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SURFACES OF REVOLUTION WITH MORE THAN ONE AXIS

Dong-Soo Kim a, ∗ and Young Ho Kim b

Abstract. We study surfaces of revolution in the three dimensional Euclidean
space R3 with two distinct axes of revolution. As a result, we prove that if a
connected surface in the three dimensional Euclidean space R3 admits two distinct
axes of revolution, then it is either a sphere or a plane.

1. Introduction

Spheres and planes are the most basic geometric objects in the theory of surfaces
in the three dimensional Euclidean space R3. They are also members of the family
of surfaces of revolution in R3. Most of all surfaces of revolution have just one axis
of revolution, but spheres and planes admit two distinct (in fact, infinitely many)
axes of revolution.

In this regards, it is natural to raise a question:
“Are there any other surfaces of revolution with more than one axis?”
In this note, we give a negative answer in an elementary manner as follows (cf.

[1], p.10):

Theorem A. Suppose that a connected surface M in the three dimensional Euclidean
space R3 admits two distinct axes of revolution. Then, M is either a sphere or a
plane.

As a corollary of our theorem and a theorem in [2] (see also Theorem 3 in Section
2.), we immediately obtain

Theorem B. Let M be a complete surface in R3. Then, M is either a sphere or
a plane if and only if there exist three points of M such that every geodesic through
them is a normal section.
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2. Surfaces of Revolution

We now give some well-known definitions; surfaces of revolution, axes of revolu-
tion, vertices on a surface of revolution, and normal sections of a surface.

Definition 1. Let M be a connected surface in the 3-dimensional Euclidean space
R3 and L a straight line in R3. For any point p ∈ M , let Π(p) denote the plane
passing through p and orthogonal to L. L is called an axis of revolution of M and
M a surface of revolution with axis L if for any point p ∈ M , M

⋂
Π(p) is a union

of some circles centered at O, which is the intersection point of L and Π(p). Here
we regard the point O as a circle of radius 0.

The circles centered at O of positive radius are called the parallels of M . The
intersection of M and the plane Π(L, p) which contains L and passes through p

are called a meridian of M through p. Every meridian of M is a plane curve and
symmetric with respect to the axis. By revolving a meridian around the axis, we
get the surface of revolution M .

Definition 2. Let M be a surface of revolution. A point p ∈ M is called a vertex
of M if p is an intersection point of M and an axis of revolution of M .

If a surface of revolution M is smooth, the tangent plane of M at p ∈ M is
generated by the orthogonal pair of tangent lines of the parallel and the meridian
through p. In particular, at a vertex p of M , the tangent plane of M at p is the
plane passing through p and orthogonal to the corresponding axis.

But, in this note, surfaces of revolution need not be smooth. As the surfaces of
revolution generated by revolving polygonal lines around an axis show, they might
have many singularities.

Now let M be a smooth surface in R3 and let p be a point of M . Let t be a
nonzero tangent vector at p and n the normal vector at p. The curve given by
intersection of M and the plane through p spanned by t and n is called a normal
section of M at p in the t direction ([3]).

Finally we introduce a characterization of a smooth surface of revolution in terms
of normal sections through a fixed point, which is proved by an elementary calcula-
tion.

Theorem 3 ([2]). Let M be a complete surface of R3. Then, M is a surface of
revolution with vertex p if and only if every geodesic through p is a normal section.
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3. Surfaces of Revolution with More Than One Axis

First, we give some lemmas which play a crucial role to prove the main theorem
as follows.

Lemma 4. Let L1 and L2 be two distinct axes of revolution of a surface M . Let R

denote a rotation with respect to L2. Then, L3 = R(L1) is also an axis of revolution
of M .

Proof. Let p3 be a point in M and Π3 the plane orthogonal to L3 passing through
p3. We denote by O3 the intersection point of L3 and Π3. If we let R−1(O3) = O1,

R−1(Π3) = Π1, and R−1(p3) = p1, then we have p1 ∈ M . Since Π1 passes through
p1 and orthogonal to L1, by definition Π1

⋂
M is a union of some circles centered at

O1.
But, we have R−1(Π3

⋂
M) = R−1(Π3)

⋂
R−1(M) = Π1

⋂
M . Thus, we see that

Π3
⋂

M = R(Π1
⋂

M) is a union of some circles centered at O3. Consequently, L3

is an axis of revolution of M . ¤
Lemma 5. Let L1 and L2 be two axes of revolution of M . If L1 and L2 are not
parallel, then they meet each other.

