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AN APPLICATION OF COMPLICATEDNESS TO BH-ALGEBRAS

Eun Mi Kim a and Sun Shin Ahn b, ∗

Abstract. The notions of an initial section and a special set in BH-algebras are
defined and some of their properties are obtained. The notion of a complicated BH-
algebra is introduced and some related properties are obtained. Finally, the notion
of essences in BH-algebras are defined, and many properties are investigated.

1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras: BCK-algebras
and BCI-algebras ([2,3]). It is known that the class of BCK-algebras is a proper
subclass of the class of BCI-algebras. BCK-algebras have some connections with
other areas: D. Mundici [7] proved MV -algebras are categorically equivalent to
bounded commutative algebra, and J. Meng [5] proved that implicative commuta-
tive semigroups are equivalent to a class of BCK-algebras. Y. B. Jun, E. H. Roh,
and H. S. Kim [4] introduced the notion of a BH-algebra, which is a generaliza-
tion of BCK/BCI-algebras. They defined the notions of ideal, maximal ideal and
translation ideal and investigated some properties. E. H. Roh and S. Y. Kim [8]
estimated the number of BH∗-subalgebras of order i in a transitive BH∗-algebras
by using Hao’s method. In [1], S. S. Ahn and J. H. Lee introduced the notion of
strong ideals in BH-algebra and investigate some properties of it. They also defined
the notion of a rough sets in BH-algebras. Using a strong ideal in BH-algebras,
they obtained some relations between strong ideals and upper(lower) rough strong
ideals in BH-algebras.

In this paper, we define the notions of an initial section and a special set and get
of their properties. We also introduce the notion of complicated BH-algebra and

Received by the editors March 10, 2011. Revised November 9, 2011. Accepted Nov. 17, 2011.
2000 Mathematics Subject Classification. 06F35, 03G25.
Key words and phrases. an initial section, a special set, a (complicated, positive implicative,

transitive) BH-algebra, an essence.
∗Corresponding author.

c© 2011 Korean Soc. Math. Educ.

293



294 Eun Mi Kim & Sun Shin Ahn

obtain some related properties. Finally, the notion of essences in BH-algebras are
defined, and many properties are investigated.

2. Preliminaries

By a BH-algebra ([4]), we mean an algebra (X; ∗, 0) of type (2,0) satisfying the
following conditions:

(I) x ∗ x = 0,
(II) x ∗ 0 = x,

(III) x ∗ y = 0 and y ∗ x = 0 imply x = y, for all x, y ∈ X.

For brevity, we also call X a BH-algebra. In X we can define an order relation
“ ≤ ” by x ≤ y if and only if x ∗ y = 0. Then ≤ is reflexive and antisymmetric.
A non-empty subset S of a BH-algebra X is called a subalgebra of X if, for any
x, y ∈ S, x ∗ y ∈ S, i.e., S is closed under binary operation “ ∗ ”.

Definition 2.1 ([4]). A non-empty subset A of a BH-algebra X is called an ideal
of X if it satisfies:

(I1) 0 ∈ A,
(I2) x ∗ y ∈ A and y ∈ A imply x ∈ A, ∀x, y ∈ X.

An ideal A of a BH-algebra X is said to be a translation ideal of X if it satisfies:

(I3) x ∗ y ∈ A, y ∗ x ∈ A imply (x ∗ z) ∗ (y ∗ z), (z ∗ x) ∗ (z ∗ y) ∈ A for any
x, y, z ∈ X.

Obviously, {0} and X are translation ideals of X

Definition 2.2 ([8]). A BH-algebra X is called a BH∗-algebra if it satisfies the
identity (x ∗ y) ∗ x = 0 for all x, y ∈ X.

Example 2.3 ([4]). Let X := {0, 1, 2, 3} be a BH-algebra which is not a BCK-
algebra with the following Cayley table:

∗ 0 1 2 3
0 0 1 0 0
1 1 0 0 0
2 2 2 0 3
3 3 3 3 0

Then A := {0, 1} is a translation ideal of X.

Lemma 2.4. Let X be a BH∗-algebra. Then the following identity holds:

0 ∗ x = 0, ∀x ∈ X.
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Proof. If follows from (II) that 0∗x = (0∗x)∗0 = 0 for all x ∈ X. Hence 0∗x = 0. ¤
Definition 2.5. A BH-algebra (X; ∗, 0) is said to be transitive if x ∗ y = 0 and
y ∗ z = 0 imply x ∗ z = 0.

