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A FIXED POINT APPROACH TO THE STABILITY OF THE
QUADRATIC-ADDITIVE FUNCTIONAL EQUATION

Sun Sook Jin a and Yang-Hi Lee b

Abstract. We investigate the stability of the functional equation

f(x + y + z + w) + 2f(x) + 2f(y) + 2f(z) + 2f(w)− f(x + y)

− f(x + z)− f(x + w)− f(y + z)− f(y + w)− f(z + w) = 0

by using a fixed point theorem in the sense of L. Cădariu and V. Radu.

1. Introduction

In 1940, S. M. Ulam [18] raised a question concerning the stability of homomor-
phisms:

“Given a group G1, a metric group G2 with the metric d(·, ·), and a positive
number ε, does there exist a δ > 0 such that if a mapping f : G1 → G2 satisfies the
inequality d(f(xy), f(x)f(y)) < δ for all x, y ∈ G1 then there exists a homomorphism
F : G1 → G2 with d(f(x), F (x)) < ε for all x ∈ G1?”

When this problem has a solution, we say that the homomorphisms from G1 to G2

are stable. In the next year, D. H. Hyers [7] gave a partial solution of Ulam’s problem
for the case of approximate additive mappings under the assumption that G1 and
G2 are Banach spaces. Hyers’ result was generalized by T. Aoki [1] for additive
mappings and by Th.M. Rassias [16] for linear mappings by considering the stability
problem with unbounded Cauchy differences. The paper of Th. M. Rassias had much
influence in the development of stability problems. The terminology Hyers-Ulam-
Rassias stability originated from this historical background. During the last decades,
the stability problems of functional equations have been extensively investigated by
a number of mathematicians, see [6], [8]-[14].
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Almost all subsequent proofs, in this very active area, have used Hyers’ method
of [7]. Namely, the mapping F , which is the solution of a functional equation, is
explicitly constructed, starting from the given mapping f , by the formulae
F (x) = limn→∞ 1

2n f(2nx) or F (x) = limn→∞ 2nf( x
2n ). We call it a direct method. In

2003, L. Cădariu and V. Radu [2] observed that the existence of the solution F for
a functional equation and the estimation of the difference with the given mapping
f can be obtained from the fixed point theory alternative. This method is called a
fixed point method. In 2004, they [4] applied this method to prove stability theorems
of the Cauchy functional equation

(1.1) f(x + y)− f(x)− f(y) = 0.

In 2003, they [3] obtained the stability of the quadratic functional equation

(1.2) f(x + y) + f(x− y)− 2f(x)− 2f(y) = 0

by using the fixed point method. Notice that if we consider f1, f2 : R→ R defined by
f1(x) = ax and f2(x) = ax2, where a is a real constant, then f1 satisfies the equation
(1.1) and f2 holds (1.2), respectively. We say a solution of (1.1) an additive map and
a mapping satisfying (1.2) is called a quadratic map. Now we consider the following
functional equation:

f(x + y + z + w) + 2f(x) + 2f(y) + 2f(z) + 2f(w)− f(x + y)

− f(x + z)− f(x + w)− f(y + z)− f(y + w)− f(z + w) = 0(1.3)

which is called the quadratic-additive functional equation. The function f : R → R
defined by f(x) = ax2 + bx satisfies this functional equation, where a, b are real
constants. We call a solution of (1.3) a quadratic-additive mapping. In 2004, Chang
et al [5] obtained a stability of the functional equation (1.3) by handling the odd
part and the even part of the given mapping f , respectively. In their processing,
they needed to take an additive map A which is close to the odd part f(x)−f(−x)

2 of f

and a quadratic map Q which is approximate to the even part f(x)+f(−x)
2 of it, and

then combining A and Q to prove the existence of a quadratic-additive mapping F

which is close to the given mapping f .
In this paper, we will prove the stability of the quadratic-additive functional

equation (1.3) by using a fixed point theorem. In the previous results of stability
problems of (1.3), as we mentioned above, they had to get a solution by using the
direct method to the odd part and the even part, respectively. Instead of splitting
the given mapping f : X → Y into two parts, in this paper, we can take the desired
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solution F at once. Precisely, we introduce a strictly contractive mapping with
Liptshitz constant 0 < L < 1. Using a fixed point theorem in the sense of L. Cădariu
and V. Radu, together with suitable conditions, we can show that the contractive
mapping has the fixed point. Actually the fixed point F becomes the precise solution
of (1.3). In section 2, we prove several stability results of the functional equation
(1.3) using a fixed point theorem, see Theorem 2.3 and Theorem 2.5. In section 3,
we use the results in the previous sections to get a stability of the Cauchy functional
equation (1.1) and that of the quadratic functional equation (1.2), respectively.

2. Main Results

We recall the following result of the fixed point theorem by Margolis and Diaz.

