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h−STABILITY OF NONLINEAR PERTURBED DIFFERENTIAL
SYSTEMS VIA t∞-SIMILARITY

Yoon Hoe Goo a, ∗ and Seung Bum Yang b

Abstract. The main purpose of this paper is to investigate h−stability of the
nonlinear perturbed differential systems using the notion of t∞-similarity. As results,
we generalize some previous h-stability results on this topic.

1. Introduction

The nonlinear variation of constants formula of Alekseev[1] has been used by
several authors [2-4, 6-8] to study h-stability of solutions of nonlinear differential
systems. In this paper we use the nonlinear variation of constants formular of Alek-
seev [1] to study h-stability of solutions of nonlinear perturbed differential systems.

The notion of h-stability (hS) was introduced by Pinto [13,15] with the intention
of obtaining results about stability for a weakly stable system (at least, weaker
than those given exponential asymptotic stability) under some perturbations. Also,
he obtained some properties about asymptotic behavior of solutions of perturbed h-
systems, some general results about asymptotic integration and gave some important
examples in [14]. Choi and Ryu [3] investigated the important properties about hS
for the various differential systems. Recently, Choi et al. [4] and Goo [6] obtained
results for hS of nonlinear differential systems via t∞-similarity. Furthermore, Goo
and Ryu [7], Goo and Yang [8], and Goo [9] have investigated hS for the nonlinear
differential systems with different forms of perturbed terms.

In this paper, we investigate h−stability of the nonlinear perturbed differential
systems with perturbed integral forms using the notion of t∞-similarity.
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2. Preliminaries

We consider the nonlinear nonautonomous differential system

x′(t) = f(t, x(t)), x(t0) = x0,(2.1)

where f ∈ C[R+ × Rn,Rn], R+ = [0,∞) and Rn is the Euclidean n-space. We
assume that the Jacobian matrix fx = ∂f/∂x exists and is continuous on R+ × Rn

and f(t, 0) = 0.
Let x(t, t0, x0) denote the unique solution of (2.1) with x(t0, t0, x0) = x0, existing

on J = [t0,∞). Consider the associated variational systems around the zero solution
of (2.1) and around x(t), respectively,

v′(t) = fx(t, 0)v(t), v(t0) = v0(2.2)

and

z′(t) = fx(t, x(t, t0, x0))z(t), z(t0) = z0.(2.3)

The fundamental matrix Φ(t, t0, x0) of (2.3) is given by

Φ(t, t0, x0) =
∂

∂x0
x(t, t0, x0),

and Φ(t, t0, 0) is the fundamental matrix of (2.2).
We recall some notions of h-stability [13] and the notion of t∞-similarity [5]. The

symbol |.| denotes arbitrary vector norm in Rn.

Definition 2.1. The system (2.1) (the zero solution x = 0 of (2.1)) is called an
h-system if there exist a constant c ≥ 1, and a positive continuous function h on R+

such that

|x(t)| ≤ c |x0|h(t) h(t0)−1

for t ≥ t0 ≥ 0 and |x0| small enough (here h(t)−1 = 1
h(t)).

Definition 2.2. The system (2.1) (the zero solution x = 0 of (2.1)) is called h-stable
(hS) if there exist δ > 0 such that (2.1) is an h-system for |x0| ≤ δ and h is bounded.

LetM denote the set of all n×n continuous matrices A(t) defined on R+ = [0,∞)
and N be the subset of M consisting of those nonsingular matrices S(t) that are
of class C2 with the property that S(t) and S−1(t) are bounded. The notion of
t∞-similarity in M was introduced by Conti [5].
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Definition 2.3. A matrix A(t) ∈ M is t∞-similar to a matrix B(t) ∈ M if there
exists an n× n matrix F (t) absolutely integrable over R+, i.e.,∫ ∞

0
|F (t)|dt < ∞

such that

Ṡ(t) + S(t)B(t)−A(t)S(t) = F (t)(2.4)

for some S(t) ∈ N .

The notion of t∞-similarity is an equivalence relation in the set of all n × n

continuous matrices on R+, and it preserves some stability concepts [5, 10].
We give some related properties that we need in the sequal.