Lemma 2.6. An ideal A of a BH-algebra X has the following property:

(∀x ∈ X)(∀y ∈ A)(x ≤ y ⇒ x ∈ A).

Proof. Straightforward. ¤

3. Complicated BH-algebras

Lemma 3.1. Let A be an ideal of a BH∗-algebra X. Then A is a subalgebra of X.

Proof. If x, y ∈ A, then (x∗y)∗x = 0 and so x∗y ∈ A. This completes the proof. ¤
The converse of Lemma 3.1 need not be true in general as seen in the following

example.

Example 3.2. Let X := {0, 1, 2} be a set with the following Cayley table:

∗ 0 1 2
0 0 0 0
1 1 0 2
2 2 0 0

Then (X; ∗, 0) is a BH∗-algebra ([8]). Let A := {0, 2}. Then A is a subalgebra of
X but not an ideal of X since 1 ∗ 2 = 2 ∈ A and 1 /∈ A.

Definition 3.3. Let X be a BH-algebra. X is said to be positive implicative if it
satisfies the following identity:

(x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z),∀x, y, z ∈ X.

Example 3.4. Let X := {0, a, b, c} be a BH-algebra with the Cayley table as
follows:

∗ 0 a b c
0 0 0 0 0
a a 0 a 0
b b b 0 0
c c c c 0

Then (X; ∗, 0) is a positive implicative BH-algebra.

Proposition 3.5. If X is a positive implicative BH-algebra, then the following
condition holds:

x ∗ y = (x ∗ y) ∗ y,∀x, y ∈ X.
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Proof. Since X is positive implicative, we have

x ∗ y = (x ∗ y) ∗ 0 = (x ∗ y) ∗ (y ∗ y) = (x ∗ y) ∗ y.

This completes the proof. ¤
Lemma 3.6. Let X be a positive implicative BH∗-algebra. If x ≤ y, then x∗z ≤ y∗z
for any x, y, z ∈ X.

Proof. Let x, y ∈ X with x ≤ y. Then x ∗ y = 0. Since X is positive implicative, we
have

(x ∗ z) ∗ (y ∗ z) = (x ∗ y) ∗ z = 0 ∗ z = 0.

Hence x ∗ z ≤ y ∗ z. This completes the proof. ¤
Proposition 3.7. If X is a positive implicative BH∗-algebra, then X is a transitive
BH∗-algebra.

Proof. Assume that x ∗ y = 0 and y ∗ z = 0 for any x, y, z ∈ X. Then we have

x ∗ z = (x ∗ z) ∗ 0

= (x ∗ z) ∗ (y ∗ z)

= (x ∗ y) ∗ z

= 0 ∗ z = 0.

Hence X is a transitive BH∗-algebra. ¤
For an element a of a BH-algebra X, the set {x ∈ X|x ≤ a}, denoted by A(a),

is called the initial section of an element a. Since a ∈ A(a), A(a) is not empty.

Proposition 3.8. Let X be a transitive BH-algebra and x ≤ y. If y ∈ A(a), then
x ∈ A(a).

Proof. Since y ∈ A(a), we have y ≤ a. Hence x ≤ y ≤ a, i.e., x ≤ a. This implies
x ∈ A(a). ¤
Theorem 3.9. For any a in a positive implicative BH∗-algebra X, A(a) is the least
ideal of X containing a.

Proof. It follows from that 0∗a = 0 for any a ∈ X. Hence 0 ∈ A(a). Let x∗y ∈ A(a)
and y ∈ A(a) for any x, y ∈ X. Then (x ∗ y) ∗ a = 0 and y ∗ a = 0. Since X is
positive implicative, we have 0 = (x ∗ y) ∗ a = (x ∗ a) ∗ (y ∗ a) = (x ∗ a) ∗ 0 = x ∗ a.

Hence x ∈ A(a). Therefore A(a) is an ideal of X. Clearly, a ∈ A(a).



AN APPLICATION OF COMPLICATEDNESS TO BH-ALGEBRAS 297

Let H be any ideal of X containing a. Let x ∈ A(a). Then x ∗ a = 0 ∈ H. Since
a ∈ H and H is an ideal of X, we have x ∈ H. Therefore A(a) ⊆ H. Thus A(a) is
the least ideal of X containing a. ¤
Corollary 3.10. Let X be a positive implicative BH∗-algebra. Then A(a) is a
subalgebra of X.

