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AN APPLICATION OF COMPLICATEDNESS TO BH-ALGEBRAS

EuNn M1 KiM? AND SUN SHIN AHN P*

ABSTRACT. The notions of an initial section and a special set in BH-algebras are
defined and some of their properties are obtained. The notion of a complicated BH-
algebra is introduced and some related properties are obtained. Finally, the notion
of essences in BH-algebras are defined, and many properties are investigated.

1. INTRODUCTION

Y. Imai and K. Iséki introduced two classes of abstract algebras: BC K-algebras
and BC1I-algebras ([2,3]). It is known that the class of BC'K-algebras is a proper
subclass of the class of BCI-algebras. BC K-algebras have some connections with
other areas: D. Mundici [7] proved MV-algebras are categorically equivalent to
bounded commutative algebra, and J. Meng [5] proved that implicative commuta-
tive semigroups are equivalent to a class of BCK-algebras. Y. B. Jun, E. H. Roh,
and H. S. Kim [4] introduced the notion of a BH-algebra, which is a generaliza-
tion of BCK/BC1I-algebras. They defined the notions of ideal, maximal ideal and
translation ideal and investigated some properties. E. H. Roh and S. Y. Kim [§]
estimated the number of BH*-subalgebras of order 7 in a transitive BH *-algebras
by using Hao’s method. In [1], S. S. Ahn and J. H. Lee introduced the notion of
strong ideals in B H-algebra and investigate some properties of it. They also defined
the notion of a rough sets in BH-algebras. Using a strong ideal in B H-algebras,
they obtained some relations between strong ideals and upper(lower) rough strong
ideals in B H-algebras.

In this paper, we define the notions of an initial section and a special set and get

of their properties. We also introduce the notion of complicated B H-algebra and
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obtain some related properties. Finally, the notion of essences in BH-algebras are

defined, and many properties are investigated.

2. PRELIMINARIES

By a BH-algebra ([4]), we mean an algebra (X;*,0) of type (2,0) satisfying the
following conditions:
(I) z*xxz =0,
(I1) %0 =z,
(ITT) zxy =0 and y*xx = 0 imply x =y, for all z,y € X.
For brevity, we also call X a BH-algebra. In X we can define an order relation
“<7 by x <yifand only if x * y = 0. Then < is reflexive and antisymmetric.

A non-empty subset S of a BH-algebra X is called a subalgebra of X if, for any

43 2

r,y €S, xxy €8, ie., S is closed under binary operation “x

Definition 2.1 ([4]). A non-empty subset A of a BH-algebra X is called an ideal
of X if it satisfies:
(I1) 0 € A,
(I2) x+ye€ Aand y € Aimply z € A, Vx,y € X.
An ideal A of a BH-algebra X is said to be a translation ideal of X if it satisfies:
(I3) xxy € A, yxax € Aimply (x x2) * (y*x2),(z*xz) * (2 xy) € A for any
z,y,z € X.
Obviously, {0} and X are translation ideals of X

Definition 2.2 ([8]). A BH-algebra X is called a BH*-algebra if it satisfies the
identity (z *y) *x =0 for all z,y € X.

Example 2.3 ([4]). Let X := {0,1,2,3} be a BH-algebra which is not a BCK-
algebra with the following Cayley table:

|01 23
0[0 100
11100 0
2(2 2 0 3
3(3 330

Then A :={0,1} is a translation ideal of X.
Lemma 2.4. Let X be a BH"-algebra. Then the following identity holds:

Oxx=0, VrelX.
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Proof. If follows from (II) that Oxz = (0xx)*0 = 0 for all z € X. Hence Oxx = 0. O

Definition 2.5. A BH-algebra (X;x,0) is said to be transitive if x x y = 0 and

y*xz=0imply x x z = 0.

Lemma 2.6. An ideal A of a BH-algebra X has the following property:
VMreX)VyeA)(z<y=z€A).

Proof. Straightforward. O

3. COMPLICATED BH-ALGEBRAS

Lemma 3.1. Let A be an ideal of a BH*-algebra X. Then A is a subalgebra of X.
Proof. If x,y € A, then (xxy)+x = 0 and so zxy € A. This completes the proof. [

The converse of Lemma 3.1 need not be true in general as seen in the following

example.

