for n = 0, (1.8), (1.9) and (2.9), we get

(2.10)
‖ x1 − x? ‖ ≤ L

(1− L

c
ep
0)

2

((
1 +

Lep
0

(1 + p) (1− L

c
ep
0)

)1+p

− 1
)

e1+p
0

1 + p

< ‖ x0 − x? ‖,
by the definition of tc, (2.5) and the following estimates

(2.11)

‖ F ′(x?)−1

∫ 1

0
(F ′(x0)− F ′(θ x0 + (1− θ) x?)) dθ ‖

≤ L

∫ 1

0
‖ x0 − (1− θ) x? − θ x0 ‖ dθ

= L ‖ x0 − x? ‖p

∫ 1

0
(1− θ)p dθ =

L ‖ x0 − x? ‖p

1 + p
,

(2.12)
‖ F ′(x?)−1

∫ 1

0
(F ′(x0)− F ′(θ y0 + (1− θ) x?)) dθ ‖

≤ L

∫ 1

0
‖ x0 − (1− θ) x? − θ y0 ‖ dθ,

(2.13)
x0 − (1− θ) x? − θ y0 = x0 − x? − θ (y0 − x?)

= x0 − x? − θ F ′(x0)−1

∫ 1

0
(F ′(x0)− F ′(θ x0 + (1− θ) x?) dθ) (x0 − x?)

and

(2.14)

‖ F ′(x?)−1

∫ 1

0
(F ′(x0)− F ′(θ y0 + (1− θ) x?)) dθ ‖

≤ Lep
0

∫ 1

0

(
1 +

θ L ep
0

(1 + p)(1− L

c
ep
0)

)p

dθ

= (1− L

c
ep
0)

((
1 +

L ep
0

(1 + p)(1− L

c
ep
0)

)1+p

− 1
)

.

Estimate (2.10) implies that x1 ∈ U(x?, rc) and (2.6) holds for n = 0. Let us
assume (2.6) and xk ∈ U(x?, rc) hold for all k ≤ n. Then, as in (2.8)–(2.14), we
have the estimates (with xn, yn replacing x0 and y0, respectively):

(2.15) ‖ F ′(xn)−1 F ′(x?) ‖≤ 1

1− L

c
ep
n

,

(2.16) ‖ F ′(x?)−1

∫ 1

0
(F ′(xn)− F ′(θ xn + (1− θ) x?)) dθ ‖≤ L ep

n

1 + p
,
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(2.17)

‖ F ′(x?)−1

∫ 1

0
(F ′(xn)− F ′(θ yn + (1− θ)x?)) dθ ‖

≤ (1− L

c
ep
n)

((
1 +

Lep
n

(1 + p)(1− L

c
ep
n)

)1+p

− 1
)

.

Using (2.4), we have
(2.18)

‖ xn+1 − x? ‖
≤‖ F ′(xn)−1 F ′(x?) ‖2

∫ 1

0
‖ F ′(x?)−1 (F ′(xn)− F ′(θ yn + (1− θ) x?)) ‖ dθ

×
∫ 1

0
‖ F ′(x?)−1 (F ′(xn)− F ′(θ xn + (1− θ) x?)) ‖ dθ ‖ xn − x? ‖ .

By (2.15)–(2.18), we obtain

(2.19) en+1 =‖ xn+1 − x? ‖≤ an+1 < en,

the induction is completed, xn+1 ∈ U(x?, rc) and {xn} converges to x?.
We shall finally show the uniqueness part. Let y? ∈ U(x?, r?) be a solution of

F (x) = 0 and set

(2.20) Q =
∫ 1

0
F ′(y? + θ (x? − y?)) dθ.

Using (2.4), we have in turn:
(2.21)

‖ A(x?)−1 (Q− F ′(x?)) ‖ ≤ ‖ F ′(x?)−1

∫ 1

0
(F ′(y? + θ (x? − y?))− F ′(x?)) dθ ‖

≤ L

c
‖ x? − y? ‖p

∫ 1

0
θp dθ

=
L

c (1 + p)
‖ x? − y? ‖p< 1.

It follows from (2.21) and the Banach Lemma on invertible operators that Q−1

exists. In view of the identity

0 = F (x?)− F (y?) = Q (x? − y?),

we conclude

x? = y?.

That completes the proof of Theorem 2.2. ¤
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Remark 2.3. The condition U(x?, r?) ⊆ D is needed to show the uniqueness part.
It can be replaced by

U(x?, r0) ⊆ D.

However, we then have

U(x?, r0) ⊆ U(x?, r?).

Next, we shall show that (NTM) converges with order 1 + 2 p.

Proposition 2.4. Under the hypotheses of Theorem 2.2, we have

(2.22) en+1 ≤ an+1 ≤ bn+1,

where,

(2.23) bn+1 =
L2 (1− L

c
ep
n)

(1− L0

c
ep
n)2

(
L

1− L

c
ep
n

+
pL ep

n

2 (1 + p) (1− L

c
ep
n)2

)
e1+2 p
n .

Proof. Define function gn,c on [1, β], where,

β = 1 +
Lep

n

(1 + p) (1− L

c
ep
n)

by

gn,c(t) = t1+p.