Proof. By Lemma 3.1 and Theorem 3.9, A(a) is a subalgebra of X. ¤
Theorem 3.11. Let X be a BH-algebra and let A be an ideal of X and x ∈ A.
Then A(x) ⊆ A.

Proof. If y ∈ A(x), then we have y ≤ x. Hence y ∗ x = 0. Since A is an ideal of X

and x ∈ A, we obtain y ∈ A. Therefore A(x) ⊆ A. ¤
For any a, b in a BH-algebra X, the set {x ∈ X|(x ∗ a) ∗ b = 0}, denoted by

A(a, b), is called a special set of X. Note that A(a, b) is not an ideal of X in general
as seen in the following example.

Example 3.12. Let X := {0, 1, 2, 3} be a set with the following Cayley table:

∗ 0 1 2 3
0 0 0 0 0
1 1 0 0 0
2 2 2 0 3
3 3 3 3 0

Then (X; ∗, 0) is a BH-algebra which is not a BCK/BCI-algebra. Let I := {0, 1}.
Then I is an ideal of X. Moreover, it is easy to check that I = A(0, 1). It is easy to
show that A(0, 3) = {x ∈ X|(x ∗ 0) ∗ 3 = 0} = {0, 1, 3}, but it is not an ideal of X,
since 2 ∗ 3 = 3 ∈ A(0, 3), but 2 /∈ A(0, 3).

An ideal I of a BH-algebra X is said to be closed if 0 ∗ x ∈ I for any x ∈ I.

Proposition 3.13. Let I be a subset of a BH-algebra X with the following condi-
tions:

(1) 0 ∈ I

(2) x ∗ z ∈ I, y ∗ z ∈ I and z ∈ I imply x ∗ y ∈ I for any x, y, z ∈ X.

Then I is both a subalgebra and a closed ideal of X.

Proof. Let x, y ∈ I. By (II), we have x = x ∗ 0 and y = y ∗ 0. It follows from (2)
that x ∗ y ∈ I. Hence I is a subalgebra of X.
Assume that I satisfies (1) and (2). We claim that I is a closed ideal of X. Let
x ∗ y, y ∈ I. Since 0 ∗ 0, y ∗ 0, 0 ∈ I, it follows from (2) that 0 ∗ y ∈ I which proves
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that I is closed. Since x ∗ y, 0 ∗ y, y ∈ I, by applying (2) again, we obtain that
x = x ∗ 0 ∈ I, so that I is an ideal of X. ¤
Definition 3.14. Let X be a BH∗-algebra. If for any a, b ∈ X, the set A(a, b) has
the greatest element, then the BH∗-algebra is said to be complicated.

Note that A(a, b) is a non-empty set, since 0, a, b ∈ A(a, b), where X is a BH∗-
algebra. The greatest element of A(a, b) is denoted by a¯ b.

Example 3.15. Let X := {0, 1, 2, 3} be a set with the following Cayley table:

∗ 0 1 2 3
0 0 0 0 0
1 1 0 0 0
2 2 2 0 0
3 3 3 3 0

It is easy to show that (X; ∗, 0) is a complicated BH∗-algebra.

Theorem 3.16. Let X be a positive implicative complicated BH∗-algebra and let
a, b ∈ X. Then the set

H(a, b) := {x ∈ X|a ≤ b¯ x}
has the least element, and it is a ∗ b.

Proof. The inequality a ∗ b ≤ a ∗ b implies that a ≤ b¯ (a ∗ b) and so a ∗ b ∈ H(a, b).
Let z ∈ H(a, b). Then a ≤ b¯ z, which implies from Lemma 3.6 and Definition 3.14
that a ∗ b ≤ (b ¯ z) ∗ b ≤ z. Hence a ∗ b ≤ z by Proposition 3.7. Thus a ∗ b is the
least element of H(a, b). ¤
Proposition 3.17. Let X be a complicated BH∗-algebra. Then for any a, b ∈ X,
the following hold:

(i) a ≤ a¯ b and b ≤ a¯ b,
(ii) a¯ 0 = a = 0¯ a.

