h-STABILITY OF PERTURBED DIFFERENTIAL SYSTEMS

Yoon Hoe Goo

ABSTRACT. In this paper, we investigate h-stability of the nonlinear perturbed differential systems.

1. Introduction

The notion of h-stability (hS) was introduced by Pinto [12, 14] with the intention of obtaining results about stability for a weakly stable system (at least, weaker than those given exponential asymptotic stability) under some perturbations. Also, he obtained some properties about asymptotic behavior of solutions of perturbed h-systems, some general results about asymptotic integration and gave some important examples in [13]. Choi and Ryu [3] investigated the important properties about hS for the various differential systems. Recently, Choi et al. [4] and Goo [7] obtained results for hS of nonlinear differential systems via t_{∞} -similarity. Goo et al. [7,8] investigated hS for the nonlinear Volterra integro-differential systems and for the linear perturbed Volterra integro-differential systems.

In this paper, we investigate h-stability of the nonlinear perturbed differential systems .

2. Preliminaries

We consider the nonlinear nonautonomous differential system

$$(2.1) x'(t) = f(t, x(t)), x(t_0) = x_0,$$

where $f \in C[\mathbb{R}^+ \times \mathbb{R}^n, \mathbb{R}^n]$, $\mathbb{R}^+ = [0, \infty)$ and \mathbb{R}^n is the Euclidean *n*-space. We assume that the Jacobian matrix $f_x = \partial f/\partial x$ exists and is continuous on $\mathbb{R}^+ \times \mathbb{R}^n$ and f(t,0) = 0. For $x \in \mathbb{R}^n$, let $|x| = (\sum_{j=1}^n x_j^2)^{1/2}$. Let $x(t,t_0,x_0)$ denote the

Received by the editors August 2, 2011. Revised September 15, 2011. Accepted Nov. 15, 2011. 2000 Mathematics Subject Classification. 34D10.

Key words and phrases. h-stability, t_{∞} -similarity, nonlinear nonautonomous system.

unique solution of (2.1) with $x(t_0, t_0, x_0) = x_0$, existing on $J = [t_0, \infty)$. Then we consider the associated variational systems around the zero solution of (2.1) and around x(t), respectively,

(2.2)
$$v'(t) = f_x(t,0)v(t), \ v(t_0) = v_0$$

and

$$(2.3) z'(t) = f_x(t, x(t, t_0, x_0))z(t), \ z(t_0) = z_0.$$

The fundamental matrix $\Phi(t, t_0, x_0)$ of (2.3) is given by

$$\Phi(t, t_0, x_0) = \frac{\partial}{\partial x_0} x(t, t_0, x_0),$$

and $\Phi(t, t_0, 0)$ is the fundamental matrix of (2.2).

We recall some notions of h-stability [12] and the notion of t_{∞} -similarity [9].

Definition 2.1. The system (2.1) (the zero solution x = 0 of (2.1)) is called (hS) h-stable if there exist $c \ge 1$, $\delta > 0$, and a positive bounded continuous function h on \mathbb{R}^+ such that

$$|x(t)| \le c |x_0| h(t) h(t_0)^{-1}$$

for $t \geq t_0 \geq 0$ and $|x_0| < \delta$,

(hSV) h-stable in variation if (2.3) (or z = 0 of (2.3)) is h-stable.

Let \mathcal{M} denote the set of all $n \times n$ continuous matrices A(t) defined on $\mathbb{R}^+ = [0, \infty)$ and \mathcal{N} be the subset of \mathcal{M} consisting of those nonsingular matrices S(t) that are of class C^1 with the property that S(t) and $S^{-1}(t)$ are bounded. The notion of t_{∞} -similarity in \mathcal{M} was introduced by Conti [5].

Definition 2.2. A matrix $A(t) \in \mathcal{M}$ is t_{∞} -similar to a matrix $B(t) \in \mathcal{M}$ if there exists an $n \times n$ matrix F(t) absolutely integrable over \mathbb{R}^+ , i.e.,

$$\int_0^\infty |F(t)|dt < \infty$$

such that

$$\dot{S}(t) + S(t)B(t) - A(t)S(t) = F(t)$$

for some $S(t) \in \mathcal{N}$.

