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SURFACES WITH POINTWISE 1-TYPE GAUSS MAP

Dong-Soo Kim

Abstract. In this article, we study generalized slant cylindrical surfaces (GSCS’s)
with pointwise 1-type Gauss map of the first and second kinds. Our main results
state that GSCS’s with pointwise 1-type Gauss map of the first kind coincide with
surfaces of revolution with constant mean curvature; and the right cones are the
only polynomial kind GSCS’s with pointwise 1-type Gauss map of the second kind.

1. Introduction and Preliminaries

The notion of finite type submanifolds in Euclidean or pseudo-Euclidean space,
introduced by B.-Y. Chen during the late 1970’s, has become a useful tool for in-
vestigating and characterizing many important submanifolds (cf. [3, 4]). In [1, 2, 6]
the notion of finite type was extended to differential maps, in particular, to Gauss
map of submanifolds.

If a submanifold M of Euclidean or pseudo-Euclidean space has 1-type Gauss
map G, then G satisfies ∆G = λ(G + C) for some λ ∈ R and some constant vector
C, where ∆ is the Laplace operator corresponding to the induced metric on M (cf
[1, 2, 9]). However, the Laplacian of the Gauss map of several important surfaces
such as helicoids, catenoids and right cones take a somewhat different form; namely,

(1.1) ∆G = f(G + C)

for some non-constant function f and some constant vector C. For this reason, a
submanifold is said to have pointwise 1-type Gauss map if its Gauss map satisfies
(1.1) for some smooth function f on M and vector C. A submanifold with pointwise
1-type Gauss map is said to be of the first kind if the vector C in (1.1) is the zero
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vector. Otherwise, the pointwise 1-type Gauss map is said to be of the second kind
([5]).

Let M be a surface of Euclidean 3-space E3. The map G : M → S2 ⊂ E3 which
sends each point of M to the unit normal vector to M at the point is called the
Gauss map of the surface M, where S2 is the unit sphere in E3 centered at the origin.

For the matrix g = (gij) consisting of the components of the metric on M , we
denote by g−1 = (gij) (resp. G ) the inverse matrix (resp. the determinant) of the
matrix (gij). The Laplacian ∆ on M is, in turn, given by

(1.2) ∆ = − 1√G
∑

i,j

∂

∂xi

(√G gij ∂

∂xj

)
.

Here, we give an example of surfaces of revolution with pointwise 1-type Gauss
map of the second kind.

Example 1.1. Consider the right cone Ca which is parameterized by

x(u, v) = (v cosu, v sinu, av), a ≥ 0.

Then the Gauss map G and its Laplacian ∆G are respectively given by

G =
1√

1 + a2
(a cosu, a sinu,−1)

and

∆G =
1
v2

(
G +

(
0, 0,

1√
1 + a2

))
.

It implies that the right cone has pointwise 1-type Gauss map of the second kind.

In [5], B.-Y. Chen, M. Choi and Y. H. Kim studied surfaces of revolution with
pointwise 1-type Gauss map. In [7], U. Dursun studied flat surfaces in Euclidean
3-space with pointwise 1-type Gauss map.

The author and Y. H. Kim introduced the class of generalized slant cylindrical
surfaces (GSCS’s) in [8]. This class includes surfaces of revolution and cylindrical
surfaces as special cases. Thus, we need to consider the GSCS’s in E3 with pointwise
1-type Gauss map.

In this paper, we study the GSCS’s with pointwise 1-type Gauss map. In par-
ticular, we prove that GSCS’s with pointwise 1-type Gauss map of the first kind
coincide with surfaces of revolution with constant mean curvature; and the right
cones are the only polynomial kind GSCS’s with pointwise 1-type Gauss map of the
second kind.
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Hereafter, all objects are assumed to be connected and smooth unless mentioned
otherwise.