Proof. Suppose that the axes L1 and L2 are in skew position. We denote by d0 > 0
and φ0 ∈ (0, π

2 ) the distance and the angle between them, respectively. By revolving
L1 around L2 by angle θ ∈ [0, 2π], we get a revolutionary hyperboloid of one sheet.
Let Rθ denote the rotation by angle θ. Then it follows from Lemma 4 that the
straight line Rθ(L1) becomes an axis of revolution of M . The distance (the angle,
resp.) between L1 and the new axis Rθ(L1) increase monotonically from 0 to 2d0 (0
to 2φ0, resp.) as θ increases from 0 to π. Repeating this process n−times so that
2nφ0 > π/2, we can choose an axis of revolution L3 of M such that the angle and
the distance between L1, L3 are π/2 and d > 0, respectively.

Now let Π denote the plane containing L1 and orthogonal to L3, O the intersection
point of Π and L3, respectively. Then C = Π

⋂
M is a meridian of M , hence it is

symmetric with respect to L1. On the other hand, since Π is orthogonal to the axis
L3, C = Π

⋂
M is a union of circles centered at O. Hence we see that the axis L1

must pass through the center O. Thus, the axes L1 and L3 intersect at O. This
contradiction completes the proof. ¤
Lemma 6. Let L1 and L2 be two distinct axes of revolution of a surface M such
that they meet each other perpendicularly. Then, M is a sphere.
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Proof. Let Π2 be the plane containing L2 and perpendicular to L1. Then, Π2
⋂

M

is nonempty, because Π2 contains an axis of revolution. Hence it is a union of some
circles centered at O = L1

⋂
L2. Since M is a 2-dimensional connected surface

and L2 is an axis of revolution, Π2
⋂

M must be a single circle of positive radius.
Revolving the circle around L2 gives rise to a sphere. ¤

Now we prove Theorem A. Suppose that a surface of revolution M admits two
distinct axes of revolution L1 and L2. By Lemma 5, L1 and L2 are either parallel
or meet each other.

First suppose that they meet each other. Then by Lemma 6, we may assume that
the angle between L1 and L2 is θ0 ∈ (0, π/2). Lemma 4 implies that any straight
line L3 on the cone generated by revolving L1 around L2 is an axis of revolution of
M . Therefore, for every θ ∈ (0, 2θ0), there exists a straight line L3 that is an axis of
revolution of M such that the angle between L1 and L3 is θ. Repeating this process
n−times so that 2nθ0 > π/2, we can choose an axis of revolution L of M such that
the angle between L1 and L is π/2. Therefore, by Lemma 5, M is a sphere.

Now suppose that L1 and L2 are parallel axes of revolution of M . Let U be a
vector parallel to L1 and let d0 = d(L1, L2) denote the distance between L1 and L2.
By Lemma 4, every straight line L3 parallel to U on the circular cylinder generated
by revolving L1 around L2 becomes an axis of revolution of M . Therefore for every
d ∈ (0, 2d0), there exists an axis L3 of M which is parallel to U with d = d(L1, L3).
Repeating this process, for any d > 0 we may choose an axis of revolution L of M

with d = d(L1, L) such that L is parallel to U. Hence Lemma 4 again shows that
every straight line parallel to U becomes an axis of revolution of M .

For a fixed point p ∈ M , let Π be the plane passing through p and orthogonal to
U. For any point q ∈ Π, let L be the straight line parallel to U and passing through
the midpoint O of the segment pq. Since L is an axis of revolution of M and Π is
the plane orthogonal to L and passing through p ∈ M , the parallel of M passing
through p with respect to L is just the circle passing through p and q and centered at
O. Hence q is contained in M . Thus M is nothing but the plane Π. This completes
the proof of Theorem A.

Finally note that any axes of revolution of M can contain at most two vertices.
Thus, Theorem A together with Theorem 3 implies Theorem B.
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