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h—STABILITY OF PERTURBED DIFFERENTIAL SYSTEMS

YooN HoE Goo

ABSTRACT. In this paper, we investigate h—stability of the nonlinear perturbed
differential systems.

1. INTRODUCTION

The notion of h-stability (hS) was introduced by Pinto [12, 14] with the intention
of obtaining results about stability for a weakly stable system (at least, weaker
than those given exponential asymptotic stability) under some perturbations. Also,
he obtained some properties about asymptotic behavior of solutions of perturbed h-
systems, some general results about asymptotic integration and gave some important
examples in [13]. Choi and Ryu [3] investigated the important properties about hS
for the various differential systems. Recently, Choi et al. [4] and Goo [7] obtained
results for hS of nonlinear differential systems via fo-similarity. Goo et al. [7,8§]
investigated hS for the nonlinear Volterra integro-differential system and for the
linear perturbed Volterra integro-differential systems.

In this paper, we investigate h—stability of the nonlinear perturbed differential

systems .

2. PRELIMINARIES

We consider the nonlinear nonautonomous differential system

(2.1) 2'(t) = f(t,z(t), x(to) = 2o,

where f € C[RT x R",R"], RT = [0,00) and R"™ is the Euclidean n-space. We
assume that the Jacobian matrix f, = 0f/0z exists and is continuous on R* x R"
and f(t,0) = 0. For z € R", let [z] = (3}, 1‘?)1/2. Let x(t,t0,zp) denote the
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unique solution of (2.1) with x(tg,to, zo) = =g, existing on J = [tg,00). Then we
consider the associated variational systems around the zero solution of (2.1) and

around x(t), respectively,

(2.2) V'(t) = fo(t,0)v(t), v(te) = vo
and
(2.3) 2 (t) = fo(t,z(t, to, 20))2(t), 2z(to) = 20.

The fundamental matrix ®(¢,tg,zo) of (2.3) is given by
0
(I)(t, to, 170) = (975601:(2&7 to, :L'o),

and ®(¢,10,0) is the fundamental matrix of (2.2).

We recall some notions of h-stability [12] and the notion of ¢-similarity [9)].

Definition 2.1. The system (2.1) (the zero solution x = 0 of (2.1)) is called
(hS) h—stable if there exist ¢ > 1, 6 > 0, and a positive bounded continuous function
h on RT such that

|2 (t)] < claol ht) h(to) ™
for t > top > 0 and |z¢| < 4,
(hSV) h—stable in variation if (2.3) (or z =0 of (2.3)) is h-stable.

Let M denote the set of all n xn continuous matrices A(t) defined on R = [0, 00)
and A be the subset of M consisting of those nonsingular matrices S(¢) that are
of class C! with the property that S(t) and S~!(t) are bounded. The notion of
too-similarity in M was introduced by Conti [5].

Definition 2.2. A matrix A(t) € M is te-similar to a matrix B(t) € M if there

exists an n x n matrix F(t) absolutely integrable over RY, i.e.,

/WWWﬁ<m
0

such that

(2.4) S(6) + S(H)B(E) — A(H)S(t) = F(1)
for some S(t) € N.

The notion of t.-similarity is an equivalence relation in the set of all n x n
continuous matrices on R, and it preserves some stability concepts [5, 9].

We give some related properties that we need in the sequal.
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Lemma 2.3 ([14]). The linear system
(2.5) v = A(t)z, z(ty) = o,

where A(t) is an n X n continuous matriz, is hS if and only if there exist ¢ > 1 and

a positive bounded continuous function h defined on R™ such that

(2.6) [6(t, to, w0)| < ch(t) h(to) ™"
fort >ty >0, where ¢(t,to,x0) is a fundamental matriz of (2.5).

We need Alekseev formula to compare between the solutions of (2.1) and the

solutions of perturbed nonlinear system

(2.7) y' = f(t,y) +g(t,y, Ty), y(to) = Yo,

where g € C[RT x R” x R*",R"] and T : C(RT,R") — C(R*,R") is a continuous
operator. Let y(t) = y(t,to,y0) denote the solution of (2.7) passing through the
point (tg,yo) in Rt x R™.

The following is a generalization to nonlinear system of the variation of constants

formula due to Alekseev [1].