Proof. Straightforward. ¤
Proposition 3.18. Let X be a positive implicative complicated BH∗-algebra.

(i) If x ≤ y, then x¯ y = y for any x, y ∈ X.
(ii) x¯ x = x for any x ∈ X.

Proof. (i) If x ≤ y, then

0 = ((x¯ y) ∗ x) ∗ y

= ((x¯ y) ∗ y) ∗ (x ∗ y)
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= ((x¯ y) ∗ y) ∗ 0

= (x¯ y) ∗ y,

which means that x¯ y ≤ y. By Proposition 3.17(i), we have x¯ y = y.
(ii) Let y := x in (i). Then x¯ x = x. ¤

We provide some characterizations of ideals in a complicated BH∗-algebra.

Proposition 3.19. Let A be a non-empty subset of a complicated BH∗-algebra X.
If A is an ideal of X, then it satisfies the following conditions:

(i) (∀x ∈ A)(∀y ∈ X)(y ≤ x ⇒ y ∈ A).
(ii) (∀x, y ∈ A)(∃z ∈ A)(x ≤ z, y ≤ z).

Proof. Assume that A is an ideal of X. Let x ∈ A, y ∈ X with y ≤ x. Then y∗x = 0.
Since A is an ideal of X, we have y ∈ A, i.e., (i) is valid.

Let x, y ∈ A. Since (x¯y)∗x ≤ y and y ∈ A, it follows from (i) that (x¯y)∗x ∈ A

so that x¯ y ∈ A because A is an ideal of X. If we take z := x¯ y, then x ≤ z and
y ≤ z by Proposition 3.17(i). This completes the proof. ¤
Proposition 3.20. Let A be a non-empty subset of a positive implicative complicated
BH∗-algebra X. Then A is an ideal of X if and only if it satisfies the following
conditions:

(i) (∀x ∈ A)(∀y ∈ X)(y ≤ x ⇒ y ∈ A).
(ii) (∀x, y ∈ A)(∃z ∈ A)(x ≤ z, y ≤ z).

Proof. The necessity follows from Proposition 3.19.
Conversely, let A be a non-empty subset of X satisfying conditions (i) and (ii).

Since A is non-empty, we have 0 ∈ A by (i). Let x, y ∈ X with y ∈ A and x ∗ y ∈ A.
Then, by (ii), there exists z ∈ A such that y ≤ z and x ∗ y ≤ z. Since X is positive
implicative, we have x ∗ z = (x ∗ z) ∗ 0 = (x ∗ z) ∗ (y ∗ z) = (x ∗ y) ∗ z = 0 and so
x ≤ z. Since z ∈ A, it follows from (i) that x ∈ A. Hence A is an ideal of X. ¤

In Proposition 3.19, the condition, “complicated”, is very necessary. See the
following example.

Example 3.21. Let X := {0, 1, 2, 3, 4} be a set with the following Cayley table:

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 1 0 0
2 2 2 0 2 0
3 3 3 3 0 0
4 4 4 3 2 0
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It is easy to show that X is a BH∗-algebra which is not a BCK/BCI-algebra.
Moreover, X is not complicated, since A(1, 2) = {z ∈ X|(z ∗ 1) ∗ 2 = 0} = {0, 1, 2}
has no greatest element. It is easy to see that {0, 1, 2} is an ideal of X, but there is
no element z ∈ {0, 1, 2} such that x ≤ z, y ≤ z in the set {0, 1, 2}, proving that the
condition, “complicated”, is necessary in Proposition 3.19.

Theorem 3.22. Let A be a non-empty subset of a positive implicative complicated
BH∗-algebra X. Then A is an ideal of X if and only if it satisfies the following
conditions:

(i) (∀x ∈ A)(∀y ∈ X)(y ≤ x ⇒ y ∈ A).
(ii) (∀x, y ∈ A ⇒ x¯ y ∈ A).

Proof. The necessity follows immediately from Proposition 3.19.
Conversely, let A be a non-empty subset of X satisfying conditions (i) and (ii).

Obviously, 0 ∈ A by (i). Let x, y ∈ X satisfying y ∈ A and x ∗ y ∈ A. Then
y ¯ (x ∗ y) ∈ A by (ii). Since x ≤ y ¯ (x ∗ y) by Theorem 3.16, it follows from (i)
that x ∈ A. Thus A is an ideal of X. ¤

4. Essence of BH-algebras

Let X be a BH-algebra. For any subsets G and H of X, we define

G ∗H := {x ∗ y|x ∈ G, y ∈ H}.
Lemma 4.1. Let X be a BH-algebra. If 0 ∈ H ⊆ X, then

(∀G ⊆ X)(G ⊆ G ∗H).