Then, we get g′n,c(t) = (1 + p) tp and g′′n,c(t) = (1 + p) p tp−1.
Taylor’s formula guarantees the existence of γ ∈ [1, β], such that

(2.24)

gn,c(β)− gn,c(1) = g′n,c(β − 1) +
g′′n,c(γ)

2
(β − 1)2

=
Lep

n

1− L

c
ep
n

+
pL2 e2 p

n

2 γ1−p (1 + p) (1− L

c
ep
n)2

≤ L

(
L

1− L

c
ep
n

+
pL ep

n

2 (1 + p) (1− L

c
ep
n)2

)
ep
n,

since,
1

γ1−p
≤ 1 for all γ ∈ [1, β].

By the defintion of sequences {an}, {bn} and (2.24), we obtain

an+1 ≤ bn+1 for all n ≥ 0.

That completes the proof of Proposition 2.4. ¤



ON THE RADIUS OF CONVERGENCE OF SOME NEWTON–TYPE METHODS 227

Remark 2.5. The results obtained in this study can be applied for operators F

satisfying autonomous differential equations of the form

(2.25) F ′(x) = P(F (x)),

where, P : Y −→ X is a given continuous operator. As F ′(x?) = P(F (x?)) = P (0),
we do not need to known x? to verify conditions (1.5), (1.6), (1.7) and (1.8).

Let F (x) = ex − 1. Define P by P(x) = x + 1, then, (2.25) is satisfied (see also
Example 3.1). Other applications can be found in [1]–[11].

3. Applications

Example 3.1 ([2]-[4]). Let X = Y = R. Define function F on D = [−1, 1], given
by

(3.1) F (x) = ex − 1.

Then, for x? = 0, using (3.1), we have F (x?) = 0 and F ′(x?) = e0 = 1. Moreover,
(1.8) and (1.9) hold for p = 1, L = e > L0 = e−1, whereas c =

e

e− 1
= 1.581976707.

Moreover, we have

fc(t) = t

((
2 (1− (e− 1) t

e
) + t

)2

− 4
(

1− (e− 1) t

e

)2)
− 8

(
1− (e− 1) t

e

)4

,

tc = .6098166918, r0 = (
c

L
)1/p = .5819767070,

rc = (
tc

L
)1/p = .2571658439, r? = 1.163953414.

Note that

rc = .2571658439 < rA =
2

2L0 + L
= .3249472314.

Example 3.2 ([2]-[4]). Let X = Y = R. Define function F on D = [1, 3], given by

(3.2) F (x) =
2
3

x3/2 − x.

Then, the zero of F is x? =
9
4

= 2.25. Using (3.2), F ′(x?) = .5, L = 2 > L0 = 1,
c = 2 and p = .5. Moreover, we have

fc(t) = t

((
3
2

(1− t

2
) + t

)3
2 −

(
3
2

(1− t

2
)
)3

2
)
−

(
3
2

)5
2

(
1− t

2

)7
2 ,

tc = .6412553390, r0 = 1,

rc = .5662399399, r? = 1.224744871.

Note that
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rc = .5662399399 < rA =
(

1 + p

(1 + p) L0 + L

)1/p

= .6546536707.

Example 3.3. Let X = Y = C[0, 1], the space of continuous functions defined on
[0, 1], equipped with the max norm and D = U(0, 1). Define function F on D, given
by

(3.3) F (h)(x) = h(x)− 5
∫ 1

0
x θ h(θ)3 dθ.

Then, we have:

fc(t) = t

((
2 (1− t

2
) + t

)2

− 4
(

1− t

2

)2)
− 8

(
1− t

2

)4

,

F ′(h[u])(x) = u(x)− 15
∫ 1

0
x θ h(θ)2 u(θ) dθ for all u ∈ D.

Using (3.3), (1.5), (1.6) for x?(x) = 0 for all x ∈ [0, 1], we get

p = 1, L = 15, L0 = 7.5, c = 2,

tc = .6780149362, r0 = .1333333333,

rc = .04520099575, r? = .2666666667.

Note that

rc = .04520099575 < rA =
2

2L0 + L
= .06666666667.

Example 3.4. In the following Tables, we tabulate values of tc for c = 1,
e

e− 1
=

1.581976707, 2 and p = .1, .2, · · · , 1. We use Maple 13 for different calculations.

Comparison table (I)
p .1 .2 .3 .4
t1 .4368349792 .4429562040 .4486068930 .4538529047

t1.581976707 .5466960852 .5556998369 .5640448368 .571820981
t2 .6027543663 .6134232216 .6233312759 .6325810531

Comparison table (II)
p .5 .6 .7 .8
t1 .4587471202 .4633326601 .4676451584 .4717144081

t1.581976707 .5791007272 .5859433703 .5923980761 .5985060824
t2 .6412553390 .6494219962 .6571373857 .6644488527

Comparison table (III)
p .9 1
t1 .4755655764 .4792201186

t1.581976707 .6043023300 .6098166918
t2 .6713965712 .6780149362
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Figure 1. Left: Function ϕ : c −→ tc on [1; 7]; Right: Function φ : p −→
tc on [.1; 1].

It follows from Tables (I)–(III) that tc increses with c and p. For also validating this
result, see Fig. 1–left figure (for p = .5 and c ∈ [1; 7]) and fig. 1–right figure (for
c = 2 and p ∈ [.1; 1]). Since we can not have an explicit solution t2 in terms of p

for function φ (Fig. 1–right figure), we simply plot the function φ from the list of
points given by tables (I)–(III) for c = 2.

Conclusion

We are interested in the radius of convergence for (NTM) in order to approximate
a locally unique solution of an nonlinear equation in a Banach space setting. Using
a combination of Hölder and center–Hölder conditions, we presented a comparison
study between the radii of (NTM) and (NM). Applications and numerical examples
are also provided in this study.
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