The notion of t_{∞} -similarity is an equivalence relation in the set of all $n \times n$ continuous matrices on \mathbb{R}^+ , and it preserves some stability concepts [5, 9].

We give some related properties that we need in the sequal.

Lemma 2.3 ([14]). The linear system

$$(2.5) x' = A(t)x, \ x(t_0) = x_0,$$

where A(t) is an $n \times n$ continuous matrix, is hS if and only if there exist $c \ge 1$ and a positive bounded continuous function h defined on \mathbb{R}^+ such that

$$|\phi(t, t_0, x_0)| \le c h(t) h(t_0)^{-1}$$

for $t \ge t_0 \ge 0$, where $\phi(t, t_0, x_0)$ is a fundamental matrix of (2.5).

We need Alekseev formula to compare between the solutions of (2.1) and the solutions of perturbed nonlinear system

$$(2.7) y' = f(t, y) + g(t, y, Ty), y(t_0) = y_0,$$

where $g \in C[\mathbb{R}^+ \times \mathbb{R}^n \times \mathbb{R}^n, \mathbb{R}^n]$ and $T : C(\mathbb{R}^+, \mathbb{R}^n) \to C(\mathbb{R}^+, \mathbb{R}^n)$ is a continuous operator. Let $y(t) = y(t, t_0, y_0)$ denote the solution of (2.7) passing through the point (t_0, y_0) in $\mathbb{R}^+ \times \mathbb{R}^n$.

The following is a generalization to nonlinear system of the variation of constants formula due to Alekseev [1].

Lemma 2.4. If $y_0 \in \mathbb{R}^n$, for all t such that $x(t, t_0, y_0) \in \mathbb{R}^n$,

$$y(t, t_0, y_0) = x(t, t_0, y_0) + \int_{t_0}^t \Phi(t, s, y(s)) g(s, y(s)) ds.$$

Theorem 2.5 ([2, 14]). If the zero solution of (2.1) is hS, then the zero solution of (2.2) is hS.

Theorem 2.6 ([4]). Suppose that $f_x(t,0)$ is t_{∞} -similar to $f_x(t,x(t,t_0,x_0))$ for $t \ge t_0 \ge 0$ and $|x_0| \le \delta$ for some constant $\delta > 0$. If the solution v = 0 of (2.2) is hS, then the solution z = 0 of (2.3) is hS.

The following comparison results are well-known.

Lemma 2.7 ([11]). Let u(t), f(t) and g(t) be real-valued nonnegative continuous functions defined on \mathbb{R}^+ , for which the inequality

$$u(t) \le u_0 + \int_0^t f(s)u(s)ds + \int_0^t f(s)(\int_0^s g(\tau)u(\tau)d\tau)ds, \ t \in \mathbb{R}^+,$$

holds, where u_0 is a nonnegative constant. Then,

$$u(t) \le u_0(1 + \int_0^t f(s) \exp(\int_0^s (f(\tau) + g(\tau)) d\tau)) ds, \ t \in \mathbb{R}^+.$$

We introduce a few of the basic notions involved. Let $C(\mathbb{R}^+)$ denote the space of continuous functions $u \in C[\mathbb{R}^+, \mathbb{R}^+]$ and T be a continuous operator such that T maps $C(\mathbb{R}^+)$ into $C(\mathbb{R}^+)$, in our subsequent discussion it is assumed that, for any two continuous function $u, v \in C[\mathbb{R}^+, \mathbb{R}^+]$ the operator T satisfies the following property:

$$u(t) \le v(t), \ 0 \le t \le t_1, \ t_1 \in \mathbb{R}^+$$

implies

$$Tu(t) \leq Tv(t), \ t = t_1.$$

and

$$|Tu| \le T|u|$$
.