Theorem 2.1 ([15, 17]). Suppose that a complete generalized metric space (X, d),
which means that the metric d may assume infinite values, and a strictly contractive
mapping J : X → X with the Lipschitz constant 0 < L < 1 are given. Then, for
each given element x ∈ X, either

d(Jnx, Jn+1x) = +∞, ∀n ∈ N ∪ {0},
or there exists a nonnegative integer k such that:

(1) d(Jnx, Jn+1x) < +∞ for all n ≥ k;
(2) the sequence {Jnx} is convergent to a fixed point y∗ of J ;
(3) y∗ is the unique fixed point of J in Y := {y ∈ X, d(Jkx, y) < +∞};
(4) d(y, y∗) ≤ (1/(1− L))d(y, Jy) for all y ∈ Y.

Throughout this paper, let V be a (real or complex) linear space and Y a Banach
space. For a given mapping f : V → Y , we use the following abbreviation

Df(x, y, z, w) :=f(x + y + z + w) + 2f(x) + 2f(y) + 2f(z) + 2f(w)− f(x + y)

− f(x + z)− f(x + w)− f(y + z)− f(y + w)− f(z + w)

for all x, y, z, w ∈ V . If f is a solution of the functional equation Df ≡ 0, see (1.3),
we call it a quadratic-additive mapping. We first prove the following lemma.

Lemma 2.2. If f : V → Y is a mapping such that Df(x, y, z, w) = 0 for all
x, y, z, w ∈ V \{0}, then f is a quadratic-additive mapping.

Proof. By (1.3), we enough to show that Df ≡ 0. By choosing x ∈ V \{0}, we get

f(0) =
1
3
(
Df(x, x, x, x) + Df(−x,−x,−x,−x)
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+ Df(2x, 2x,−2x,−2x)− 2Df(x, x,−x,−x)
)

= 0

and

Df(x, y, z, 0) =Df(2x, y, z,−x)−Df(2x, y,−x,−x) + Df(2x, y, x,−x)

−Df(2x, z,−x,−x) + Df(2x, z, x,−x)− 2Df(2x, x, x,−x)

+ Df(x,−x,−x,−x) = 0

for all x, y, z ∈ V \{0}. Moreover, it is easy to prove that

Df(x, y, 0, 0) = Df(x, 0, 0, 0) = 0

for all x, y ∈ V \{0}. By the symmetry of the variables x, y, z, w, this implies the
desired result. ¤

In the following theorem, we can prove the stability of the functional equation
(1.3) using the fixed point theorem.

Theorem 2.3. Let f : V → Y . Suppose that we have a function ϕ : (V \{0})4 →
[0,∞) such that

(2.1) ‖Df(x, y, z, w)‖ ≤ ϕ(x, y, z, w)

for all x, y, z, w ∈ V \{0}, which has the property

(2.2) ϕ(2x, 2y, 2z, 2w) ≤ 2Lϕ(x, y, z, w)

for all x, y, z, w ∈ V \{0} and for a fixed positive real number 0 < L < 1. Then there
exists a unique quadratic-additive mapping F : V → Y such that

(2.3) ‖f(x)− f(0)− F (x)‖ ≤ 3ψ(x)
16(1−max{L, 1

2})
for all x ∈ V \{0}, where ψ : V \{0} → [0,∞) is defined by

(2.4) ψ(x) := ϕ(x, x, x,−x) + ϕ(−x,−x,−x, x) + 2‖f(0)‖.

In particular, F is represented by

(2.5) F (x) = lim
n→∞

(
f(2nx) + f(−2nx)

2 · 4n
+

f(2nx)− f(−2nx)
2n+1

)

for all x ∈ V . Moreover, if 0 < L < 1
2 and ϕ(x, y, z, w) is continuous, then f is

itself a quadratic-additive mapping.
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Proof. It follows from (2.2) that

lim
n→∞

ϕ(2nx, 2ny, 2nz, 2nw)
2n

= 0

for all x, y, z, w ∈ V \{0}. Let S be the set of all mappings g : V → Y with g(0) = 0.
If we consider the mapping f̃ = f − f(0), then f̃ ∈ S. We introduce a generalized
metric on S by

d(g, h) := inf{K ∈ R+| ‖g(x)− h(x)‖ ≤ Kψ(x) for all x ∈ V \{0}}

where ψ is defined as (2.4). Observe that ψ(x) = ψ(−x) and ψ(2x)
2 ≤ max{L, 1

2}ψ(x)
for all x ∈ V \{0}. It is easy to show that (S, d) is a generalized complete metric
space. Now we consider the mapping J : S → S, which is defined by

Jg(x) :=
g(2x)− g(−2x)

4
+

g(2x) + g(−2x)
8

for all x ∈ V. Notice that

Jng(x) =
g(2nx)− g(−2nx)

