
J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. ISSN 1226-0657
Volume 19, Number 1 (February 2012), Pages 73–86

ENTROPY RIGIDITY FOR METRIC SPACES

Seonhee Lim

Abstract. This is a survey on the volume entropy and its rigidity of various metric
spaces. This survey is aimed to summarize recent results as well as remaining open
questions and possible directions on this subject.

1. Introduction

For any Riemannian manifold, the volume entropy is defined as the exponential
growth rate of volumes of balls in the universal cover (see Definition 2.1). It is
named as an entropy since it is equal to the topological entropy of the geodesic flow
for a large class of Riemannian manifolds, namely all non-positively curved ones.
Volume entropy is related to many other geometric and algebraic invariants such as
Gromov’s simplicial volume, the bottom of the spectrum of Laplacian, the Cheeger
isoperimetric constant, the growth of fundamental groups, etc.

The minimal entropy rigidity conjecture due to Gromov and Katok states that
among all Riemannian metrics on a closed n-dimensional Riemannian manifold of
non-positive curvature, the locally symmetric metrics minimize the normalized vol-
ume entropy. (Here, the normalized entropy is the volume entropy multiplied by
V ol(M)(1/n). Alternatively, one may consider all metrics of volume 1 and use un-
normalized volume entropy.)

This conjecture was first shown by Katok for surfaces. Fifteen years later, Besson,
Courtois and Gallot proved that for a manifold which carries a rank one symmetric
metric, the normalized entropy is minimal if and only if the metric is rank one
symmetric [1]. The conjecture is still open for general symmetric spaces of rank at
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least two, except the case where the manifold is locally a product of rank-1 symmetric
spaces [11].

Another type of volume entropy rigidity, which we will call maximal entropy
rigidity, works in the opposite direction, i.e. some special metrics can be charac-
terized as those having maximal (non-normalized) entropy, among all Riemannian
metrics with some constraint. A classical volume comparison shows that the volume
entropy of a Riemannian manifold, with Ricci curvature bounded below by −(n−1),
is bounded above by n−1. Recently, Ledrappier and Wang showed that the equality
case occurs if and only if the given space is hyperbolic [21].

There are two types of metric spaces more general than Riemannian manifolds for
which we want to consider entropy rigidity in this paper. One is Hilbert geometry
and the other is Tits building.

Hilbert geometry was introduced by David Hilbert related to his fourth problem
on characterizing the metric spaces whose geodesics are straight lines. It is a metric
space in a bounded convex open set Ω ⊂ Rn. When Ω is an ellipsoid, the Hilbert
geometry is isometric to the hyperbolic space. Even when Ω is not an ellipsoid, if ∂Ω
is sufficiently smooth, then some analog of the sectional curvature, namely the flag
curvature, is equal to −1 [32]. More recently, Y. Benoist showed that if a discrete
group Γ divides some properly convex set Ω in Sn, then Γ is Gromov-hyperbolic (i.e.
geodesic triangles are δ-thin for some δ > 0) if and only if Ω is locally the graph
of a quasisymmetric convex function [4]. In these senses, Hilbert geometries are
considered as metric spaces similar to hyperbolic spaces. Crampon showed that if
M is a compact n-dimensional manifold with a strictly convex projective structure,
then its topological entropy is less than or equal to n− 1, where the equality holds
if and only if the structure is hyperbolic (see Section 3.3 for details). The results of
Crampon and of Berck-Bernig-Vernicos which are similar to the volume comparison
theorem indicate further that Hilbert geometries can be considered as spaces with
Ricci curvature bounded from below. Note that there can be several good choices
of volume on a Finsler manifold, for example an n-dimensional Hausdorff measure.
(See [3] for more details.)

The second type of spaces we consider are Tits buildings. It is remarkable that
not much attention has been paid so far to the natural question whether there exists
an entropy rigidity for singular spaces. We may extend the definition of volume
entropy in the previous paragraph to any piecewise Riemannian manifold without
any change, for example to any finite-dimensional polyhedral complexes, especially
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Tits buildings. The entropy rigidity question on buildings is a natural question in
the sense that Bruhat-Tits building is an analog of symmetric space for Lie groups
over non-archimedean local fields. As CAT(0)-metric spaces which are piecewise
Riemannian but not Riemannian, they often give new insights in solving various
problems in geometric group theory. See [8], [9] for results on quasi-isometry rigidity
or conformal dimension of some buildings. See also [16] for a survey on problems
related to automorphism group of buildings and more generally nonpositively curved
polyhedral complexes.