Lemma 2.8 ([3]). Suppose that $r(t, u, v) \in C[\mathbb{R}^+ \times \mathbb{R}^+ \times \mathbb{R}^+, \mathbb{R}^+]$ is monotone nondecreasing in u and v for fixed $t \in \mathbb{R}^+$ satisfying

$$m(t) - \int_{t_0}^t r(s, m(s), Tm(s)) ds \le k(t) - \int_{t_0}^t r(s, k(s), Tk(s)) ds,$$

for $t \ge t_0 \ge 0$ and $m, k \in C[\mathbb{R}^+, \mathbb{R}^+]$. If $m(t_0) \le k(t_0)$, then m(t) < k(t), for all $t \ge t_0 \ge 0$.

3. Main Results

In this section, we investigate hS for the nonlinear perturbed differential systems.

Theorem 3.1. Suppose that the solution x = 0 of (2.1) is hS with the nondecreasing function h and the perturbed term g in (2.7) satisfies

$$|\Phi(t, s, z)g(s, y, z)| \le \gamma(s)(|y| + |z|), \ t \ge t_0 \ge 0,$$

where $\gamma \in C[\mathbb{R}^+, \mathbb{R}^+]$ and $\int_{t_0}^{\infty} \gamma(s) ds < \infty$. Further, suppose that the operator T satisfies the inequality

$$|Ty(t)| \le \int_{t_0}^t q(s)|y(s)|ds,$$

where $q \in C[\mathbb{R}^+, \mathbb{R}^+]$ and $\int_{t_0}^{\infty} q(s)ds < \infty$. Then y = 0 of (2.7) is hS.

Proof. Using the nonlinear variation of constants formula of Alekseev[1], the solutions of (2.1) and (2.7) with the same initial values are related by

$$y(t, t_0, y_0) = x(t, t_0, y_0) + \int_{t_0}^t \Phi(t, s, y(s)) g(s, y(s), T(s)) ds.$$

By the hypotheses and the nondecreasing property of the function h

$$|y(t)| \le |x(t)| + \int_{t_0}^t |\Phi(t, s, y(s))g(s, y(s), T(s))| ds$$

$$\le c_1 |y_0| h(t) h(t_0)^{-1} + \int_{t_0}^t \gamma(s) (h(t)h(s)^{-1} |y(s)| + \int_{t_0}^s q(\tau)h(t)h(\tau)^{-1} |y(\tau)| d\tau ds.$$

Set $u(t) = |y(t)|h(t)^{-1}$. Then, it follows from Lemma 2.7 that

$$|y(t)| \le c_1 |y_0| h(t) h(t_0)^{-1} (1 + \int_{t_0}^t \gamma(s) \exp(\int_{t_0}^s (\gamma(\tau) + q(\tau)) d\tau) ds)$$

$$\le c |y_0| h(t) h(t_0)^{-1}, \ t \ge t_0,$$

where $c = c_1(1 + \int_{t_0}^{\infty} \gamma(s) \exp(\int_{t_0}^{\infty} (\gamma(\tau) + q(\tau)) d\tau) ds)$. Hence, y = 0 of (2.7) is hS. \square

Corollary 3.2. Suppose that the solution x = 0 of (2.1) is hSV with a nondecreasing function h, and for all $t \ge t_0 \ge 0$,

$$|\Phi(t, s, z) g(s, y, Ty)| \le \gamma(s)(|y| + |Ty|),$$

and

$$|Ty| \le \int_{t_0}^t q(s)|y(s)|ds,$$

where $\gamma, q \in C[\mathbb{R}^+, \mathbb{R}^+]$, $\int_{t_0}^{\infty} \gamma(s) ds < \infty$, and $\int_{t_0}^{\infty} q(s) ds < \infty$. Then, y = 0 of (2.7) is hS.

Proof. It follows from hypothesis that the solution z = 0 of (2.3) is hS. Thus, the solution x = 0 of (2.1) is hS. Hence, by Theorem 3.1, the solution y = 0 of (2.7) is hS. This completes the proof.

Remark 3.3. In the linear case, we can obtain that if the zero solution x = 0 of (2.5) is hS, then the perturbed system

$$y' = A(t)y + g(t, y, Ty), \ y(t_0) = y_0,$$

is also hS under the same hypotheses in Theorem 3.1.

We also examine the properties of hS for the perturbed system

(3.1)
$$y' = f(t,y) + \int_{t_0}^t g(s,y(s),Ty(s))ds, \ y(t_0) = y_0,$$

where $g \in C[\mathbb{R}^+ \times \mathbb{R}^n \times \mathbb{R}^n, \mathbb{R}^n]$ and g(t, 0, 0) = 0.