2n+1
+

g(2nx) + g(−2nx)
2 · 4n

for all n ∈ N and x ∈ V . Let g, h ∈ S and let K ∈ [0,∞] be an arbitrary constant
with d(g, h) ≤ K. From the definition of d, we have

‖Jg(x)− Jh(x)‖ =
3
8
‖(g(2x)− h(2x)‖+

1
8
‖(g(−2x)− h(−2x)‖

≤ 1
2
Kψ(2x) ≤ max

{
L, 2−1

}
Kψ(x)

for all x ∈ V \{0}, which implies that

d(Jg, Jh) ≤ max{L, 2−1} d(g, h)

for any g, h ∈ S. That is, J is a strictly contractive self-mapping of S with the
Lipschitz constant max{L, 1

2}. Moreover, by (2.1), we see that

‖f̃(x)− Jf̃(x)‖ =
1
16
‖3Df(x, x, x,−x)−Df(−x,−x,−x, x)− 6f(0)‖

≤ 3
16

ψ(x)

for all x ∈ V \{0}. It means that d(f̃ , Jf̃) ≤ 3
16 < ∞ by the definition of d. Therefore,

according to Theorem 2.1, the sequence {Jnf̃} converges to the unique fixed point
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F : V → Y of J in the set T = {g ∈ S|d(f̃ , g) < ∞}, which is represented by

F (x) := lim
n→∞

(
f̃(2nx) + f̃(−2nx)

2 · 4n
+

f̃(2nx)− f̃(−2nx)
2n+1

)

= lim
n→∞

(
f(2nx) + f(−2nx)

2 · 4n
+

f(2nx)− f(−2nx)
2n+1

)

for all x ∈ V , since limn→∞
f(0)
2·4n = 0. Moreover, we get

d(f̃ , F ) ≤ 1
1−max{L, 1

2}
d(f̃ , Jf̃) ≤ 3

16
(
1−max{L, 1

2}
)

which implies (2.3). By the definition of F , together with (2.1) and (2.2), we have

‖DF (x, y, z, w)‖

= lim
n→∞

∥∥∥Df(2nx, 2ny, 2nz, 2nw)−Df(−2nx,−, 2ny,−2nz,−2nw)
2n+1

+
Df(2nx, 2ny, 2nz, 2nw) + Df(−2nx,−2ny,−2nz,−2nw)

2 · 4n

∥∥∥

≤ lim
n→∞

2n + 1
2 · 4n

(ϕ(2nx, 2ny, 2nz, 2nw) + ϕ(−2nx,−2ny,−2nz,−2nw))

≤ lim
n→∞

4n + 2n

2 · 4n
Ln (ϕ(x, y, z, w) + ϕ(−x,−y,−z,−w))

= 0

for all x, y, z, w ∈ V \{0}. From Lemma 2.2, we have proved that

DF (x, y, z, w) = 0

for all x, y, z, w ∈ V . In particular, if f(0) = 0, then we have

‖Jg(x)− Jh(x)‖ ≤ 1
2
Kψ(2x) ≤ LKψ(x)

for all x ∈ V \{0}. From this, we have

d(Jg, Jh) ≤ L d(g, h)

for any g, h ∈ S and

‖f(x)− F (x)‖ ≤ 3ψ(x)
16(1− L)

for all x ∈ V \{0}. Now let 0 < L < 1
2 and ϕ be continuous. Since

‖f(0)‖ =
1
3

∥∥Df (2nx, 2nx, 2nx, 2nx) + Df
(
2n+1x, 2n+1x,−2n+1x,−2n+1x

)

+ Df (−2nx,−2nx,−2nx,−2nx)− 2Df (2nx, 2nx,−2nx,−2nx)
∥∥
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≤1
3
(
ϕ (2nx, 2nx, 2nx, 2nx) + ϕ

(
2n+1x, 2n+1x,−2n+1x,−2n+1x

)

+ ϕ (−2nx,−2nx,−2nx,−2nx) + 2ϕ (2nx, 2nx,−2nx,−2nx)
)

≤(2L)n

3
(
ϕ(x, x, x, x) + ϕ(−x,−x,−x,−x)

+ ϕ(2x, 2x,−2x,−2x) + 2ϕ(x, x,−x,−x)
)

for all n ∈ N and for any fixed x ∈ V \{0}, the last term of the above inequality
tends to 0 as n →∞. This implies that f(0) = 0. And we get

lim
n→∞ϕ((a1 · 2n + a2)x, (b1 · 2n + b2)y, (c1 · 2n + c2)z, (d1 · 2n + d2)w)

≤ lim
n→∞(2L)nϕ

((
a1 +

a2

2n

)
x,

(
b1 +

b2

2n

)
y,

(
c1 +

c2

2n

)
z,

(
d1 +

d2

2n

)
w

)

=0 · ϕ (a1x, b1y, c1z, d1w) = 0

for all x, y, z, w ∈ V \{0} and for any fixed integers a1, a2, b1, b2, c1, c2, d1, d2 with
a1, b1, c1, d1 6= 0. Therefore, we obtain