Proof. Let x ∈ G. Then x = x ∗ 0 ∈ G ∗H by (II), and so G ⊆ G ∗H. ¤
Lemma 4.2. For any subsets A,B and E of a BH-algebra X, we have the following
properties:

(i) A ⊆ B ⇒ A ∗ E ⊆ B ∗ E, E ∗A ⊆ E ∗B.

(ii) (A ∩B) ∗E ⊆ (A ∗E) ∩ (B ∗E).
(iii) E ∗ (A ∩B) ⊆ (E ∗A) ∩ (E ∗B).
(iv) (A ∪B) ∗E = (A ∗E) ∪ (B ∗E).
(v) E ∗ (A ∪B) = (E ∗A) ∪ (E ∗B).

Proof. (i) Let x ∈ A ∗ E. Then x = a ∗ e for some a ∈ A and e ∈ E. Since A ⊆ B,
it follows that x = a ∗ e for some a ∈ B and e ∈ E so that x ∈ B ∗ E. Therefore
A ∗E ⊆ B ∗ E. Similarly, we get E ∗A ⊆ E ∗B.
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(ii) Since A∩B ⊆ A,B, it follows from (i) that (A∩B)∗E ⊆ A∗E and (A∩B)∗E ⊆
B ∗E so that (A ∩B) ∗ E ⊆ (A ∗ E) ∩ (B ∗ E). Similarly, (iii) is valid.
(iv) Since A,B ⊆ A ∪B, we have A ∗E ⊆ (A ∪B) ∗E and B ∗E ⊆ (A ∪B) ∗E by
(i), and so (A ∗ E) ∪ (B ∗ E) ⊆ (A ∪ B) ∗ E. If x ∈ (A ∪ B) ∗ E, then x = y ∗ e for
some y ∈ A ∪ B and e ∈ E. It follows that x = y ∗ e for some y ∈ A and e ∈ E; or
x = y ∗ e for some y ∈ B and e ∈ E so that x = y ∗ e ∈ A ∗ E or x = y ∗ e ∈ B ∗ E.
Hence (A ∪ B) ∗ E ⊆ (A ∗ E) ∪ (B ∗ E). Thus (A ∪ B) ∗ E = (A ∗ E) ∪ (B ∗ E).
Similarly we can prove that (v) is valid. ¤
Definition 4.3. If a non-empty subset G of a BH-algebra X satisfies G ∗X = G,
then G is called an essence of X.

Obviously, {0} is an essence of a BH∗-algebra X which is called a trivial essence
of X, and X itself is an essence of a BH-algebra X. Note that if a is an element of
a BH-algebra X such that {a} ∗X = X, then any proper subset G of X containing
a can be not an essence of X.

Example 4.4. Let X := {0, 1, 2, 3} be a set with the following Cayley table:

∗ 0 1 2 3
0 0 0 0 0
1 1 0 1 0
2 2 2 0 0
3 3 2 1 0

Then X is a BH-algebra. It is easy to check that G1 = {0, 1}, G2 := {0, 2} and
G3 := {0, 1, 2} are essences of X. But H := {0, 3} is not an essence of X, since
3 ∗ 2 = 1 /∈ H.

Theorem 4.5. Let X be a BH-algebra. Then the following properties hold:

(i) Every essence of X contains the zero element 0.
(ii) Every essence of X is a subalgebra of X.
(iii) Every ideal of a BH∗-algebra X is an essence of X.

Proof. (i) Let G be an essence of X. Then ∅ 6= G = G∗X, and so there exists x ∈ G

and thus 0 = x ∗ x ∈ G ∗X = G.

(ii) Let G be an essence of X and let x, y ∈ G. Then x ∗ y ∈ G ∗G ⊆ G ∗X = G by
Lemma 4.2(i) and thus G is a subalgebra of X.
(iii) Let I be an ideal of X. Then 0 ∈ I, and so I 6= ∅. By Lemma 2.6, for any x ∈ X

and y ∈ I, we have y ∗ x ∈ I since y ∗ x ≤ y. Thus I ∗X ⊆ I. Obviously, I ⊆ I ∗X

by Lemma 4.1. Therefore I ∗X = I, i.e., I is an essence of X. ¤
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The converse of (ii) and (iii) of Theorem 4.5 may not be true as seen the following
example.