2. Generalized Slant Cylindrical Surfaces

For a fixed unit speed plane curve X(s) = (x(s), y(s), 0), let T (s) = X ′(s) and
N(s) = (−y′(s), x′(s), 0) denote the unit tangent and principal normal vector, re-
spectively. The curvature κ(s) of X(s) is defined by T ′(s) = κ(s)N(s) and we have
T (s)×N(s) = V, where V denotes the unit vector (0, 0, 1). For a constant θ, we let
Yθ(s) = cos θN(s) + sin θV . Then the ruled surface M defined by

(2.1) F (s, t) = X(s) + tYθ(s)

is regular at (s, t) where 1 − cos θκ(s)t does not vanish. This ruled surface M

is called a slant cylindrical surface(SCS) over X(s). For the unit normal vector
G = − sin θN(s) + cos θV , M satisfies

〈Fs, Ft〉 = 0, 〈Fst, G〉 = 0.

This shows that the coordinate lines of F are lines of curvature of M with corre-
sponding principal curvatures

(2.2) k1(s, t) =
−κ(s) sin θ

1− κ(s)t cos θ
, k2(s, t) = 0,

respectively. The SCS with sin θ = 0 or cos θ = 0 is nothing but a parametrization
of either a plane or a cylindrical surface.

In general, we consider another unit speed plane curve W (t) = (z(t), w(t)). If we
let Ys(t) = z(t)N(s) + w(t)V , then the parametrized surface defined by

(2.3) H(s, t) = X(s) + Ys(t)

is regular at (s, t) where 1 − κ(s)z(t) does not vanish. This parametrized surface
M is called a generalized slant cylindrical surface(GSCS) over X(s). For the unit
normal vector G(s, t) = −w′(t)N(s) + z′(t)V , M satisfies

〈Hs,Ht〉 = 0, 〈Hst, G〉 = 0.

This shows that H(s, t) is a principal curvature coordinate system of M with corre-
sponding principal curvatures

(2.4) k1(s, t) =
−κ(s)w′(t)
1− κ(s)z(t)

, k2(s, t) = κ(t),

respectively, where κ(t) = z′(t)w′′(t)− z′′(t)w′(t) denotes the curvature of W (t).



372 Dong-Soo Kim

If W (t) is a straight line, then the GSCS H(s, t) is nothing but a SCS. If X(s) is
a straight line, then the GSCS H(s, t) is nothing but a cylindrical surface. Further-
more, we have the following ([8]).

Proposition 2.1. If X(s) is a circle, then GSCS M over X(s) is a surface of
revolution.

Therefore cylindrical surfaces and surfaces of revolution are special cases of
GSCS’s.

Now we give the following:

Proposition 2.2. Let M denote a GSCS given by (2.3). Then we have the follow-
ing.

(1) If the mean curvature H is constant, then M is a surface of revolution.
(2) If the Gaussian curvature K is constant, then M is either a surface of

revolution or an SCS.

Proof. It follows from (2.4) that

(2.5) 2H = κ(t) +
−κ(s)w′(t)
1− κ(s)z(t)

, K =
−κ(s)κ(t)w′(t)
1− κ(s)z(t)

.

Hence we have

(2.6) κ(t)− 2H = κ(s){κ(t)z(t)− 2Hz(t) + w′(t)},

and

(2.7) K = κ(s){Kz(t)− κ(t)w′(t)}.

Suppose that H is constant. If κ(t) − 2H 6= 0, then (2.6) shows that κ(s) is a
nonzero constant, and hence M is a surface of revolution. If κ(t) − 2H = 0, then
(2.5) implies κ(s)w′(t) = 0. In case κ(s0) 6= 0 for some s0, w′(t) vanishes identically,
and hence M is a part of a plane. Otherwise, κ(s) vanishes identically. Hence X(s)
is a straight line. Thus M is a part of a plane (H = 0) or a circular cylinder (H 6= 0).

Now suppose that K is constant. If K 6= 0, it follows from (2.7) that κ(s) is
a nonzero constant, and hence M is a surface of revolution. In case K = 0 and
κ(s0) 6= 0, (2.7) shows that κ(t) vanishes identically, and hence M is an SCS. In
case K = 0 and κ(s) vanish identically, then M is a cylindrical surface. ¤
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3. GSCS’s with Pointwise 1-type Gauss Map of the First Kind

Let X(s) = (x(s), y(s), 0) be a unit speed plane curve with the Frenet frame
{T (s), N(s)}. We consider GSCS’s parametrized by

(3.1) H(s, t) = X(s) + Ys(t),

where W (t) = (z(t), w(t)) is a unit speed plane curve, Ys(t) = z(t)N(s) + w(t)V ,
and V = (0, 0, 1). Then H(s, t) is regular at (s, t) where Q(s, t) = 1− κ(s)z(t) does
not vanish and we get

(3.2)
Hs = Q(s, t)T (s), Ht = z′(t)N(s) + w′(t)V,

G(s, t) = −w′(t)N(s) + z′(t)V.