3‖F (x)− f(x)‖ ≤ lim
n→∞(‖(Df −DF )((2n + 1)x,−2nx,−2nx,−2nx)‖
+ ‖(F − f)((−2n+1 + 1)x)‖+ 3‖(f − F )(−2n+1x)‖
+ 6‖(F − f)(−2nx)‖+ 2‖(F − f)((2n + 1)x)‖)

≤ lim
n→∞

(
ϕ((2n + 1)x,−2nx,−2nx,−2nx)

+
3

(
ψ((1− 2n+1)x) + 3ψ(2n+1x) + 2ψ((2n + 1)x) + 6ψ(2nx)

)

16(1− L)

)

=0

for all x ∈ V \{0}. Since f(0) = 0 = F (0), we have shown that f ≡ F . This
completes the proof of this theorem. ¤
Remark 2.4. In Theorem 2.3, if ϕ satisfies the additional conditions ϕ(x, y, z, w) =
ϕ(−x,−y,−z,−w) and ϕ(x, y, z, w) ≤ L′ϕ(2x, 2y, 2z, 2w) for all x, y, z, w ∈ V \{0}
with 0 < L′ < 1, then

‖f(0)‖ = lim
n→∞

1
3

∥∥∥∥Df
( x

2n
,

x

2n
,

x

2n
,

x

2n

)
+ Df

(
− x

2n
,− x

2n
,− x

2n
,− x

2n

)

+ Df

(
2x

2n
,
2x

2n
,−2x

2n
,−2x

2n

)
− 2Df

( x

2n
,

x

2n
,− x

2n
,− x

2n

)∥∥∥∥

≤ lim
n→∞

1
3

(
ϕ

( x

2n
,

x

2n
,

x

2n
,

x

2n

)
+ ϕ

(
− x

2n
,− x

2n
,− x

2n
,− x

2n

)
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+ ϕ

(
2x

2n
,
2x

2n
,−2x

2n
,−2x

2n

)
+ 2ϕ

( x

2n
,

x

2n
,− x

2n
,− x

2n

) )

≤ lim
n→∞

L′n

3
(
ϕ(x, x, x, x) + ϕ(−x,−x,−x,−x)

+ ϕ(2x, 2x,−2x,−2x) + 2ϕ(x, x,−x,−x)
)

= 0

for all x ∈ V \{0}. Since ϕ satisfies ϕ(x, y, z, w) = ϕ(−x,−y,−z,−w) for all
x, y, z, w ∈ V \{0} and f(0) = 0, we get

‖f(x)− Jf(x)‖ =
1
16
‖3Df(x, x, x,−x)−Df(−x,−x,−x, x)‖

≤ 1
8
ψ(x)

for all x ∈ V \{0}, where ψ : V \{0} → [0,∞) is defined as Theorem 2.3. It means
that d(f, Jf) ≤ 1

8 < ∞ by the definition of d. Therefore the inequality (2.3) can be
replaced by the inequality

‖f(x)− F (x)‖ ≤ ϕ(x, x, x,−x)
4(1− L′)

for all x ∈ V \{0}.
We continue our investigation with the next result.

Theorem 2.5. Let ϕ : (V \{0})4 → [0,∞). Suppose that f : V → Y satisfies the
inequality ‖Df(x, y, z, w)‖ ≤ ϕ(x, y, z, w) for all x, y, z, w ∈ V \{0}. If there exists
0 < L < 1 such that ϕ has the property

(2.6) Lϕ(2x, 2y, 2z, 2w) ≥ 4ϕ(x, y, z, w)

for all x, y, z, w ∈ V \{0}, then there exists a unique quadratic-additive mapping
F : V → Y such that

(2.7) ‖f(x)− F (x)‖ ≤ L

8(1− L)
(ϕ(x, x, x,−x) + ϕ(−x,−x,−x, x))

for all x ∈ V \{0}. In particular, F is represented by

(2.8) F (x) = lim
n→∞

(
2n−1

(
f

( x

2n

)
− f

(
− x

2n

))
+

4n

2

(
f

( x

2n

)
+ f

(
− x

2n

)))

for all x ∈ V .

