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h−STABILITY OF PERTURBED DIFFERENTIAL SYSTEMS

Yoon Hoe Goo

Abstract. In this paper, we investigate h−stability of the nonlinear perturbed
differential systems.

1. Introduction

The notion of h-stability (hS) was introduced by Pinto [12, 14] with the intention
of obtaining results about stability for a weakly stable system (at least, weaker
than those given exponential asymptotic stability) under some perturbations. Also,
he obtained some properties about asymptotic behavior of solutions of perturbed h-
systems, some general results about asymptotic integration and gave some important
examples in [13]. Choi and Ryu [3] investigated the important properties about hS
for the various differential systems. Recently, Choi et al. [4] and Goo [7] obtained
results for hS of nonlinear differential systems via t∞-similarity. Goo et al. [7, 8]
investigated hS for the nonlinear Volterra integro-differential system and for the
linear perturbed Volterra integro-differential systems.

In this paper, we investigate h−stability of the nonlinear perturbed differential
systems .

2. Preliminaries

We consider the nonlinear nonautonomous differential system

x′(t) = f(t, x(t)), x(t0) = x0,(2.1)

where f ∈ C[R+ × Rn,Rn], R+ = [0,∞) and Rn is the Euclidean n-space. We
assume that the Jacobian matrix fx = ∂f/∂x exists and is continuous on R+ × Rn

and f(t, 0) = 0. For x ∈ Rn, let |x| = (
∑n

j=1 x2
j )

1/2. Let x(t, t0, x0) denote the
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unique solution of (2.1) with x(t0, t0, x0) = x0, existing on J = [t0,∞). Then we
consider the associated variational systems around the zero solution of (2.1) and
around x(t), respectively,

v′(t) = fx(t, 0)v(t), v(t0) = v0(2.2)

and

z′(t) = fx(t, x(t, t0, x0))z(t), z(t0) = z0.(2.3)

The fundamental matrix Φ(t, t0, x0) of (2.3) is given by

Φ(t, t0, x0) =
∂

∂x0
x(t, t0, x0),

and Φ(t, t0, 0) is the fundamental matrix of (2.2).
We recall some notions of h-stability [12] and the notion of t∞-similarity [9].

Definition 2.1. The system (2.1) (the zero solution x = 0 of (2.1)) is called
(hS) h−stable if there exist c ≥ 1, δ > 0, and a positive bounded continuous function
h on R+ such that

|x(t)| ≤ c |x0|h(t) h(t0)−1

for t ≥ t0 ≥ 0 and |x0| < δ,
(hSV) h−stable in variation if (2.3) (or z = 0 of (2.3)) is h-stable.

LetM denote the set of all n×n continuous matrices A(t) defined on R+ = [0,∞)
and N be the subset of M consisting of those nonsingular matrices S(t) that are
of class C1 with the property that S(t) and S−1(t) are bounded. The notion of
t∞-similarity in M was introduced by Conti [5].

Definition 2.2. A matrix A(t) ∈ M is t∞-similar to a matrix B(t) ∈ M if there
exists an n× n matrix F (t) absolutely integrable over R+, i.e.,

∫ ∞

0
|F (t)|dt < ∞

such that

Ṡ(t) + S(t)B(t)−A(t)S(t) = F (t)(2.4)

for some S(t) ∈ N .

The notion of t∞-similarity is an equivalence relation in the set of all n × n

continuous matrices on R+, and it preserves some stability concepts [5, 9].
We give some related properties that we need in the sequal.
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Lemma 2.3 ([14]). The linear system

x′ = A(t)x, x(t0) = x0,(2.5)

where A(t) is an n× n continuous matrix, is hS if and only if there exist c ≥ 1 and
a positive bounded continuous function h defined on R+ such that

|φ(t, t0, x0)| ≤ c h(t) h(t0)−1(2.6)

for t ≥ t0 ≥ 0, where φ(t, t0, x0) is a fundamental matrix of (2.5).

We need Alekseev formula to compare between the solutions of (2.1) and the
solutions of perturbed nonlinear system

y′ = f(t, y) + g(t, y, Ty), y(t0) = y0,(2.7)

where g ∈ C[R+ × Rn × Rn,Rn] and T : C(R+,Rn) → C(R+,Rn) is a continuous
operator. Let y(t) = y(t, t0, y0) denote the solution of (2.7) passing through the
point (t0, y0) in R+ × Rn.

The following is a generalization to nonlinear system of the variation of constants
formula due to Alekseev [1].

Lemma 2.4. If y0 ∈ Rn, for all t such that x(t, t0, y0) ∈ Rn,

y(t, t0, y0) = x(t, t0, y0) +
∫ t

t0

Φ(t, s, y(s)) g(s, y(s)) ds.

Theorem 2.5 ([2, 14]). If the zero solution of (2.1) is hS, then the zero solution of
(2.2) is hS.