Example 4.6. In Example 4.4, G3 := {0, 1, 2} is an essence which is not an ideal,
and H := {0, 3} is a subalgebra which is not an essence of X.

Proposition 4.7. Let G and H be essence of a BH-algebra X. Then G ∩H and
G ∪H are essences of X.

Proof. By Lemma 4.1 and Lemma 4.2(ii),

G ∩H ⊆ (G ∩H) ∗X

⊆ (G ∗X) ∩ (H ∗X)

= G ∩H,

and so (G ∩H) ∗X = G ∩H, i.e., G ∩H is an essence of X. Now by Lemma 4.1
and Lemma 4.2(iv), we get

G ∪H ⊆ (G ∪H) ∗X

= (G ∗X) ∪ (H ∗X)

= G ∪H,

and thus (G ∪H) ∗X = G ∪H, i.e., G ∪H is an essence of X. ¤
In general, we have the following observation.

Corollary 4.8. If {Gi|i ∈ Λ ⊂ N} is a family of essences of a BH-algebra X, then
∩i∈ΛGi and ∪i∈ΛGi are essences of X.

Generally, the union of two ideals of a BH-algebra may not be an ideal of X.
For example, in Example 4.4, G1 := {0, 1} and G2 := {0, 2} are ideal of X, but
G1 ∪G2 = {0, 1, 2} is not an ideal of X, since 3 ∗ 1 = 2 ∈ G1 ∪G2 and 3 /∈ G1 ∪G2.
But we know that the above Theorem 4.5 and Proposition 4.7 lead to the following
result.

Corollary 4.9. The intersection and union of two ideals of a BH∗-algebra X are
essences of X.

Proposition 4.10. Let X and Y be BH-algebras. If G and H are essences of X

and Y , respectively, then G×H is an essence of X × Y .

Proof. Since (G×H) ∗ (X ×Y ) = (G ∗X)× (H ∗X) = G×H, we know that G×H

is an essence of X × Y . ¤
Let G be an essence and H be a subalgebra of a BH-algebra X. Then G∪H is
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not an essence of X in general as seen in the following example.

Example 4.11. (i) In Example 4.4, G1 := {0, 1} is an essence and H := {0, 3} is a
subalgebra of X, but G∪H = {0, 1, 3} is not an essence of X, since 3∗1 = 2 /∈ G∪H.
(ii) Let X := {0, 1, 2, 3, 4} be a set with the following Cayley table:

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 1 0 1
2 2 2 0 0 2
3 3 2 1 0 3
4 4 4 4 4 0

Then G := {0, 1, 4} is an essence of X and H := {0, 3} is a subalgebra of X, but
G ∪H = {0, 1, 3, 4} is not an essence of X, since 3 ∗ 1 = 2 /∈ G ∪H.

Proposition 4.12. Let X be a BH-algebra. If G is an essence of X and H is a
subalgebra of X, then G ∩H is an essence of H.

Proof. Using Lemma 4.1 and Lemma 4.2(i)-(ii), we have (G ∩H) ∗H ⊆ (G ∗H) ∩
(H ∗ H) ⊆ (G ∗ X) ∩ H = G ∩ H ⊆ (G ∩ H) ∗ H, and so (G ∩ H) ∗ H = G ∩ H.
Therefore G ∩H is an essence of H. ¤
Theorem 4.13. Let X be a positive implicative BH∗-algebra. For any a ∈ X, A(a)
is an essence of X containing a.

Proof. Obviously, a ∈ A(a). Note that A(a) ⊆ A(a) ∗ X by Lemma 4.1. For any
y ∈ X and any x ∈ A(a), we have x ≤ a. By Lemma 3.6, x ∗ y ≤ a ∗ y and a ∗ y ≤ a.
Hence x∗y ≤ a, i.e., x∗y ∈ A(a). Therefore A(a)∗X ⊆ A(a). Thus A(a)∗X = A(a),
i.e., A(a) is an essence of X. ¤
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2. K. Iséki: On BCI-algebras. Mathematics Seminar Notes 8 (1980), 125-130.
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