Proof. Since for all n ∈ N and a fixed x ∈ V \{0}

‖f(0)‖ =
1
3

∥∥∥∥Df
( x

2n
,

x

2n
,

x

2n
,

x

2n

)
+ Df

(
− x

2n
,− x

2n
,− x

2n
,− x

2n

)
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+ Df

(
2x

2n
,
2x

2n
,−2x

2n
,−2x

2n

)
− 2Df

( x

2n
,

x

2n
,− x

2n
,− x

2n

)∥∥∥∥

≤1
3

(
ϕ

( x

2n
,

x

2n
,

x

2n
,

x

2n

)
+ ϕ

(
− x

2n
,− x

2n
,− x

2n
,− x

2n

)

+ ϕ

(
2x

2n
,
2x

2n
,−2x

2n
,−2x

2n

)
+ 2ϕ

( x

2n
,

x

2n
,− x

2n
,− x

2n

))

≤ Ln

3 · 4n

(
ϕ(x, x, x, x) + ϕ(−x,−x,−x,−x)

+ ϕ(2x, 2x,−2x,−2x) + 2ϕ(x, x,−x,−x)
)

letting n → ∞ we have f(0) = 0. Let the set (S, d) be as in the proof of Theorem
2.3. Now we consider the mapping J : S → S defined by

Jg(x) := g
(x

2

)
− g

(
−x

2

)
+ 2

(
g

(x

2

)
+ g

(
−x

2

))

for all g ∈ S and x ∈ V . Notice that

Jng(x) = 2n−1
(
g

( x

2n

)
− g

(
− x

2n

))
+

4n

2

(
g

( x

2n

)
+ g

(
− x

2n

))

and J0g(x) = g(x) for all x ∈ V . Let g, h ∈ S and let K ∈ [0,∞] be an arbitrary
constant with d(g, h) ≤ K. From the definition of d, we have

‖Jg(x)− Jh(x)‖ = 3
∥∥∥g

(x

2

)
− h

(x

2

)∥∥∥ +
∥∥∥g

(
−x

2

)
− h

(
−x

2

)∥∥∥

≤ 4K
(
ϕ(

x

2
,
x

2
,
x

2
,−x

2
) + ϕ(−x

2
,−x

2
,−x

2
,
x

2
)
)

≤ LK (ϕ(x, x, x,−x) + ϕ(−x,−x,−x, x))

for all x ∈ V . So

d(Jg, Jh) ≤ Ld(g, h)

for any g, h ∈ S. That is, J is a strictly contractive self-mapping of S with the
Lipschitz constant L. Also we see that

‖f(x)− Jf(x)‖ =
1
2

∥∥∥−Df
(x

2
,
x

2
,
x

2
,−x

2

)∥∥∥

≤ 1
2

(
ϕ

(x

2
,
x

2
,
x

2
,−x

2

)
+ ϕ

(
−x

2
,−x

2
,−x

2
,
x

2

))

≤ L

8
(ϕ(x, x, x,−x) + ϕ(−x,−x,−x, x))

for all x ∈ V \{0}, which implies that d(f, Jf) ≤ L
8 < ∞. Therefore according to

Theorem 2.1, the sequence {Jnf} converges to the unique fixed point F of J in the
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set T := {g ∈ S|d(f, g) < ∞}, which is represented by (2.8). Since

d(f, F ) ≤ 1
1− L

d(f, Jf) ≤ L

8(1− L)

the inequality (2.7) holds. From the definition of F (x), (2.1) and (2.6), we have

‖DF (x, y, z, w)‖
= lim

n→∞

∥∥∥2n−1
(
Df

( x

2n
,

y

2n
,

z

2n
,

w

2n

)
−Df

(
− x

2n
,− y

2n
,− z

2n
,− w

2n

))

+
4n

2

(
Df

( x

2n
,

y

2n
,

z

2n
,

w

2n

)
+ Df

(
− x

2n
,− y

2n
,− z

2n
,− w

2n

))∥∥∥

≤ lim
n→∞

2n + 4n

2

(
ϕ

( x

2n
,

y

2n
,

z

2n
,

w

2n

)
+ ϕ

(
− x

2n
,− y

2n
,− z

2n
,− w

2n

))

≤ lim
n→∞

(2n + 4n)Ln

2 · 4n
(ϕ (x, y, z, w) + ϕ (−x,−y,−z,−w))

=0

for all x, y, z, w ∈ V \{0}. By Lemma 2.2, F is quadratic-additive. ¤

Remark 2.6. If ϕ satisfies the additional condition ϕ(x, y, z, w)=ϕ(−x,−y,−z,−w)
for all x, y, z, w ∈ V \{0} in Theorem 2.5, then we get

‖f(x)− Jf(x)‖ ≤ L

16
(ϕ(x, x, x,−x) + ϕ(−x,−x,−x, x))

for all x ∈ V \{0}. It means that d(f, Jf) ≤ L
16 < ∞ by the definition of d. Therefore

the inequality (2.7) can be replaced by the inequality

‖f(x)− F (x)‖ ≤ Lϕ(x, x, x,−x)
8(1− L)

for all x ∈ V \{0}.

3. Applications

For f : V → Y , let us define

Af(x, y) :=f(x + y)− f(x)− f(y),

Qf(x, y) :=f(x + y) + f(x− y)− 2f(x)− 2f(y)

for all x, y ∈ V . Using Theorem 2.3 and Theorem 2.5, we will show the stability
results of the additive functional equation Af ≡ 0 and the quadratic functional
equation Qf ≡ 0.