Example 3.2. Let X := {0,1,2} be a set with the following Cayley table:

Then (X;*,0) is a BH*-algebra ([8]). Let A := {0,2}. Then A is a subalgebra of
X but not an ideal of X since 1x2=2¢€ A and 1 ¢ A.

Definition 3.3. Let X be a BH-algebra. X is said to be positive implicative if it
satisfies the following identity:

(zxy)xz=(x*2)*(y*z2),Vr,y,2z € X.
Example 3.4. Let X := {0,a,b,c} be a BH-algebra with the Cayley table as

follows: ‘

QR O %
>R OO
QO o O O
o Q Ol
S OO0

c 0
Then (X;*,0) is a positive implicative BH-algebra.

c|C

Proposition 3.5. If X is a positive implicative BH -algebra, then the following
condition holds:

rxy=(x*xy)*xy,Vz,y € X.
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Proof. Since X is positive implicative, we have

zxy=(zxy)x0=(zxy)*(yxy) = (@xy)*y.
This completes the proof. O

Lemma 3.6. Let X be a positive implicative BH*-algebra. If © <y, then xxz < y*xz
for any x,y,z € X.

Proof. Let x,y € X with z <y. Then zxy = 0. Since X is positive implicative, we

have
(x*x2)*(y*xz)=(x*xy)*2z2=0x2=0.
Hence = * z < y * z. This completes the proof. ]

Proposition 3.7. If X is a positive implicative BH*-algebra, then X is a transitive
BH*-algebra.

Proof. Assume that z *y =0 and y *x z = 0 for any z,y, 2 € X. Then we have

xxz=(xxz)*0
=(zxz)*(y*z)
=(r*xy)*z
=0x2=0.
Hence X is a transitive BH *-algebra. O

For an element a of a BH-algebra X, the set {x € X|z < a}, denoted by A(a),
is called the initial section of an element a. Since a € A(a), A(a) is not empty.
Proposition 3.8. Let X be a transitive BH-algebra and x < y. If y € A(a), then
x € Aa).

Proof. Since y € A(a), we have y < a. Hence x < y < a, i.e., x < a. This implies
z € Aa). O
Theorem 3.9. For any a in a positive implicative BH*-algebra X, A(a) is the least

ideal of X containing a.

Proof. Tt follows from that 0xa = 0 for any a € X. Hence 0 € A(a). Let zxy € A(a)
and y € A(a) for any z,y € X. Then (z *xy)+xa =0 and y *a = 0. Since X is
positive implicative, we have 0 = (x x y) xa = (z*xa) * (y*a) = (r*xa) *x0 =z x a.
Hence = € A(a). Therefore A(a) is an ideal of X. Clearly, a € A(a).
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Let H be any ideal of X containing a. Let € A(a). Then z+a =0 € H. Since
a € H and H is an ideal of X, we have z € H. Therefore A(a) C H. Thus A(a) is
the least ideal of X containing a. O

Corollary 3.10. Let X be a positive implicative BH*-algebra. Then A(a) is a
subalgebra of X.

Proof. By Lemma 3.1 and Theorem 3.9, A(a) is a subalgebra of X. O
Theorem 3.11. Let X be a BH-algebra and let A be an ideal of X and x € A.
Then A(z) C A.

Proof. If y € A(x), then we have y < z. Hence y * z = 0. Since A is an ideal of X
and z € A, we obtain y € A. Therefore A(z) C A. O

For any a,b in a BH-algebra X, the set {x € X|(x *a) *xb = 0}, denoted by
A(a,b), is called a special set of X. Note that A(a,b) is not an ideal of X in general

as seen in the following example.

Example 3.12. Let X :={0,1,2,3} be a set with the following Cayley table:

*[0 1 2 3
0[0 00 0
/1000
212 2 0 3
33 330

Then (X;*,0) is a BH-algebra which is not a BCK/BC1I-algebra. Let I :={0,1}.
Then I is an ideal of X. Moreover, it is easy to check that I = A(0,1). It is easy to
show that A(0,3) = {x € X|(z*0) *3 =0} ={0,1,3}, but it is not an ideal of X,
since 2% 3 =3 € A(0,3), but 2 ¢ A(0, 3).