This survey complements a series of survey papers on other various rigidity results
for singular spaces, which are well collected in the lecture notes of the summer
school in Grenoble held in 2004, published by SMF, including that of Calabi-Weil
infinitesimal rigidity by G. Besson, Quasi-conformal rigidity and Mostow rigidity by
M. Bourdon, quasi-isometry rigidity of groups by C. Drutu, and deformation rigidity
on bounded cohomology by M. Burger and A. Iozzi [6].

We finish this survey with open questions, and we would like to conclude that
even when restricted to these spaces, there are many open questions yet to be solved.

2. Various Invariants Related to Entropy

In this section, we recall various invariants of Riemannian manifolds related to
volume entropy, which we will use to generalize the volume entropy rigidity question
to metric spaces more general than Riemannian manifolds.

2.1. Topological entropy, Hausdorff dimension and critical exponent. Let
M be a Riemannian manifold of non-positive curvature. Denote its universal cover
by M̃ , a base point x ∈ M̃ , and a ball of radius T based at x by B(x, T ).

Definition 2.1. The volume entropy of M is defined as

hvol(M) = lim inf
T→∞

log vol(B(x, T ))
T

.

It is easy to see that the above limit inf is a limit and the limit does not depend
on the base point x.

Now instead of vol(B(x, T )), we take the cardinality |B(x, T ) ∩ π1(M).x| of the
orbit of π1(M) in the ball, to get the growth of π1(M), called the critical exponent
of π1(M),

δ(π1(M)) = lim inf
T→∞

log |B(x, T ) ∩ π1(M).x|
T

.
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Let X = T 1(M) be the universal cover of M , which is a metric space again with the
metric, denoted by d and defined by

d((x,~v), (y, ~w)) =
√

d(x, y)2 + ^(~v, t(~w))2,

where t(~w) is the parallel transport of ~w to x and ^ is the spherical angle between
two vectors ~v and t(~w). Let gt be the geodesic flow on it, i.e. gt assigns to a unit
vector (x,~v) another unit vector (xt, ~vt) where xt is a point of distance t from x

along the geodesic passing through x and have unit tangent vector ~v at time zero,
and ~vt is the unit tangent vector of the geodesic at xt.

For positive constants δ and T , a subset Y ⊂ X is called (T, δ)-spanning if for
any point x ∈ X there exists y ∈ Y such that d(gt(x), gt(y)) ≤ δ for all 0 ≤ t ≤ T .

Definition 2.2. The topological entropy of the geodesic flow gt on X = T 1(M) is
defined by

htop(M) = lim
δ→0

lim sup
T→∞

log N(T, δ)
T

,

where N(T, δ) is the minimal cardinality of a (T, δ)-spanning set.

Finally, let dH(π1(M)) be the Hausdorff dimension of the limit set of π1(M),
where the limit set is the set of orbits π1(M).x∩∂M̃ on the boundary of the universal
cover.

Theorem 2.3. If M is a compact manifold of negative curvature, then

hvol(M) = δ(π1(M)) = htop(M) = dH(π1(M)).

(See [28], [13], [33] for proofs.)
More recently, F. Dalbo, M. Peigne, J. Picaud, and A. Sambusetti showed that

if M is non-compact but 1/4- pinched (i.e. when −b2 ≤ κ(M) ≤ −a2 and b2/a2 ≤
4), then the above theorem still holds. They also showed that 1/4 is optimal by
constructing examples of non-compact (1/4 + ε)-pinched manifold for which the
volume entropy is strictly larger than the critical exponent [13].

From Theorem 2.3, there are many possibilities to extend the question of finding
minimal volume entropy in some parameter space of metrics. For example, when
M is equipped with a noncompact finite volume Riemannian metric, we take the
critical exponent as the entropy functional. For contact flows, Finsler metric and
magnetic field flows, we take the topological entropy, and for geometrically finite
manifold M , we can take the Hausdorff dimension of the limit set of π1(M) [12].
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2.2. Measure-theoretic entropy and variational principle. In this subsec-
tion, we recall a fundamental relation between the topological entropy and measure-
theoretic entropies, the measure-theoretic entropies being the entropy most often
considered in dynamics, information theory and physics.