The Laplacian ∆ on M is given by

(3.3) ∆f = −Q−3{κ′(s)z(t)fs + Qfss −Q2κ(s)z′(t)ft + Q3ftt}.
Hence it follows from (3.2) and (3.3) that

(3.4)
−Q3∆G = κ′(s)w′(t)T (s) + Q{κ(s)2w′(t) + Qκ(s)z′(t)w′′(t)

−Q2w′′′(t)}N(s) + Q2{−κ(s)z′(t)z′′(t) + Qz′′′(t)}V.

Now suppose that M has the pointwise 1-type Gauss map G which satisfies (1.1).
Then, letting C = C1(s)T (s) + C2(s)N(s) + C3V , we have the following.

(3.5) κ′(s)w′(t) = −Q3C1(s)f(s, t),

(3.6) κ(s)2w′(t) + Qκ(s)z′(t)w′′(t)−Q2w′′′(t) = Q2f(s, t){w′(t)− C2(s)},
and

(3.7) κ(s)z′(t)z′′(t)−Qz′′′(t) = Qf(s, t){z′(t) + C3}.
Using above, we get the following:

Theorem 3.1. Let M be a GSCS given by (3.1). Suppose that M has pointwise
1-type Gauss map G of the first kind. Then M is a surface of revolution.

Proof. Since C = C1(s)T (s) + C2(s)N(s) + C3V = 0, it follows from (3.5) that
κ′(s)w′(t) = 0. In case κ′(s0) 6= 0 for some s0, w(t) is constant, and hence M is a
part of a plane. Otherwise, κ is constant. If κ is nonzero, then M is a surface of
revolution. If κ = 0, then it follows from (3.6) and (3.7) that

(3.8) z′′′(t) + f(s, t)z′(t) = 0, w′′′(t) + f(s, t)w′(t) = 0.

This shows that κ′(t) = 0. Thus M is a plane or a circular cylinder. ¤
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Combining Theorem 3.1 in [5] and Proposition 2.2, Theorem 3.1 shows directly
the following.

Corollary 3.2. Let M be a GSCS given by (3.1). Then the following are equivalent.

(1) M has pointwise 1-type Gauss map G of the first kind.
(2) M has constant mean curvature.
(3) M is a surface of revolution with constant mean curvature.

Remark 3.3. Surfaces of revolution with constant mean curvature are also known
as surfaces of Delaunay (cf. [10, p.115]).

4. GSCS’s with Pointwise 1-type Gauss Map of the Second Kind

Consider a GSCS M parametrized by (3.1). If M is not cylindrical, then W (t)
can be parametrized by W (t) = (t, g(t)) for some function g = g(t). Hence M is
given by

(4.1) H(s, t) = X(s) + tN(s) + g(t)V.

If g(t) is a polynomial in t, Then M is said to be of polynomial kind ([5]). H(s, t)
is regular at (s, t) where Q(s, t) = 1− tκ(s) 6= 0 and we get

(4.2)
Hs = Q(s, t)T (s),Ht = N(s) + g′(t)V,

G(s, t) =
1

P (t)
{−g′(t)N(s) + V }, P (t) =

√
1 + g′(t)2.

The Laplacian ∆ on M is given by

(4.3)
∆f =− P−4Q−3{κ′(s)tP 4fs + P 4Qfss

− (P 2Q2κ(s) + Q3g′g′′)ft + P 2Q3ftt}.
Hence it follows from (4.2) and (4.3) that

(4.4)

∆G =− κ′(s)g′P−1Q−3T (s)

− P−7Q−2{κ(s)2g′P 6 + κ(s)g′′P 2Q

+ g′(g′′)2Q2 − g′′′P 2Q2 + 3g′(g′′)2Q2}N(s)

− P−7Q−1{(3(g′)2(g′′)2 − (g′′)2 − g′g′′′ − (g′)3g′′′)Q + κ(s)g′g′′P 2}V.