An ideal I of a BH-algebra X is said to be closed if 0 x x € I for any = € I.

Proposition 3.13. Let I be a subset of a BH-algebra X with the following condi-
tions:

(1)oel

(2) xxzel,yxzel and z € I imply xxy € I for any x,y,z € X.

Then I is both a subalgebra and a closed ideal of X.

Proof. Let z,y € I. By (II), we have x = x %0 and y = y x 0. It follows from (2)
that x xy € I. Hence I is a subalgebra of X.

Assume that I satisfies (1) and (2). We claim that I is a closed ideal of X. Let
x*y,y € I. Since 00,y 0,0 € I, it follows from (2) that 0 x y € I which proves
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that I is closed. Since z % y,0 x y,y € I, by applying (2) again, we obtain that
x=x*0 € I, so that I is an ideal of X. ]

Definition 3.14. Let X be a BH*-algebra. If for any a,b € X, the set A(a,b) has
the greatest element, then the B H*-algebra is said to be complicated.

Note that A(a,b) is a non-empty set, since 0,a,b € A(a,b), where X is a BH*-
algebra. The greatest element of A(a,b) is denoted by a ® b.
Example 3.15. Let X :={0,1,2,3} be a set with the following Cayley table:

«[0 1 2 3
0000
1000
2.2 00
3(3 330

It is easy to show that (X;x,0) is a complicated BH *-algebra.

N = O

Theorem 3.16. Let X be a positive implicative complicated BH*-algebra and let
a,b e X. Then the set
H(a,b) :={zx € X|a <bOz}

has the least element, and it is a * b.

Proof. The inequality a b < a*b implies that a < b® (a*b) and so axb € H(a,b).
Let z € H(a,b). Then a < b® z, which implies from Lemma 3.6 and Definition 3.14
that ax b < (b® z) xb < z. Hence a xb < z by Proposition 3.7. Thus a * b is the
least element of H(a,b). O

Proposition 3.17. Let X be a complicated BH*-algebra. Then for any a,b € X,
the following hold:

(i)a<a©bandb<a®b,

(i) a©0=a=00a.
Proof. Straightforward. O
Proposition 3.18. Let X be a positive implicative complicated BH*-algebra.

(i) If x <y, thenx ©y =1y for any x,y € X.

(il) r©x =z for any z € X.

Proof. (i) If x <y, then
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=((z©y)*y)*0
= (oY) *y,
which means that z ©® y < y. By Proposition 3.17(i), we have z © y = y.
(ii) Let y := x in (i). Then 2 © = = =. O
We provide some characterizations of ideals in a complicated B H*-algebra.
Proposition 3.19. Let A be a non-empty subset of a complicated BH*-algebra X .
If A is an ideal of X, then it satisfies the following conditions:
(i) Vee A)(Vye X)(y<x=yecA).
(ii) Vz,ye A)(Fz € A)(z < z,y < 2).
Proof. Assume that A is an ideal of X. Let z € A,y € X withy < x. Then y*xz = 0.
Since A is an ideal of X, we have y € A, i.e., (i) is valid.
Let z,y € A. Since (x®y)*x < y and y € A, it follows from (i) that (zOy)xz € A
so that x ©® y € A because A is an ideal of X. If we take z := z ® y, then z < z and
y < z by Proposition 3.17(i). This completes the proof. O

Proposition 3.20. Let A be a non-empty subset of a positive implicative complicated
BH*-algebra X. Then A is an ideal of X if and only if it satisfies the following
conditions:

(i) (Vze A)(VyeX)(y<z=ycA).

(il)) (Ve,ye A)(Fz € A)(z < z,y < z).
Proof. The necessity follows from Proposition 3.19.

Conversely, let A be a non-empty subset of X satisfying conditions (i) and (ii).
Since A is non-empty, we have 0 € A by (i). Let x,y € X with y € A and x*xy € A.
Then, by (ii), there exists z € A such that y < z and = *y < z. Since X is positive
implicative, we have x ¥ 2 = (x % 2) * 0 = (z *x 2) * (y*x 2) = (r*y) * 2 = 0 and so
x < z. Since z € A, it follows from (i) that x € A. Hence A is an ideal of X. O

In Proposition 3.19, the condition, “complicated”, is very necessary. See the

following example.