Lemma 2.4. If yg € R", for all t such that x(t,tg,y0) € R™,

y(t,t0.00) = o tosg0) + [ @(t.5,(5)) g5 5(5) .

to

Theorem 2.5 (]2, 14]). If the zero solution of (2.1) is hS, then the zero solution of
(2.2) is hS.

Theorem 2.6 ([4]). Suppose that f,(t,0) is too-similar to f.(t,x(t,to,z0)) fort >
to > 0 and |zo| < & for some constant § > 0. If the solution v =0 of (2.2) is hS,
then the solution z =0 of (2.3) is hS.

The following comparison results are well-known.

Lemma 2.7 ([11]). Let u(t), f(t) and g(t) be real-valued nonnegative continuous
functions defined on R, for which the inequality

ut) <w+ [ s+ [ 1] g(ryu(r)dr)ds, t € RY,

holds, where ug is a nonnegative constant. Then,

u(t) <wup(l +/0 f(s) exp(/os(f(T) +g(7))dr))ds, t € RT.
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We introduce a few of the basic notions involved. Let C(R™) denote the space
of continuous functions v € C[RT,R*] and T be a continuous operater such that
T maps C(R") into C(RT), in our subsequent discussion it is assumed that, for
any two continuous function u,v € C[RT, R*] the operator T satisfies the following
property:

u(t) <o), 0<t<t, t; €RT

implies

and

|Tu| < Tlul.

Lemma 2.8 ([3]). Suppose that r(t,u,v) € C[RT x RT x R* RT] is monotone
nondecreasing in u and v for fivred t € R™ satisfying
t

t

m(t) —/ r(s,m(s), Tm(s))ds < k(1) —/ r(s, k(s), Th(s))ds,
to to

for t>1tg >0 and m,k € C[RT,RY]. If m(ty) < k(to), then m(t) < k(t), for all

t> 1> 0.

3. MAIN RESULTS

In this section, we investigate hS for the nonlinear perturbed differential systems.
Theorem 3.1. Suppose that the solution x = 0 of (2.1) is hS with the nondecreasing
function h and the perturbed term g in (2.7) satisfies

[@(t,5,2)9(s,y,2)| <(s)(lyl +|2]), t = to >0,
where v € C[RT,R™] and ftzo ~v(s)ds < oo. Further, suppose that the operator T
satisfies the inequality

Ty(t)] < / a(3)ly(s)|ds,

to

where ¢ € C[RT,RT] and ftzo q(s)ds < oo. Theny =0 of (2.7) is hS.

Proof. Using the nonlinear variation of constants formula of Alekseev[l], the solu-

tions of (2.1) and (2.7) with the same initial values are related by

y(t,to, yo0) = (¢, to, yo) +/ (t,s,y(s)) 9(s,y(s), T(s)) ds.

to
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By the hypotheses and the nondecreasing property of the function h

t

ly(t) < |=(8)] + t [@(t,5,y(5))g(s,y(s),T(s))|ds

< e1lyolh(t)h(to)~* + / +(5) (B(t)h(s)~ [y ()

+ / " g(M () y(r)|dr)ds.

Set u(t) = |y(t)|h(t)~!. Then, it follows from Lemma 2.7 that

S

y(0)] < exlyol(H)h(to) (1 + / () exp / (+(r) + ¢(r))dr)ds)

to to
< clyolh(t)h(to) ™", t > to,
where ¢ = 01(1—1—ftz° v(s) exp(ﬁ?(v(ﬂ—i—q(ﬂ)dﬂds). Hence, y = 0 of (2.7) ishS. O

Corollary 3.2. Suppose that the solution x = 0 of (2.1) is hSV with a nondecreasing
function h, and for all t > tg > 0,

|@(,5,2) g(s,y, Ty)| < ~v(s)(|y| + [Tyl),
and

Tyl < / a(s)ly(s)ds,

to
where v,q € C[RT,RT], ftzo v(s)ds < oo, and ftzo q(s)ds < oo . Then, y = 0 of
(2.7) is hS.
Proof. Tt follows from hypothesis that the solution z = 0 of (2.3) is hS. Thus, the
solution = = 0 of (2.1) is hS. Hence, by Theorem 3.1, the solution y = 0 of (2.7) is
hS. This completes the proof. O

Remark 3.3. In the linear case, we can obtain that if the zero solution x = 0 of
(2.5) is hS, then the perturbed system

y/ = A(t)y + g(ta Y, Ty)a y(t[)) = Yo,
is also hS under the same hypotheses in Theorem 3.1.