Suppose we are given a measure µ on the space X = T 1(M) with Borel σ-algebra
B and the flow gt. For a given finite partition ℘, the entropy of gt with respect to ℘

is

hµ(gt, ℘) = lim
n→∞

1
n

H(℘g
−n),

where g = g1 is the time one map of the geodesic flow, and

H(℘g
−n) = −

∑

α∈℘g
−n

µ(α) log µ(α)

is the entropy of the join partition ℘g
−n = ℘ ∨ g−1(℘) ∨ · · · ∨ g−n+1(℘).

Definition 2.4. The entropy of (X,B, gt, µ) is

hµ(gt) = sup{hµ(gt, ℘) : ℘ is a measurable partition with H(ξ) < ∞}.
The variational principle says that the topological entropy is supremum of measure-

theoretic entropies of all Borel probability measures invariant under the flow gt.

htop(gt) = sup{hµ(gt) : µ is a gt−invariant Borel probability measure}.
In some classical cases, a measure attaining the maximum entropy is known: notably
in our situation when the given manifold is of non-positively curved, the measure
is called Bowen-Margulis measure. Bowen-Margulis measure was later extensively
used for all CAT (−1)-spaces by T. Roblin for equidistribution problems.

Note that for Riemannian manifolds, there is another measure invariant under
the geodesic flow: Liouville measure which is locally the product of the canonical
volume form with the angular measure. See the last question in Section 4 for a
question related to Liouville measure and Bowen-Margulis measure.

2.3. Other topological invariant related to growth. There is a long history
of counting number of primitive closed geodesics. The main theme is that the
exponential growth rate of such number is equal to the volume entropy, and more
precisely the number of primitive closed geodesics of length ≤ t is asymptotically
proportional to exp(hvolt)

hvolt
where t tends to infinity. (See the thesis of G. Margulis

[29] for compact negatively curved manifolds, and for more recent results, papers of
A. Eskin-M. Mirzakhani [15] for Moduli spaces with Teichmüller flow, E. Makover
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- J. McGowan [26] for random manifolds, Z. Lian - L.S. Young [24] for mappings of
Hilbert spaces, etc.)

As the fundamental group is often quasi-isometric to the given manifold, the
question of volume growth of the manifold can be asked for groups as well. There
is a paper by Igor Rivin with an excellent survey on the growth of free groups [?].

Remark. Another invariant related to volume entropy, which we will not consider
in the next sections, is Lyapunov exponent. (See Ruelle’s inequality, and also papers
by A. Manning [27], L. S. Young [33] for early developments.)

3. Recent Progresses

The famous barycenter map machinery of Besson-Courtois-Gallot was extended
to a class of singular metric spaces called convex Riemannian amalgam, including
cone-manifolds and the metric doubling of hyperbolic convex cores, by P. Storm. In
this paper, we restrict ourselves to singular spaces which are buildings.

3.1. Volume entropy for graphs. Locally finite graphs have universal covering
trees, which are 1-dimensional buildings. As a preliminary section to the next sec-
tion, let us briefly summarize entropy rigidity for graphs.

Let X be a finite (unoriented) graph and X̃ its universal cover, which is a locally
finite tree. The volume entropy of X is the exponential growth rate of volume of
metric balls as in Definition 2.1, where the volume is now the sum of length of edges
(or part of the edges) in the metric balls. Let us denote the degree at each vertex x,
i.e. the number of edges with vertex x, by kx + 1. By a normalized length distance,
we mean that the sum of lengths of edges equals one.

Theorem 3.1 ([25]). Let X be a finite connected graph with degree at least three, i.e.
kx ≥ 2. Then there is a unique normalized length distance minimizing the volume
entropy hvol(d). The minimal volume entropy is

hmin =
∑

x∈V X

(kx + 1) log kx,

and the entropy minimizing length distance d = d` is given by

∀e ∈ EX, l(e) =
log(ki(e)kt(e))

2
∑

x∈V X

(kx + 1) log kx
.

The case when the degree is constant, i.e. when kx = c, the above theorem was
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already proved in a paper of I. Rivin [30] in 1999 and also independently by I.
Kapovich and T. Nagnibeda [18] around the same time as the author.

I. Kapovich and T. Nagnibeda wanted the above result only for regular graphs
as they worked in the context of Outer space. Recall that Outer space was intro-
duced by Culler and Vogtmann as a free group analog of Teichmüller space of a
Riemann surface. The group Out(Fn) of outer automorphisms of free groups Fn on
n generators naturally acts on the n-Outer space. A point of the n-Outer space is
a metric graph together with a base point, whose fundamental group isomorphic to
free group Fn.