Example 3.21. Let X :={0,1,2,3,4} be a set with the following Cayley table:

*0 1 2 3 4
0/0 0 0 0O
11 01 0 0
212 20 2 0
313 3 3 00
414 4 3 2 0
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It is easy to show that X is a BH®*-algebra which is not a BCK/BCI-algebra.
Moreover, X is not complicated, since A(1,2) = {z € X|(z*1)*2 =0} = {0,1,2}
has no greatest element. It is easy to see that {0,1,2} is an ideal of X, but there is
no element z € {0,1,2} such that < z,y < z in the set {0, 1,2}, proving that the

condition, “complicated”, is necessary in Proposition 3.19.
Theorem 3.22. Let A be a non-empty subset of a positive implicative complicated
BH*-algebra X. Then A is an ideal of X if and only if it satisfies the following
conditions:

(i) Vee A)(Vye X)(y<x=yecA).

(ii) Ve,ye A=z 0yeA).

Proof. The necessity follows immediately from Proposition 3.19.

Conversely, let A be a non-empty subset of X satisfying conditions (i) and (ii).
Obviously, 0 € A by (i). Let x,y € X satisfying y € A and v xy € A. Then
y© (zxy) € A by (ii). Since z < y ® (x *y) by Theorem 3.16, it follows from (i)
that x € A. Thus A is an ideal of X. 0

4. ESSENCE OF BH-ALGEBRAS
Let X be a BH-algebra. For any subsets G and H of X, we define
G+« H :={zxylr e G,y € H}.
Lemma 4.1. Let X be a BH-algebra. If 0 € H C X, then
(VG CX)(GCGxH).
Proof. Let x € G. Then z =2z %0 € G* H by (II), and so G C G * H. O
Lemma 4.2. For any subsets A, B and F of a BH -algebra X, we have the following

properties:

(i) ACB=AxECBxE,ExAC ExB.
(i) (ANB)*EC (AxE)N(BxE)
(iii) Ex (ANB)C (ExA)N(E*B)
(iv) (AUB)xE = (A*xE)U(B=*E)
(v) Ex(AUB) = (Ex*A)U(FE*B)

o~~~ o~

Proof. (i) Let z € A% E. Then z = axe for some a € A and e € E. Since A C B,
it follows that x = a x e for some a € B and e € F so that x € B x E/. Therefore
Ax FE C B« FE. Similarly, we get Ex A C E x B.
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(ii) Since ANB C A, B, it follows from (i) that (ANB)*E C A*E and (ANB)*E C
B * E so that (ANB)* E C (Ax E)N (B x FE). Similarly, (iii) is valid.
(iv) Since A,B C AUB, we have Ax E C (AUB)* FE and BxE C (AU B) x E by
(i), and so (A* E)U(B*E) C (AUB)*E. If v € (AUB) % E, then x = y x e for
some y € AUB and e € E. It follows that x = y % e for some y € A and e € F; or
r=yxeforsomeyc Bande € Esothat t =yxec AxEForx=y*xec BxFE.
Hence (AUB)*E C (AxE)U(B*E). Thus (AUB)* E = (Ax E)U(Bx* E).
Similarly we can prove that (v) is valid. O
Definition 4.3. If a non-empty subset G of a BH-algebra X satisfies G x X = G,
then G is called an essence of X.

Obviously, {0} is an essence of a BH*-algebra X which is called a trivial essence
of X, and X itself is an essence of a BH-algebra X. Note that if a is an element of
a BH-algebra X such that {a} * X = X, then any proper subset G of X containing

a can be not an essence of X.

Example 4.4. Let X := {0,1,2,3} be a set with the following Cayley table:

+[0 1 2 3
0[0 0 0 0
11010
202 2 0 0
313210

Then X is a BH-algebra. It is easy to check that G; = {0,1}, Gy := {0,2} and
Gs := {0,1,2} are essences of X. But H := {0,3} is not an essence of X, since
3x2=1¢ H.