We also examine the properties of hS for the perturbed system

(3.1) y = flty) + / o(5,4(), Ty(s))ds, y(to) = 10,

to
where g € C[RT x R" x R",R"| and ¢(t,0,0) = 0.
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Theorem 3.4. Suppose that f,(t,0) is too-similar to fi(t,z(t,to, xg)) fort >ty >0
and |xo| < & for some constant § > 0, the solution x = 0 of (2.1) is hS with the
increasing function h and g in (3.1) satisfies

/ " g(ry(r), Ty(r))dr

to

<y(s)(Jyl +Tyl), t > to >0,

and

Tyl < / 4(5)[y(s)|ds

to

where v,q € C[RT,R*Y] , j;zo ~v(s)ds < o0, and ftzo q(s)ds < co. Then, the solution
y =0 of (3.1) is hS.

Proof. Let x(t) = x(t,tg,x0) and y(t) = y(t,to,x9). By Theorem 2.5, since the
solution x = 0 of (2.1) is hS, the solution v = 0 of (2.2) is hS. Therefore, by
Theorem 2.6, the solution z = 0 of (2.3) is hS. By Lemma 2.4 and the increasing
property of h, we have

@] < lz(O)] + [ ®(t 5, 9(s))|

/S g(m,y(7), Ty(T)dr|ds

< e1lyolh(t) h(te) ™ +/t eah(t) h(s) "1y (s)(ly(s)]
+ / " g(r)y(r)ldr)ds

Set u(t) = |y(t)|h(t)~1. Then, by Gronwall’s inequality, we obtain

9(6) < ellulh®) eo) ™ expes [ 201+ [ atrrar)as

to to

< cyolh(t) h(to)™!, c=crexpes /OO v(s)(1 + /OO q(T)dr)ds.

to to

It follows that y = 0 of (3.1) is hS. Hence, the proof is complete. O

Remark 3.5. In the linear case, we can obtain that if the zero solution x = 0 of
(2.5) is hS, then the perturbed system

Y = A(tyy + / 95, 5(s), Ty(s))ds, y(to) = o,

to
is also hS under the same hypotheses in Theorem 3.4 except the condition of t-

similarity.



h—STABILITY OF PERTURBED DIFFERENTIAL SYSTEMS 343

Theorem 3.6. For the system (3.1), suppose that

] [ otrvto). Tu(nyar| < eIl 170,

where r € C[RY x RT x RT,RT| is strictly increasing in u,v for each fized t > to > 0
with 7(t,0,0) = 0. Assume also that x = 0 of (2.1) is hSV with the nonincreasing

function h. Consider the scalar differential equation
(3.2) u = cr(t,u, Tu), u(ty) = ug = clyo.
If u=20 of (3.2) is hS, then y =0 of (3.1) is also hS whenever uy = c|yo|.

Proof. Let x(t) = x(t, to, x0) and y(t) = y(t, to,zo). By Lemma 2.4, we have

@O < |z + [ 2 5, 9(s))| /tsg(Tyy(T),Ty(T))dT

to

ds,

where ®(t, s,y(s)) is the fundamental matrix of (2.3). Then, by assumptions, we

obtain

()] < clyolh(t) hlto) ™ + ¢ / h(t) h(s)~" ds

to

/ " g(ry(r), Ty(r))dr

to

< clyol + ¢ / (s, [y(s)], | Ty(s)])ds

since h(t) is nonincreasing. Thus we have
¢

y(t)] - / r(s, ()], ITy())ds < clyo| = uo = u(t) — / (s, u(s), Tu(s))ds.

to to
By Lemma 2.8, we get |y(t)| < u(t) for all t > tg > 0. In view of assumption, since
u =0 of (3.2) is hS,

ly(t)] < u(t) < erfuolh(t) h(to) ™
= ciclyolh(t) h(to) ™" = Mlyo|h(t)h(to) ™", M = cre > 1.
This completes the proof. ]

Remark 3.7. In the linear case, we can obtain that if the zero solution x = 0 of
(2.5) is hS, then the perturbed system

Y = Aty + / 9(5,9(3), Ty())ds, u(to) = v,

to

is also hS under the same hypotheses in Theorem 3.6.
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