Theorem 2.6 ([4]). Suppose that fx(t, 0) is t∞-similar to fx(t, x(t, t0, x0)) for t ≥
t0 ≥ 0 and |x0| ≤ δ for some constant δ > 0. If the solution v = 0 of (2.2) is hS,
then the solution z = 0 of (2.3) is hS.

The following comparison results are well-known.

Lemma 2.7 ([11]). Let u(t), f(t) and g(t) be real-valued nonnegative continuous
functions defined on R+, for which the inequality

u(t) ≤ u0 +
∫ t

0
f(s)u(s)ds +

∫ t

0
f(s)(

∫ s

0
g(τ)u(τ)dτ)ds, t ∈ R+,

holds, where u0 is a nonnegative constant. Then,

u(t) ≤ u0(1 +
∫ t

0
f(s) exp(

∫ s

0
(f(τ) + g(τ))dτ))ds, t ∈ R+.
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We introduce a few of the basic notions involved. Let C(R+) denote the space
of continuous functions u ∈ C[R+,R+] and T be a continuous operater such that
T maps C(R+) into C(R+), in our subsequent discussion it is assumed that, for
any two continuous function u, v ∈ C[R+,R+] the operator T satisfies the following
property:

u(t) ≤ v(t), 0 ≤ t ≤ t1, t1 ∈ R+

implies

Tu(t) ≤ Tv(t), t = t1.

and

|Tu| ≤ T |u|.

Lemma 2.8 ([3]). Suppose that r(t, u, v) ∈ C[R+ × R+ × R+,R+] is monotone
nondecreasing in u and v for fixed t ∈ R+ satisfying

m(t)−
∫ t

t0

r(s,m(s), Tm(s))ds ≤ k(t)−
∫ t

t0

r(s, k(s), Tk(s))ds,

for t ≥ t0 ≥ 0 and m, k ∈ C[R+,R+]. If m(t0) ≤ k(t0), then m(t) < k(t), for all
t ≥ t0 ≥ 0.

3. Main Results

In this section, we investigate hS for the nonlinear perturbed differential systems.

Theorem 3.1. Suppose that the solution x = 0 of (2.1) is hS with the nondecreasing
function h and the perturbed term g in (2.7) satisfies

|Φ(t, s, z)g(s, y, z)| ≤ γ(s)(|y|+ |z|), t ≥ t0 ≥ 0,

where γ ∈ C[R+,R+] and
∫∞
t0

γ(s)ds < ∞. Further, suppose that the operator T

satisfies the inequality

|Ty(t)| ≤
∫ t

t0

q(s)|y(s)|ds,

where q ∈ C[R+,R+] and
∫∞
t0

q(s)ds < ∞. Then y = 0 of (2.7) is hS.

Proof. Using the nonlinear variation of constants formula of Alekseev[1], the solu-
tions of (2.1) and (2.7) with the same initial values are related by

y(t, t0, y0) = x(t, t0, y0) +
∫ t

t0

Φ(t, s, y(s)) g(s, y(s), T (s)) ds.
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By the hypotheses and the nondecreasing property of the function h

|y(t) ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))g(s, y(s), T (s))|ds

≤ c1|y0|h(t)h(t0)−1 +
∫ t

t0

γ(s)(h(t)h(s)−1|y(s)|

+
∫ s

t0

q(τ)h(t)h(τ)−1|y(τ)|dτ)ds.

Set u(t) = |y(t)|h(t)−1. Then, it follows from Lemma 2.7 that

|y(t)| ≤ c1|y0|h(t)h(t0)−1(1 +
∫ t

t0

γ(s) exp(
∫ s

t0

(γ(τ) + q(τ))dτ)ds)

≤ c|y0|h(t)h(t0)−1, t ≥ t0,

where c = c1(1+
∫∞
t0

γ(s) exp(
∫∞
t0

(γ(τ)+q(τ))dτ)ds). Hence, y = 0 of (2.7) is hS. ¤

Corollary 3.2. Suppose that the solution x = 0 of (2.1) is hSV with a nondecreasing
function h, and for all t ≥ t0 ≥ 0,

|Φ(t, s, z) g(s, y, Ty)| ≤ γ(s)(|y|+ |Ty|),
and

|Ty| ≤
∫ t

t0

q(s)|y(s)|ds,

where γ, q ∈ C[R+,R+],
∫∞
t0

γ(s)ds < ∞, and
∫∞
t0

q(s)ds < ∞ . Then, y = 0 of
(2.7) is hS.

Proof. It follows from hypothesis that the solution z = 0 of (2.3) is hS. Thus, the
solution x = 0 of (2.1) is hS. Hence, by Theorem 3.1, the solution y = 0 of (2.7) is
hS. This completes the proof. ¤

Remark 3.3. In the linear case, we can obtain that if the zero solution x = 0 of
(2.5) is hS, then the perturbed system

y′ = A(t)y + g(t, y, Ty), y(t0) = y0,

is also hS under the same hypotheses in Theorem 3.1.