Suppose that the Gauss map G satisfies (1.1) with nonzero constant vector C.
Then, letting C = C1(s)T (s) + C2(s)N(s) + C3V , we have the following.

(4.5) PQ3C1(s)f(s, t) + κ′(s)g′(t) = 0,
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(4.6)
P 6Q2f(s, t){−g′(t) + PC2(s)}+ κ(s)2g′P 6

+ κ(s)g′′P 2Q + g′(g′′)2Q2 − g′′′P 2Q2 + 3g′(g′′)2Q2 = 0,

and

(4.7)
P 6Qf(s, t){1 + C3P}+ {3(g′)2(g′′)2

− (g′′)2 − g′g′′′ − (g′)3g′′′}Q + κ(s)g′g′′P 2 = 0.

It follows from (4.5) and (4.7) that

(4.8)

C3κ
′(s)g′P 6 + κ′(s)g′P 5

= C1(s)Q3{3(g′)2(g′′)2 − (g′)3g′′′}+ C1(s)κ(s)g′g′′P 2Q2

− C1(s)Q3{(g′′)2 + g′g′′′}
Suppose that M is a GSCS of polynomial kind, that is, g(t) is a polynomial in t.

Denote by degg(t) the degree of g(t).
If degg(t) = n ≥ 2, then P 2 is a polynomial of degree 2n− 2. By comparing the

degree of both sides of (4.8), we see that C3κ
′(s) = 0, and hence we get

(4.9)
κ′(s)g′P 5 = C1(s)Q3{3(g′)2(g′′)2 − (g′)3g′′′}+ C1(s)κ(s)g′g′′P 2Q2

− C1(s)Q3{(g′′)2 + g′g′′′}.
By comparing the degree of both sides of (4.9), we see that κ′(s) = 0. Thus, if κ 6= 0,
M is a surface of revolution. If κ = 0, then T, N are constant vectors and M is a
cylindrical surface over a plane curve W (t). Since Q = 1, we have from (4.4)

(4.10)
∆G =− P−7{g′(g′′)2 − g′′′P 2 + 3g′(g′′)2}N

− P−7{3(g′)2(g′′)2 − (g′′)2 − g′g′′′ − (g′)3g′′′+}V.

Using (1.1), we get C1 = 0, C ′
2 = C ′

3 = 0, and

(4.11) {1 + (g′)2}{C2A− C2B − C3D}2 = {g′A− g′B + D}2,

where

(4.12)
A = 3(g′)2(g′′)2 − (g′)3g′′′, B = (g′′)2 + g′g′′′,

D = 4g′(g′′)2 − g′′′ − (g′)2g′′′.

By comparing the coefficient of highest degree of both sides of (4.11), we get C2
2 = 1,

and hence again we get C3 = 0. This shows that the coefficient of highest degree of
g′AD becomes zero, which is a contradiction.

If degg(t) = 1, then M is a slant cylindrical (non-cylindrical) surface. Note that
P =

√
1 + a2, where g′(t) = a 6= 0. By applying (4.5) and (4.6), we get

(4.13) PQ3C1(s)f(s, t) + aκ′(s) = 0,
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and

(4.14) Q2f(s, t){PC2(s)− a}+ aκ(s)2 = 0.

Suppose that κ′(s0) 6= 0 for some s0. Then on an interval I, we have κ′(s) 6= 0.
On I, f(s, t) is given by

(4.15) f(s, t) =
−aκ′(s)

PQ3C1(s)
.

Hence, by applying Q = 1− κ(s)t, it follows from (4.13) and (4.14) that

(4.16) aPκ(s)2C1(s)− aPκ′(s)C2(s) + a2κ′(s)− aPκ(s)3C1(s)t = 0.

The coefficient of t in (4.16) must vanish, and hence C1(s) = 0 on I, which contra-
dicts to (4.13). This contradiction shows that κ(s) is a constant. Therefore M is a
plane or a right circular cone.

Summarizing above, we obtain

Theorem 4.1. Suppose that a GSCS M of polynomial kind has pointwise 1-type
Gauss map G of the second kind. Then M is a surface of revolution.

Hence, combining Theorem 4.1 in [5], we get

Corollary 4.2. A GSCS M of polynomial kind has the pointwise 1-type Gauss map
G of the second kind if and only if it is a plane or a right circular cone.
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