Theorem 3.4. Suppose that $f_x(t,0)$ is t_{∞} -similar to $f_x(t,x(t,t_0,x_0))$ for $t \geq t_0 \geq 0$ and $|x_0| \leq \delta$ for some constant $\delta > 0$, the solution x = 0 of (2.1) is hS with the increasing function h and g in (3.1) satisfies

$$\left| \int_{t_0}^s g(\tau, y(\tau), Ty(\tau)) d\tau \right| \le \gamma(s)(|y| + |Ty|), \ t \ge t_0 \ge 0,$$

and

$$|Ty| \le \int_{t_0}^t q(s)|y(s)|ds$$

where $\gamma, q \in C[\mathbb{R}^+, \mathbb{R}^+]$, $\int_{t_0}^{\infty} \gamma(s) ds < \infty$, and $\int_{t_0}^{\infty} q(s) ds < \infty$. Then, the solution y = 0 of (3.1) is hS.

Proof. Let $x(t) = x(t, t_0, x_0)$ and $y(t) = y(t, t_0, x_0)$. By Theorem 2.5, since the solution x = 0 of (2.1) is hS, the solution v = 0 of (2.2) is hS. Therefore, by Theorem 2.6, the solution z = 0 of (2.3) is hS. By Lemma 2.4 and the increasing property of h, we have

$$|y(t)| \le |x(t)| + \int_{t_0}^t |\Phi(t, s, y(s))| \left| \int_{t_0}^s g(\tau, y(\tau), Ty(\tau)) d\tau \right| ds$$

$$\le c_1 |y_0| h(t) h(t_0)^{-1} + \int_{t_0}^t c_2 h(t) h(s)^{-1} \gamma(s) (|y(s)| + \int_{t_0}^s q(\tau) |y(\tau)| d\tau ds$$

Set $u(t) = |y(t)|h(t)^{-1}$. Then, by Gronwall's inequality, we obtain

$$|y(t)| \le c_1 |y_0| h(t) h(t_0)^{-1} \exp c_2 \int_{t_0}^t \gamma(s) (1 + \int_{t_0}^s q(\tau) d\tau)) ds$$

$$\le c |y_0| h(t) h(t_0)^{-1}, \quad c = c_1 \exp c_2 \int_{t_0}^\infty \gamma(s) (1 + \int_{t_0}^\infty q(\tau) d\tau) ds.$$

It follows that y = 0 of (3.1) is hS. Hence, the proof is complete.

Remark 3.5. In the linear case, we can obtain that if the zero solution x = 0 of (2.5) is hS, then the perturbed system

$$y' = A(t)y + \int_{t_0}^t g(s, y(s), Ty(s))ds, \ y(t_0) = y_0,$$

is also hS under the same hypotheses in Theorem 3.4 except the condition of t_{∞} -similarity.

Theorem 3.6. For the system (3.1), suppose that

$$\left| \left| \int_{t_0}^t g(\tau, y(\tau), Ty(\tau)) d\tau \right| \le r(t, |y|, |Ty|),$$

where $r \in C[\mathbb{R}^+ \times \mathbb{R}^+ \times \mathbb{R}^+, \mathbb{R}^+]$ is strictly increasing in u,v for each fixed $t \geq t_0 \geq 0$ with r(t,0,0) = 0. Assume also that x = 0 of (2.1) is hSV with the nonincreasing function h. Consider the scalar differential equation

(3.2)
$$u' = cr(t, u, Tu), \ u(t_0) = u_0 = c|y_0|.$$

If u = 0 of (3.2) is hS, then y = 0 of (3.1) is also hS whenever $u_0 = c|y_0|$.