Corollary 3.1. Let fi : V → Y, i = 1, 2, be given for which there exist functions
φi : V 2 → [0,∞), i = 1, 2, such that
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(3.1) ‖Afi(x, y)‖ ≤ φi(x, y)

for all x, y ∈ V , respectively. If there exists L < 1 such that

φ1(2x, 2y) ≤ 2Lφ1(x, y),(3.2)

Lφ2(2x, 2y) ≥ 4φ2(x, y)(3.3)

for all x, y ∈ V , then we have unique additive mappings Fi : V → Y, i = 1, 2, such
that

‖f1(x)− f1(0)− F1(x)‖ ≤ 3(Φ1(x) + 2‖f1(0)‖)
16(1−max{L, 1

2})
,(3.4)

‖f2(x)− F2(x)‖ ≤ LΦ2(x)
8(1− L)

(3.5)

for all x ∈ V , where Φi : V → Y, i = 1, 2, are defined by

Φi(x) :=φi(2x, 0) + φi(−2x, 0) + 2φi(x, x)

+ 2φi(x,−x) + 2φi(−x, x) + 2φi(−x,−x)

for all x ∈ V . In particular, the mappings F1, F2 are represented by

F1(x) = lim
n→∞

f1(2nx)
2n

,(3.6)

F2(x) = lim
n→∞ 2nf2

( x

2n

)
(3.7)

for all x ∈ V . Moreover, if 0 < L < 1
2 and φ1(x, y) is continuous, then f1 is itself

an additive mapping.

Proof. Notice that

Dfi(x, y, z, w) = Afi(x + y, z + w)−Afi(x, z)−Afi(x, w)−Afi(y, z)−Afi(y, w)

for all x, y, z, w ∈ V and i = 1, 2. Put

ϕi(x, y, z, w) := φi(x + y, z + w) + φi(x, z) + φi(x,w) + φi(y, z) + φi(y, w)

for all x, y, z, w ∈ V and i = 1, 2, then ϕ1 satisfies (2.2) and ϕ2 holds (2.6). Therefore,
according to Theorem 2.3, there exists a unique mapping F1 : V → Y satisfying (3.4),
which is represented by (2.5). Observe that, by (3.1) and (3.2),

lim
n→∞

∥∥∥∥
f1(2nx) + f1(−2nx)

2n+1

∥∥∥∥ = lim
n→∞

∥∥∥∥
f1(2nx) + f1(−2nx)− f1(0)

2n+1

∥∥∥∥

= lim
n→∞

1
2n+1

‖Af1(2nx,−2nx)‖
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≤ lim
n→∞

1
2n+1

φ1(2nx,−2nx)

≤ lim
n→∞

Ln

2
φ1(x,−x) = 0

as well as

lim
n→∞

∥∥∥∥
f1(2nx) + f1(−2nx)

2 · 4n

∥∥∥∥ ≤ lim
n→∞

2nLn

2 · 4n
φ1(x,−x) = 0

for all x ∈ V . From this and (2.5), we get (3.6). Moreover, we have∥∥∥∥
Af1(2nx, 2ny)

2n

∥∥∥∥ ≤
φ1(2nx, 2ny)

2n
≤ Lnφ1(x, y)

for all x, y ∈ V . Taking the limit as n →∞ in the above inequality, we get

AF1(x, y) = 0

for all x, y ∈ V . In particular, consider the case 0 < L < 1
2 such that φ1(x, y)

is continuous, then ϕ1(x, y, z, w) is continuous on (V \{0})4 and we can say that
f1 ≡ F1 by Theorem 2.3.

On the other hand, according to Theorem 2.5, there exists a unique mapping
F2 : V → Y satisfying (3.5) which is represented by (2.8). Observe that

lim
n→∞ 22n−1

∥∥∥f2

( x

2n

)
+ f2

(−x

2n

)∥∥∥ = lim
n→∞ 22n−1

∥∥∥Af2

( x

2n
,− x

2n

)∥∥∥

≤ lim
n→∞ 22n−1φ2

( x

2n
,− x

2n

)

≤ lim
n→∞

Ln

2
φ2(x,−x) = 0

as well as

lim
n→∞ 2n−1

∥∥∥f2

( x

2n

)
+ f2

(−x

2n

)∥∥∥ ≤ lim
n→∞

Ln

2n+1
φ2(x,−x) = 0

for all x ∈ V . From this and (2.8), we get (3.7). Moreover, we have
∥∥∥2nAf2

( x

2n
,

y

2n

)∥∥∥ ≤ 2nφ2

( x

2n
,

y

2n

)
≤ Ln

2n
φ2(x, y)

for all x, y ∈ V . Taking the limit as n →∞ in the above inequality, we get

AF2(x, y) = 0

for all x, y ∈ V . ¤

Corollary 3.2. Let φi : V 2 → [0,∞), i = 1, 2, be given functions. Suppose that each
fi : V → Y, i = 1, 2, satisfies

