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TOTAL ANGULAR DEFECT AND EULER’S THEOREM
FOR POLYHEDRA

Dong-Soo Kim a, ∗ and Young Ho Kim b

Abstract. We give an elementary proof of Descartes’ theorem for polyhedra. Since
Descartes’ theorem is equivalent to Euler’s theorem for polyhedra, this also gives an
elementary proof of Euler’s theorem.

1. Introduction

Let us begin with a convex polyhedron Σ. Euclid proved that the sum of the face
angles at any vertex P of Σ is less than 2π ; the difference between this sum and
2π is called the angular defect at P and denoted by ∆Σ(P ). If we sum the angular
defects over all the vertices of Σ, we obtain the total angular defect ∆(Σ) ([3] or
[4]). René Descartes used spherical trigonometry to prove that ∆(Σ) = 4π for every
convex polyhedron Σ. Descartes’ theorem for polyhedra in space is analogous to
the exterior angle theorem for polygons in a plane ([5]). A number of proofs of the
exterior angle theorem are given in [2].

For a convex polygon σ we denote by δσ(P ) and δ(σ) the exterior angle of σ at
a vertex P of σ and the sum of exterior angles of σ, respectively. Then we give a
proof of the exterior angle theorem for convex polygons as follows.

A proof of the exterior angle theorem. First note the following which can be
checked easily:

(L1) Every triangle σ has total exterior angle δ(σ) = 2π.

(L2) If a convex polygon σ is dissected by a straight line l into two polygons σ1

and σ2, then we have the following:
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Let P1P2 denote the common edge of σ1 and σ2. Then for each i = 1, 2 we
have

(1) δσ1(Pi) + δσ2(Pi) = δσ(Pi) + π,

and hence we get

(2) δ(σ1) + δ(σ2) = δ(σ) + 2π.

(L3) Let σ be a convex polygon which is not a triangle. Then σ can be dissected
by a straight line into two polygons σ1 and σ2 which have less number of
edges than that of the polygon σ.

Then, together with (L1), (L2), and (L3), a mathematical induction argument on
the number of edges of convex polygons shows the exterior angle theorem for convex
polygons.

Hence it is quite natural to consider whether a similar argument can be made on
the total angular defect of convex polyhedra.

In this short note, we give an affirmative answer, that is, we give a proof of
Descartes’ theorem for convex polyhedra as that of an exterior angle theorem for
polygons.

First of all, we give a proposition which shows that Descartes’ theorem is equiv-
alent to Euler’s theorem for convex polyhedra ([3] or [4]).

Proposition 1. For a convex polyhedron Σ, we have ∆(Σ) = 2π(V −E +F ), where
V,E, and F denote the number of vertices, edges, and faces, respectively.

Proof. We give a proof for completeness. For each vertex P of Σ, we put r = r(P )
as the number of edges which are incident with P . If we denote by α1, · · · , αr the
face angles at P , then the angular defect ∆(P ) at P is

∆(P ) = 2π − (α1 + · · ·+ αr)

= (π − α1) + · · ·+ (π − αr)− rπ + 2π.

Hence the total angular defect of Σ is given by

(3) ∆(Σ) =
∑

P

{(π − α1) + · · ·+ (π − αr)} − π
∑

P

r(P ) + 2π
∑

P

1,

where the summations are taken over all vertices P of Σ. Note that the first sum
is nothing but the sum of exterior angles of all plane face angles of the polyhedron
Σ, and hence it simply becomes 2πF by the exterior angle theorem. Obviously, we
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have

(4)
∑

P

1 = V.

Furthermore, since every edge has exactly two vertices, we also obtain

(5)
∑

P

r(P ) = 2E.

Thus, together with (4) and (5), (3) completes the proof. ¤

2. Proof of the Main Theorem

Now we establish formulas for total angular defect of polyhedra which are anal-
ogous to the formulas (1) and (2) for the total exterior angle of polygons.

Lemma 2. Let Σ be a convex polyhedron which can be dissected by a plane ϕ into
two convex polyhedra Σ1 and Σ2. Then we have the following:
Let σ be a convex r-sided polygon which is the common face of Σ1 and Σ2 with
vertices P1, · · · , Pr. Then for each i = 1, 2, · · · , r we have

(6) ∆Σ1(Pi) + ∆Σ2(Pi) = ∆Σ(Pi) + 2δσ(Pi),

and we get

(7) ∆(Σ1) + ∆(Σ2) = ∆(Σ) + 4π.

Proof. Note that if Pi is not a vertex of Σ, then we have ∆Σ(Pi) = 0. For simplicity,
we prove (6) when Pi is a vertex of Σ and every edge of σ is an edge of Σ. The
remaining cases can be treated similarly. We denote by γi the interior angle of σ at
Pi, i = 1, · · · , r.

Let αij and βik denote the face angles of Σ at Pi which are face angles of Σ1 and
Σ2, respectively. Then, at each Pi, we have the following:

(8) ∆Σ(Pi) = 2π −
∑

j

αij −
∑

k

βik,

(9) ∆Σ1(Pi) = 2π −
∑

j

αij − γi,

and

(10) ∆Σ2(Pi) = 2π −
∑

k

βik − γi.