Theorem 4.5. Let X be a BH-algebra. Then the following properties hold:

(i) Every essence of X contains the zero element 0.
(ii) Every essence of X is a subalgebra of X.
(iii) Ewvery ideal of a BH*-algebra X is an essence of X.

Proof. (i) Let G be an essence of X. Then () # G = G X, and so there exists ¢ € G
and thus 0 =xz*xzx € G*x X =G.

(ii) Let G be an essence of X and let z,y € G. Then xxy € GxG C G+ X = G by
Lemma 4.2(i) and thus G is a subalgebra of X.

(iii) Let I be an ideal of X. Then 0 € I, and so I # ). By Lemma 2.6, for any z € X
and y € I, we have y xx € I since yxx < y. Thus I * X C I. Obviously, I C I x X
by Lemma 4.1. Therefore I x X =1, i.e., I is an essence of X. U
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The converse of (ii) and (iii) of Theorem 4.5 may not be true as seen the following

example.

Example 4.6. In Example 4.4, G35 := {0, 1,2} is an essence which is not an ideal,

and H := {0, 3} is a subalgebra which is not an essence of X.

Proposition 4.7. Let G and H be essence of a BH-algebra X. Then G N H and
G U H are essences of X.

Proof. By Lemma 4.1 and Lemma 4.2(ii),
GNHC(GNH)xX
C(GxX)N(H=*X)
=GNH,
and so (GNH)*X =GN H,ie, GNH is an essence of X. Now by Lemma 4.1
and Lemma 4.2(iv), we get
GUHC(GUH)*X
=(GxX)U(H=*X)
=GUH,
and thus (GUH)*« X =GUH, i.e., GU H is an essence of X. 0
In general, we have the following observation.

Corollary 4.8. If {G;|i € A C N} is a family of essences of a BH-algebra X, then
NieAGi and U;eAG; are essences of X.

Generally, the union of two ideals of a BH-algebra may not be an ideal of X.
For example, in Example 4.4, Gy := {0,1} and G2 := {0,2} are ideal of X, but
G1UG2 ={0,1,2} is not an ideal of X, since 3x1 =2 € G; UG, and 3 ¢ G1 U Gs.
But we know that the above Theorem 4.5 and Proposition 4.7 lead to the following

result.

Corollary 4.9. The intersection and union of two ideals of a BH*-algebra X are

essences of X.

Proposition 4.10. Let X and Y be BH-algebras. If G and H are essences of X
and Y , respectively, then G x H is an essence of X X Y.

Proof. Since (Gx H)* (X xY) = (G*xX)x (H«*X) =G x H, we know that G x H
is an essence of X x Y. O

Let G be an essence and H be a subalgebra of a BH-algebra X. Then GU H is
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not an essence of X in general as seen in the following example.

Example 4.11. (i) In Example 4.4, G; := {0,1} is an essence and H := {0,3} is a
subalgebra of X, but GUH = {0, 1,3} is not an essence of X, since 3x1 =2 ¢ GUH.
(i) Let X :={0,1,2,3,4} be a set with the following Cayley table:

*10 1 2 3 4
0/j0 0 0 0 O
111 01 01
2/12 2 0 0 2
313 21 0 3
414 4 4 4 0

Then G := {0,1,4} is an essence of X and H := {0,3} is a subalgebra of X, but
G UH =10,1,3,4} is not an essence of X, since 3x1=2¢ GU H.

Proposition 4.12. Let X be a BH-algebra. If G is an essence of X and H is a
subalgebra of X, then G N H is an essence of H.

Proof. Using Lemma 4.1 and Lemma 4.2(i)-(ii), we have (GNH)« H C (G* H) N
(H+H)C(GxX)NH=GNHC(GNH)xH,andso (GNH)*xH =GnNH.
Therefore G N H is an essence of H. O
Theorem 4.13. Let X be a positive implicative BH*-algebra. For any a € X, A(a)

is an essence of X containing a.

Proof. Obviously, a € A(a). Note that A(a) C A(a) * X by Lemma 4.1. For any
y € X and any x € A(a), we have x < a. By Lemma 3.6, xxy < axy and axy < a.
Hence zxy < a, i.e., xxy € A(a). Therefore A(a)*X C A(a). Thus A(a)*xX = A(a),

i.e., A(a) is an essence of X. O
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