Theorem 3.2 ([18]). In n-Outer space, the volume entropy is minimized by any
(regular) trivalent graph in the space, with the metric assigning the same length for
every edge.

Let us also remark that in general, a group acting on a tree does not necessarily
act freely, so that the quotient is not a graph anymore but a (Bass-Serre) graph of
groups. Theorem 3.1 is stated in this general context, where you need to have some
extra weights depending on the cardinality of the vertex stabilizers. We refer to [25]
for details.

Application. Note also that Theorem 3.1 was used for finding traffic equilibrium
state of the transport network, where it is important to consider weights on edges
[35].

3.2. Volume entropy for buildings. Let P be a Coxeter polyhedron in Xn,
where Xn is either Hn or En (with its standard metric of constant curvature −1 and
0, respectively). It is a compact, convex regular polyhedron each of whose dihedral
angle is of the form π/m for some integer m ≥ 2. Let (W,S) be the Coxeter system
consisting of the set S of reflections of Xn with respect to the faces of codimension
1 of P , and the group W of isometries of Xn generated by S. It has the following
finite presentation:

W =< si : s2
i = 1, [sisj ]mij = 1 >,

where the dihedral angle between si and sj is π/mij .
A polyhedral complex ∆ of type (W,S) = (W (P ), S(P )) is a CW-complex such

that there exists a morphism of CW-complex, called a function type, τ : ∆ → P , for
which its restriction to any maximal cell is an isometry, and that for all x∞ ∈ ∆∞,
any cell σ of ∆ containing x∞ is of finite volume or isometric to R or R+.
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Definition 3.3. Let (W,S) be a Coxeter system of Xn. A building ∆ of type
(W,S) is a polyhedral complex of type (W,S), equipped with a maximal family of
subcomplexes, called apartments, polyhedrally isometric to the tessellation of Xn by
P under W , satisfying the usual axioms for a building:

(1) for any two cells of ∆, there is an apartment containing them,
(2) for any two apartments A,A′, there exits a polyhedral isometry of A to A′

fixing A ∩A′.
The link of a vertex x is a (n − 1)–spherical building, whose vertices are the edges
of ∆ containing x, and two vertices (two edges of ∆) are connected by an edge if
there is a 2-dimensional cell containing both edges of ∆, etc. The building ∆ is
a CAT (κ)-space, with κ the curvature of Xn and its links are CAT (1)– spherical
buildings.

Using some dynamics of suspension flow of a shift of finite type, F. Ledrappier
and the author showed that the volume entropy equals the topological pressure on
an apartment.

Now let ∆ be a right-angled hyperbolic building. For example, the building ∆
is called a Bourdon’s building if P is a regular hyperbolic right-angled polyhedron.
By showing that Liouville measure is not entropy maximizing, we obtained a strict
lower bound as a consequence.

Theorem 3.4 ([20]). Let X be a compact quotient of an n-dimensional right-angled
hyperbolic building of type (W (P ), S(P )). The Liouville measure does not coincide
with the Bowen-Margulis measure, for any hyperbolic metric. Consequently, the
following strict inequality holds:

hvol(X) > (n− 1) +
cn

vol(T 1P )

∑

F

log q(F ) vol(F ),

where cn is a constant depending only on n and the sum is over all (n−1)-dimensional
faces of the polyhedron P .

Note that the non-strict inequality holds both for any building by the variational
principle for topological pressure, similar to the variational principle mentioned in
Section 2.2.

Volume entropies of more classical buildings are also explored, notably by E.
Leuzinger. He characterized the volume entropy of Bruhat-Tits buildings in terms
of the sum of the roots of the associated Lie group. Let us recall how a building is
associated to some given Lie group.
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For any prime p, the p-adic field Qp is the completion of Q with respect to the metric
induced by the discrete valuation ν(pna/b) = n, where a, b are coprime, and p - a, b:

d(x, y) = |x− y| = e−ν(x−y).

For any power q = pn of a prime p, the field Fq((t)) of formal Laurent series with
coefficients in the finite field Fq has discrete valuation

ν

( ∞∑

j=−m

ajt
j

)
= −m

where a−m 6= 0. It is known that any non-archimedean local field (i.e. a local field
such that |x + y| ≤ max{|x|, |y|}) is a finite extension of either Qp or Fq((t)).