Thus it follows from (8), (9) and (10) directly that (6) holds.
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Let’s denote by ∆1 and ∆2 the sum of angular defects at vertices of Σ1 and Σ2,
respectively, which do not belong to the plane ϕ.

Then we obtain from (6) and the exterior angle theorem that

∆(Σ1) + ∆(Σ2) = ∆1 + ∆2 +
∑

i

{∆Σ1(Pi) + ∆Σ2(Pi)}

= ∆1 + ∆2 +
∑

i

∆Σ(Pi) + 2
∑

i

δσ(Pi)

= ∆(Σ) + 4π,

which completes the proof. ¤
Next, we prove a lemma for convex polyhedra which is analogous to (L3) for

convex polygons.

Lemma 3. Let Σ be a convex polyhedron which is not a tetrahedron. Then Σ can be
dissected by planes successively into a finite number of polyhedra Σ1, · · · ,Σm such
that each Σi has less faces than those of Σ.

Proof. Recall that for a vertex P of Σ, r(P ) (≥ 3) denotes the number of edges of
Σ which are incident with P . First of all, we treat two cases.

Case 1. Suppose r(P ) ≥ 4 for some vertex P of Σ. Then choose two vertices P1

and P2 such that the segments PP1 and PP2 are the edges of Σ which are not those
of a common face of Σ. Then the plane through P, P1, and P2 dissects Σ into two
polyhedra Σ1 and Σ2 which have the desired property.

Case 2. Suppose Σ has a triangular face P1P2P3. By Case 1, we may assume
that r(P ) = 3 for every vertex P of Σ. Choose a vertex P4 of Σ which forms an edge
P1P4 of Σ together with P1 other than P1P2 and P1P3. Then by the plane through
P2, P3 and P4, Σ is dissected into a tetrahedron Σ1 and a convex polyhedron Σ2.
Note that Σ2 has the same number of faces as that of Σ. Furthermore, Σ2 satisfies
rΣ2(P4) = 4. Hence Case 1 shows that Σ2 can be dissected by a plane into two
convex polyhedra Σ3 and Σ4. Eventually, Σ can be dissected by planes successively
into 3 polyhedra Σ1, Σ3,Σ4 all of which have the desired property.

Now we denote by n(Σ) the minimum number of edges for all faces of Σ. Then
we prove Lemma 3 by a mathematical induction on n = n(Σ). If n(Σ) = 3, then
Case 2 implies Lemma 3. Suppose that Lemma 3 holds for all convex polyhedra Σ
with n(Σ) ≤ k, k ≥ 3. If Σ is a convex polyhedron with n(Σ) = k + 1, then we
consider a convex (k + 1)-gonal face P1P2 · · ·Pk+1 of Σ. By Case 1, we may assume
that r(P ) = 3 for every vertex P of Σ. Choose a vertex Q of Σ which forms an
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edge PkQ of Σ together with Pk other than Pk−1Pk and PkPk+1. Then the plane
through P1, Pk, and Q dissects Σ into two polyhedra Σ1 and Σ2, which have faces,
respectively, less than or equal to the number of faces of Σ. Obviously, we have
n(Σ1) ≤ k, and n(Σ2) ≤ k. Hence the induction hypothesis completes the proof of
Lemma 3. ¤

Finally, we prove Descartes’ theorem for convex polyhedra.

Theorem 4. Let Σ be a convex polyhedron. Then the total angular defect is given
by ∆(Σ) = 4π.

Proof. We prove by a mathematical induction on the number of faces F = F (Σ).
If F (Σ) = 4, that is, Σ is a tetrahedron, then it is obvious that the total angular
defect of Σ is 4π. Suppose that the theorem holds for all convex polyhedra Σ with
F (Σ) ≤ k, k ≥ 4. If Σ is a convex polyhedron with F (Σ) = k + 1, then Lemma 3
shows that Σ can be dissected by planes successively into a finite number of convex
polyhedra Σ1, Σ2, · · · , Σm such that F (Σi) ≤ k. Hence from the induction hypothesis
we see that each Σi satisfies ∆(Σi) = 4π. Thus, by repeatedly using Lemma 2, we
conclude that ∆(Σ) = 4π. ¤

As a corollary of Lemma 3, we give a dissection theorem for polyhedra as follows
(cf. [1, p. 212]).

Corollary 5. Every polyhedron can be dissected by planes successively into a finite
number of tetrahedra.

Proof. We may use the same induction argument as above to prove Corollary 5 for a
convex polyhedron. For an arbitrary polyhedron Σ, let ϕ1, · · · , ϕm denote the face
planes. Then ϕ1, · · · , ϕm divide space into a set of convex regions, a finite number
of which consist of the polyhedron Σ. Hence the polyhedron Σ can be dissected by
planes successively into a finite number of convex polyhedron. Thus the corollary
follows from the convex case. ¤
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