Proof. Let $x(t) = x(t, t_0, x_0)$ and $y(t) = y(t, t_0, x_0)$. By Lemma 2.4, we have

$$|y(t)| \le |x(t)| + \int_{t_0}^t |\Phi(t, s, y(s))| \left| \int_{t_0}^s g(\tau, y(\tau), Ty(\tau)) d\tau \right| ds,$$

where $\Phi(t, s, y(s))$ is the fundamental matrix of (2.3). Then, by assumptions, we obtain

$$|y(t)| \le c|y_0|h(t) h(t_0)^{-1} + c \int_{t_0}^t h(t) h(s)^{-1} \left| \int_{t_0}^s g(\tau, y(\tau), Ty(\tau)) d\tau \right| ds$$

$$\le c|y_0| + c \int_{t_0}^t r(s, |y(s)|, |Ty(s)|) ds$$

since h(t) is nonincreasing. Thus we have

$$|y(t)| - c \int_{t_0}^t r(s, |y(s)|, |Ty(s)|) ds \le c|y_0| = u_0 = u(t) - c \int_{t_0}^t r(s, u(s), Tu(s)) ds.$$

By Lemma 2.8, we get |y(t)| < u(t) for all $t \ge t_0 \ge 0$. In view of assumption, since u = 0 of (3.2) is hS,

$$|y(t)| < u(t) \le c_1 |u_0| h(t) h(t_0)^{-1}$$

= $c_1 c |y_0| h(t) h(t_0)^{-1} = M |y_0| h(t) h(t_0)^{-1}, M = c_1 c > 1.$

This completes the proof.

Remark 3.7. In the linear case, we can obtain that if the zero solution x = 0 of (2.5) is hS, then the perturbed system

$$y' = A(t)y + \int_{t_0}^{t} g(s, y(s), Ty(s))ds, \ y(t_0) = y_0,$$

is also hS under the same hypotheses in Theorem 3.6.

ACKNOWLEDGMENT

The author is very grateful for the referee's valuable comments.

REFERENCES

- 1. F. Brauer: Perturbations of nonlinear systems of differential equations II. *J. Math. Anal. Appl.* **17** (1967), 579–591.
- 2. S.K. Choi & H.S. Ryu: h-stability in differential systems. Bull. Inst. Math. Acad. Sinica **21** (1993), 245–262.
- 3. S.K. Choi, N.J. Koo & S.M. Song: Stabilities for nonlinear functional differential equations. *J. Chungcheong Math. Soc.* **9** (1996), 165-174.
- 4. S.K. Choi, N.J. Koo & H.S. Ryu: h-stability of differential systems via t_{∞} -similarity. Bull. Korean. Math. Soc. **34** (1997), 371–383.
- 5. R. Conti: Sulla t_{∞} -similitudine tra matricie l'equivalenza asintotica dei sistemi differenziali lineari. Rivista di Mat. Univ. Parma 8 (1957), 43–47.
- 6. Y.H. Goo: h-stability of the nonlinear differential systems via t_{∞} -similarity. J. Chungcheong Math. Soc. 23 (2010), 383-389.
- 7. Y.H. Goo & D.H. Ry: h-stability for perturbed integro-differential systems. J. Chungcheong Math. Soc. 21 (2008), 511–517.
- 8. Y.H. Goo, M.H. Ji & D.H. Ry: h-stability in certain integro-differential equations. J. Chungcheong Math. Soc. 22 (2009), 81–88.
- 9. G.A. Hewer: Stability properties of the equation by t_{∞} -similarity. J. Math. Anal. Appl. 41 (1973), 336–344.
- 10. V. Lakshmikantham & S. Leela: Differential and Integral Inequalities: Theory and Applications Vol. I. Academic Press, New York and London, 1969.
- 11. B.G. Pachpatte: A note on Gronwall-Bellman inequality. J. Math. Anal. Appl. 44 (1973), 758-762.
- M. Pinto: Perturbations of asymptotically stable differential systems. Analysis 4 (1984), 161–175.
- 13. _____: Asymptotic integration of a system resulting from the perturbation of an h-system. J. Math. Anal. Appl. 131 (1988), 194-216.
- 14. _____: Stability of nonlinear differential systems. Applicable Analysis 43 (1992), 1–20.

DEPARTMENT OF MATHEMATICS, HANSEO UNIVERSITY, SEOSAN, CHUNGNAM, 356-706, KOREA *Email address*: yhgoo@hanseo.ac.kr