Let F be a non-archimedean local field. Let G be a connected, simply connected,
semisimple linear algebraic group over F and let G = G(F) be the group of F-rational
points of G. We assume that the F-rank, i.e. the dimension of any maximal F-split
torus, is at least 1. Let S be such a maximal F-split torus, and let N, Z be the
normalizer and the centralizer of S in G. Let N = N(F).

Then there exists a subgroup B ⊂ G called Iwahori subgroup such that

(1) B and N generate G,
(2) the subgroup B ∩N is normal in N , and
(3) the quotient W = N/T admits a set of generators S such that, (W,S) is a

Coxeter system.

Such a BN-pair is called Euclidean, if the group W is a Euclidean Coxeter group.
The Bruhat-Tits building associated to a Euclidean BN-pair is the poset of cosets
of special subgroups. It satisfies the axioms of building in Definition 3.3.

Theorem 3.5. The volume entropy of a Bruhat-Tits building quotiented by a dis-
crete group of G with the combinatorial metric satisfies

hvol(∆) = 2||ρ||,
where 2ρ is the sum of positive roots of G with respect to some Weyl chamber in a
maximal F-split torus.

See [23] for details. Note that in this theorem, the volume entropy is calculated for
the canonical combinatorial metric, and that it might vary as one varies the metrics
on ∆. On the other hand, Bruhat-Tits buildings are Euclidean buildings, and they
have much less freedom on which kind of Euclidean metrics it can admit, compared
to hyperbolic buildings.
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3.3. Volume entropy rigidity for Finsler metric spaces. In this section, we
summarize entropy rigidity results in Hilbert geometries which are examples of
Finsler metric spaces.

Let Ω be a compact convex set of Pn(R), n ≥ 2. The distance on Ω is defined by
the cross ratio:

dΩ(x, y) =
1
2
| ln[a, b, x, y]| = 1

2

∣∣∣∣ln
d(a, x)d(b, x)
d(a, y)d(b, y)

∣∣∣∣ ,

where a, b are the intersection points of the line (xy) with the boundary ∂Ω. Then
(Ω, dΩ) is a complete metric space. It has a Hilbert geometry, i.e. its tangent space
has only a convex norm which is not necessarily a quadratic form.

The cross ratio is invariant under the projective transformation. Ω is an ellipse
if and only if dΩ is Riemmannian, and that case reduces to the Klein model of
hyperbolic geometry. On the other extreme, Ω is a convex polytope if and only if
it is bi-Lipshitz equivalent to the Euclidean space ([10]). Now the volume entropy
is defined by the exponential growth rate of volume of balls as before, where the
volume of a ball is defined as the Hausdorff measure associated to the Hilbert metric.
The proof of Manning in Theorem 2.3 works for strictly convex domain as well and
one concludes that volume entropy is equal to the topological entropy of the geodesic
flow.

Recall that geodesics are straight lines, thus there is a unique geodesic between
any two given points if there is no plane section which contains two straight segments
(see Appendix A in [14]). The geodesic flow gt simply assigns to a point with
direction (x, ~[xx+]) (here x+ ∈ ∂Ω), another point with direction (xt, ~[xtx+]), where
dΩ(x, xt) = t and xt is closer to x+ than x is.

On the side of minimal volume entropy rigidity, Verovic noticed that the Gromov-
Katok conjecture does not hold anymore in the set of Finsler metrics, i.e. there exists
a Finsler metric whose volume entropy is smaller than the volume entropy of the
symmetric metrics. It is still an open question how to characterize Finsler metrics
which attain minimal volume entropy.

As for maximal volume entropy, Berck, Bernig and Vernicos showed that among
all plane Hilbert geometries, the hyperbolic plane has maximal volume entropy.
They showed that the volume entropy is bounded above by 2/(3−d), where d is the
Minkowski dimension of the extremal set of K. They also proved higher dimensional
version with some additional technical hypothesis [3].
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On the other hand, for strictly convex domain, maximal entropy rigidity is solved
by Crampon:

Theorem 3.6. Let Ω be a strictly proper convex open set in Pn(R) and M = Γ\Ω
be a compact quotient by a discrete group Γ ⊂ PGL(Rn). Then the volume entropy
hvol(Ω, dΩ) ≤ n− 1 with equality if and only if Ω is an ellipsoid.