‖Qfi(x, y)‖ ≤ φi(x, y)
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for all x, y ∈ V , respectively. If there exists 0 < L < 1 such that the mapping φ1 has
the property (3.2) and φ2 holds (3.3) for all x, y ∈ V , then we have unique quadratic
mappings F1, F2 : V → Y such that

‖f1(x)− F1(x)‖ ≤ 3(Φ1(x) + 4‖f1(0)‖)
32(1−max{L, 1

2})
,(3.8)

‖f2(x)− F2(x)‖ ≤ LΦ2(x)
16(1− L)

(3.9)

for all x ∈ V , where Φi : V → Y, i = 1, 2, is defined by

Φi(x) :=φi(2x, 0) + 2φi(0, 2x) + 2φi(x, x) + 2φi(x,−x) + φi(−2x, 0)

+ 2φi(0,−2x) + 2φi(−x,−x) + 2φi(−x, x).

In particular, F1 and F2 are represented by

F1(x) = lim
n→∞ 4−nf1(2nx),(3.10)

F2(x) = lim
n→∞ 4nf2(2−nx)(3.11)

for all x ∈ V . Moreover, if 0 < L < 1
2 and φ1(x, y) is continuous, then f1 is itself a

quadratic mapping.

Proof. Notice that

Dfi(x, y, z, w) =
1
2
(Qfi(x + y, z + w) + Qfi(x + w, y + z)−Qfi(x− z, y − w))

−Qif(x, z)−Qfi(y, w)

for all x, y, z, w ∈ V and i = 1, 2. Put

ϕi(x, y, z, w) :=
1
2
(φi(x + y, z + w) + φi(x + w, y + z) + φi(x− z, y − w))

+ φi(x, z) + φi(y, w)

for all x, y, z, w ∈ V and i = 1, 2, then ϕ1 satisfies (2.2) and ϕ2 holds (2.6). So we
have

‖Dfi(x, y, z, w)‖ ≤ ϕi(x, y, z, w)

for all x, y, z, w ∈ V and i = 1, 2. According to Theorem 2.3, there exists a unique
mapping F1 : V → Y satisfying (3.8) which is represented by (2.5). Observe that

lim
n→∞

∥∥∥∥
f1(2nx)− f1(−2nx)

2n+1

∥∥∥∥ = lim
n→∞

1
2n+1

‖Qf1(0, 2nx)‖

≤ lim
n→∞

1
2n+1

φ1(0, 2nx)



326 Sun Sook Jin & Yang-Hi Lee

≤ lim
n→∞

Ln

2
φ1(0, x) = 0

as well as

lim
n→∞

∥∥∥∥
f1(2nx)− f1(−2nx)

2 · 4n

∥∥∥∥ ≤ lim
n→∞

Ln

2n+1
φ1(0, x) = 0

for all x ∈ V . From this and (2.5), we get (3.10) for all x ∈ V . Moreover, we have
∥∥∥∥
Qf1(2nx, 2ny)

4n

∥∥∥∥ ≤
φ1(2nx, 2ny)

4n
≤ Ln

2n
φ1(x, y)

for all x, y ∈ V . Taking the limit as n →∞ in the above inequality, we get

QF1(x, y) = 0

for all x, y ∈ V . In particular, consider the case 0 < L < 1
2 such that φ1(x, y)

is continuous, then ϕ1(x, y, z, w) is continuous on (V \{0})4 and we can say that
f1 ≡ F1 by Theorem 2.3. On the other hand, according to Theorem 2.5, there
exists a unique mapping F2 : V → Y satisfying (3.9) which is represented by (2.8).
Observe that

4n
∥∥∥− f2

( x

2n

)
+ f2

(
− x

2n

)∥∥∥ = 4n
∥∥∥Qf2

(
0,

x

2n

)∥∥∥ ≤ 4nφ2

(
0,

x

2n

)
≤ Lnφ2(0, x)

for all x ∈ V . It leads us to get

lim
n→∞ 4n

(
f2

( x

2n

)
− f2

(
− x

2n

))
= 0 and lim

n→∞ 2n
(
f2

( x

2n

)
− f2

(
− x

2n

))
= 0

for all x, y ∈ V . From these and (2.8), we obtain (3.11). Moreover, we have
∥∥∥4nQf2

( x

2n
,

y

2n

)∥∥∥ ≤ 4nφ2

( x

2n
,

y

2n

)
≤ Lnφ2(x, y)

for all x, y ∈ V . Taking the limit as n →∞ in the above inequality, we get

QF2(x, y) = 0

for all x, y ∈ V . ¤
Now, we obtain Hyers-Ulam-Rassias stability results in the framework of normed

spaces using Theorem 2.3, Theorem 2.5, Remark 2.4, and Remark 2.6.