We also examine the properties of hS for the perturbed system

(3.1) y′ = f(t, y) +
∫ t

t0

g(s, y(s), T y(s))ds, y(t0) = y0,

where g ∈ C[R+ × Rn × Rn,Rn] and g(t, 0, 0) = 0.
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Theorem 3.4. Suppose that fx(t, 0) is t∞-similar to fx(t, x(t, t0, x0)) for t ≥ t0 ≥ 0
and |x0| ≤ δ for some constant δ > 0, the solution x = 0 of (2.1) is hS with the
increasing function h and g in (3.1) satisfies

∣∣∣∣
∫ s

t0

g(τ, y(τ), T y(τ))dτ

∣∣∣∣ ≤ γ(s)(|y|+ |Ty|), t ≥ t0 ≥ 0,

and

|Ty| ≤
∫ t

t0

q(s)|y(s)|ds

where γ, q ∈ C[R+,R+] ,
∫∞
t0

γ(s)ds < ∞, and
∫∞
t0

q(s)ds < ∞. Then, the solution
y = 0 of (3.1) is hS.

Proof. Let x(t) = x(t, t0, x0) and y(t) = y(t, t0, x0). By Theorem 2.5, since the
solution x = 0 of (2.1) is hS, the solution v = 0 of (2.2) is hS. Therefore, by
Theorem 2.6, the solution z = 0 of (2.3) is hS. By Lemma 2.4 and the increasing
property of h, we have

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|
∣∣∣∣
∫ s

t0

g(τ, y(τ), T y(τ)dτ

∣∣∣∣ds

≤ c1|y0|h(t) h(t0)−1 +
∫ t

t0

c2h(t) h(s)−1γ(s)(|y(s)|

+
∫ s

t0

q(τ)|y(τ)|dτ)ds

Set u(t) = |y(t)|h(t)−1. Then, by Gronwall’s inequality, we obtain

|y(t)| ≤ c1|y0|h(t) h(t0)−1 exp c2

∫ t

t0

γ(s)(1 +
∫ s

t0

q(τ)dτ))ds

≤ c|y0|h(t) h(t0)−1, c = c1 exp c2

∫ ∞

t0

γ(s)(1 +
∫ ∞

t0

q(τ)dτ)ds.

It follows that y = 0 of (3.1) is hS. Hence, the proof is complete. ¤

Remark 3.5. In the linear case, we can obtain that if the zero solution x = 0 of
(2.5) is hS, then the perturbed system

y′ = A(t)y +
∫ t

t0

g(s, y(s), T y(s))ds, y(t0) = y0,

is also hS under the same hypotheses in Theorem 3.4 except the condition of t∞-
similarity.
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Theorem 3.6. For the system (3.1), suppose that
∣∣∣∣
∫ t

t0

g(τ, y(τ), T y(τ))dτ

∣∣∣∣ ≤ r(t, |y|, |Ty|),

where r ∈ C[R+×R+×R+,R+] is strictly increasing in u,v for each fixed t ≥ t0 ≥ 0
with r(t, 0, 0) = 0. Assume also that x = 0 of (2.1) is hSV with the nonincreasing
function h. Consider the scalar differential equation

u′ = cr(t, u, Tu), u(t0) = u0 = c|y0|.(3.2)

If u = 0 of (3.2) is hS, then y = 0 of (3.1) is also hS whenever u0 = c|y0|.
Proof. Let x(t) = x(t, t0, x0) and y(t) = y(t, t0, x0). By Lemma 2.4, we have

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|
∣∣∣∣
∫ s

t0

g(τ, y(τ), T y(τ))dτ

∣∣∣∣ds,

where Φ(t, s, y(s)) is the fundamental matrix of (2.3). Then, by assumptions, we
obtain

|y(t)| ≤ c|y0|h(t) h(t0)−1 + c

∫ t

t0

h(t) h(s)−1

∣∣∣∣
∫ s

t0

g(τ, y(τ), T y(τ))dτ

∣∣∣∣ds

≤ c|y0|+ c

∫ t

t0

r(s, |y(s)|, |Ty(s)|)ds

since h(t) is nonincreasing. Thus we have

|y(t)| − c

∫ t

t0

r(s, |y(s)|, |Ty(s)|)ds ≤ c|y0| = u0 = u(t)− c

∫ t

t0

r(s, u(s), Tu(s))ds.

By Lemma 2.8, we get |y(t)| < u(t) for all t ≥ t0 ≥ 0. In view of assumption, since
u = 0 of (3.2) is hS,

|y(t)| < u(t) ≤ c1|u0|h(t) h(t0)−1

= c1c|y0|h(t) h(t0)−1 = M |y0|h(t)h(t0)−1, M = c1c > 1.

This completes the proof. ¤

Remark 3.7. In the linear case, we can obtain that if the zero solution x = 0 of
(2.5) is hS, then the perturbed system

y′ = A(t)y +
∫ t

t0

g(s, y(s), T y(s))ds, y(t0) = y0,

is also hS under the same hypotheses in Theorem 3.6.
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