Recall that strictly convex open sets with Hilbert geometry are exactly the ones
that are Gromov-hyperbolic.

4. Open Questions

In this last section, we collect open questions related to entropy rigidity of various
metric spaces. Most of them were mentioned in the AIM-ETH workshop on volume
entropy rigidity mentioned in the acknowledgement. Unfortunately, I do not have
records about which participants suggested the following questions.

4.1. Barycenter map for buildings. Recall that the proof of Besson-Courtois-
Gallot uses the barycenter map and the Patterson-Sullivan measure on the boundary
of M̃ . We have Patterson-Sullivan measure for hyperbolic buildings since they are
CAT (−1)-spaces. It is an open question whether there is a combinatorial barycenter
map for buildings. Can one use it to prove Mostow rigidity?

4.2. Minimal volume entropy for Hilbert geometries. As summarized in Sec-
tion 3.3, most results for Hilbert geometries are on maximal entropy rigidity. Mini-
mal entropy rigidity is still open, and it is still not settled which kind of volume one
needs to take for the question. Even any good lower bound on the volume entropy
should be interesting. Note that J. Boland and F. Newberger has a result in this di-
rection [7], where they consider the normalized volume entropy with another factor
which is the n-th root of a measure of the distortion of the Finsler structure that
equals 1 for Riemannian manifolds.

4.3. Topological mixing. Note that although positivity of volume entropy is not
strictly related to mixing property of the geodesic flow, we know that for Riemannian
manifolds, the ones with positive entropy are the ones with mixing geodesic flow.
Start with a pinched negatively-curved Hadamard manifold and a discrete convex
cocompact isometry group. On the quotient, is the geodesic flow, restricted to the
non-wondering set of the quotient, topologically mixing?

4.4. Isospectrality. It is open whether isospectrality implies the same volume
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entropy. We can paraphrase the question as “Can you hear the volume entropy of a
compact negatively curved manifold?”.

4.5. Minimal volume entropy and Betti numbers. One aspect of volume en-
tropy omitted in this survey is Gromov’s simplicial volume. He showed that the
simplicial volume of a closed orientable Riemannian manifold is the volume of M

divided by a constant that depends only on M̃ . For hyperbolic manifolds, he further
showed that this constant is the volume of the ideal regular geodesic simplices in Hn,
which depends only on the dimension. As the simplicial volume can be considered
as the volume of a cycle given by the ideal triangle, one can ask questions related to
bounded cohomology. For example, given n ≥ 2, does there exist a constant c(n),
depending only on n, such that all the l-Betti numbers of any n-dimensional closed
aspherical manifold M are ≤ c(n)minhvol(M)?

4.6. Liouville measure, harmonic measure and Bowen-Margulis measure.
Apart from Liouville measure and Bowen-Margulis measure defined already in Sec-
tion 2.1, there is yet another canonical measure to consider : harmonic measure
which is defined as the probability measures solving Dirichlet problem on M̃ . More
precisely, it is known that there exists a unique function uf on M̃ ∪M̃(∞) such that
∆uf = 0 on M̃ and uf (z) → f(ξ) when z → ξ, ξ ∈ M̃(∞). For any x ∈ M̃ , the
map f 7→ uf (x) is a positive linear functional on C(M̃(∞)). It defines a probability
measure on M̃(∞), the harmonic measure µ̃x. It was shown by Ledrappier that for
surfaces, harmonic measure and Bowen-Margulis measure coincide only when the
curvature is constant. It is an open question for hyperbolic buildings whether two of
any of these three measures coincide if and only if the volume entropy is minimized.
(This conjecture is sometimes attributed to A. Katok, Sullivan and Kaimanovich.)
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31. T. Roblin: Ergodicité et équidistribution en courbure négative. Mém. Soc. Math. Fr.

(N.S.), (95):vi+96, 2003.
32. Z. Shen: Lectures on Finsler geometry. World Scientific. xiv, 2001.
33. L.-S. Young: Dimension, entropy and Lyapunov exponents. Ergodic Theory Dynamical

Systems 2 (1982), no. 1, 109-124.
34. C. Vernicos: Lipschitz characterization of convex polytopal Hilbert geometries. preprint,

2008.
35. D. Volchenkov & P. Blanchard: Transport networks revisited: why dual graphs.

preprint, 2007.

Department of Mathematics, Seoul National University, Seoul, 151-747, Korea
Email address: slim@snu.ac.kr