Corollary 3.3. Let X be a normed space. Suppose that the mapping f : X → Y

satisfies the inequality

‖Df(x, y, z, w)‖ ≤ θ(‖x‖p + ‖y‖p + ‖z‖p + ‖w‖p)

for all x, y, z, w ∈ X\{0}, where θ ≥ 0 and p ∈ (−∞, 0)∪ (0, 1)∪ (2,∞). Then there
exists a unique quadratic-additive mapping F : X → Y such that
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‖f(x)− F (x)‖ ≤
{ 2θ

2p−4‖x‖p if p > 2,
2θ

2−2p ‖x‖p if 0 < p < 1

for all x ∈ X\{0}. Moreover if p < 0, then f is itself a quadratic-additive mapping.

Proof. It follows from Theorem 2.3, Theorem 2.5, Remark 2.4, and Remark 2.6, by
putting

ϕ(x, y, z, w) := θ(‖x‖p + ‖y‖p + ‖z‖p + ‖w‖p)

for all x, y, z, w ∈ X\{0} with L = 2p−1 < 1 if p < 1, L = 22−p < 1 if p > 2, and
L′ = 2−p < 1 if p > 0. ¤
Corollary 3.4. Let X be a normd space. Suppose that the mapping f : X → Y

satisfies the inequality

‖Df(x, y, z, w)‖ ≤ θ‖x‖p‖y‖q‖z‖r‖w‖s

for all x, y, z, w ∈ X\{0}, where θ ≥ 0 and p + q + r + s ∈ (−∞, 0)∪ (0, 1)∪ (2,∞).
Then there exists a unique quadratic-additive mapping F : X → Y such that

‖f(x)− F (x)‖ ≤
{

θ‖x‖p+q+r+s

2(2p+q+r+s−4)
if p + q + r + s > 2,

θ‖x‖p+q+r+s

2(2−2p+q+r+s)
if 0 < p + q + r + s < 1

for all x ∈ X\{0}. Moreover if p+ q + r +s < 0, then f is itself a quadratic-additive
mapping.

Proof. It follows from Theorem 2.3, Theorem 2.5, Remark 2.4, and Remark 2.6, by
putting

ϕ(x, y, z, w) := θ‖x‖p‖y‖q‖z‖r‖w‖s

for all x, y, z, w ∈ X\{0} with L = 2p+q+r+s−1 < 1 if p + q + r + s < 1, L =
22−p−q−r−s < 1 if p+ q + r + s > 2, and L′ = 2−p−q−r−s < 1 if p+ q + r + s > 0. ¤
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6. P. Găvruta : A generalization of the Hyers-Ulam-Rassias stability of approximately
additive mappings. J. Math. Anal. Appl. 184 (1994), 431-436.

7. D. H. Hyers : On the stability of the linear functional equation. Proc. Natl. Acad. Sci.
27 (1941), 222-224.

8. G.-H. Kim: On the stability of functional equations with square-symmetric operation.
Math. Inequal. Appl. 4 (2001), 257–266.

9. H.-M. Kim: On the stability problem for a mixed type of quartic and quadratic func-
tional equation. J. Math. Anal. Appl. 324 (2006), 358–372.

10. Y.-H. Lee: On the stability of the monomial functional equation. Bull. Korean Math.
Soc. 45 (2008), 397-403.

11. Y.-H. Lee & K.-W. Jun: A generalization of the Hyers-Ulam-Rassias stability of
Jensen’s equation. J. Math. Anal. Appl. 238 (1999), 305-315.

12. : A generalization of the Hyers-Ulam-Rassias stability of Pexider equation. J.
Math. Anal. Appl. 246 (2000), 627-638.

13. : A note on the Hyers-Ulam-Rassias stability of Pexider equation. J. Korean
Math. Soc. 37 (2000), 111-124.

14. : On the stability of approximately additive mappings. Proc. Amer. Math. Soc.
128 (2000), 1361-1369.

15. B. Margolis & J.B. Diaz: A fixed point theorem of the alternative for contractions on
a generalized complete metric space. Bull. Amer. Math. Soc. 74 (1968), 305-309.

16. Th. M. Rassias : On the stability of the linear mapping in Banach spaces. Proc. Amer.
Math. Soc. 72 (1978), 297-300.

17. I.A. Rus: Principles and applications of fixed point theory. Ed. Dacia, Cluj-Napoca.
1979(in Romanian).

18. S.M. Ulam: A collection of mathematical problems. Interscience, New York, 1968, p. 63.

aDepartment of Mathematics Education, Gongju National University of Education,
Gongju 314-711, Korea
Email address: ssjin@gjue.ac.kr

bDepartment of Mathematics Education, Gongju National University of Education,
Gongju 314-711, Korea
Email address: yanghi2@hanmail.net