Lemma 2.4 ([15]). The linear system

x′ = A(t)x, x(t0) = x0,(2.5)

where A(t) is an n × n continuous matrix, is an h-system (respectively h-stable) if
and only if there exist c ≥ 1 and a positive and continuous (respectively bounded)
function h defined on R+ such that

|φ(t, t0)| ≤ c h(t) h(t0)−1(2.6)

for t ≥ t0 ≥ 0, where φ(t, t0) is a fundamental matrix of (2.5).

We need Alekseev formula to compare between the solutions of (2.1) and the
solutions of perturbed nonlinear system

y′ = f(t, y) + g(t, y), y(t0) = y0,(2.7)

where g ∈ C[R+ × Rn,Rn], g(t, 0) = 0. Let y(t) = y(t, t0, y0) denote the solution of
(2.7) passing through the point (t0, y0) in R+ × Rn.

The following is a generalization to nonlinear system of the variation of constants
formula due to Alekseev [1].

Lemma 2.5. If y0 ∈ Rn, for all t such that x(t, t0, y0) ∈ Rn,

y(t, t0, y0) = x(t, t0, y0) +
∫ t

t0

Φ(t, s, y(s)) g(s, y(s)) ds.

Theorem 2.6 ([3, 15]). If the zero solution of (2.1) is hS, then the zero solution of
(2.2) is hS.

Theorem 2.7 ([4]). Suppose that fx(t, 0) is t∞-similar to fx(t, x(t, t0, x0)) for t ≥
t0 ≥ 0 and |x0| ≤ δ for some constant δ > 0. If the solution v = 0 of (2.2) is hS,
then the solution z = 0 of (2.3) is hS.
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We need the following lemma for an h-system of perturbed nonlinear system.

Lemma 2.8 ([8]). Let u, p, q, w, and r ∈ C[R+,R+] and suppose that, for some
c ≥ 0, we have

(2.8) u(t) ≤ c +
∫ t

t0

p(s)
∫ s

t0

[
q(τ)u(τ) + w(τ)

∫ τ

t0

r(a)u(a)da

]
dτds, t ≥ t0.

Then

(2.9) u(t) ≤ c exp
( ∫ t

t0

p(s)
∫ s

t0

[
q(τ) + w(τ)

∫ τ

t0

r(a)da

]
dτds

)
, t ≥ t0.

3. Main Results

In this section, we investigate hS for the nonlinear perturbed differential systems.

We consider the perturbed system of (2.1)

(3.1) y′ = f(t, y) +
∫ t

t0

g(s, y(s))ds, y(t0) = y0,

where g ∈ C[R+ × Rn,Rn] and g(t, 0) = 0.

Theorem 3.1. Suppose that fx(t, 0) is t∞-similar to fx(t, x(t, t0, x0)) for t ≥ t0 ≥ 0
and |x0| ≤ δ for some constant δ > 0. If the solution x = 0 of (2.1) is an h-system
such that a positive continuous function h and g in (3.1) satisfies

|g(t, y)| ≤ λ(t)(|y|+
∫ t

t0

γ(s)|y(s)|ds), t ≥ t0, y ∈ Rn,

where λ, γ : R+ → R+ is continuous with

(3.2)
∫ ∞

t0

1
h(s)

∫ s

t0

[
λ(τ)

(
h(τ) +

∫ τ

t0

h(r)γ(r)dr

)]
dτds < ∞,

for all t0 ≥ 0, then the solution y = 0 of (3.1) is an h-system.

Proof. Using the nonlinear variation of constants formula of Alekseev[1], any solution
y(t) = y(t, t0, x0) of (3.1) passing through (t0, x0) is given by

(3.3) y(t, t0, y0) = x(t, t0, y0) +
∫ t

t0

Φ(t, s, y(s)) g(τ, y(τ))dτds,

where x(t) = x(t, t0, x0) is a solution of (2.1) passing through (t0, x0). By Theorem
2.6, since the solution x = 0 of (2.1) is an h-system, the solution v = 0 of (2.2) is
an h-system. Therefore, by Theorem 2.7, the solution z = 0 of (2.3) is an h-system.
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By Lemma 2.4, we have

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|
∫ s

t0

|g(τ, y(τ))|dτds

≤ c1|y0|h(t) h(t0)−1

+
∫ t

t0

c2
h(t)
h(s)

[∫ s

t0

λ(τ)(h(τ)
|y(τ)|
h(τ)

+
∫ τ

t0

h(r)γ(r)
|y(r)|
h(r)

dr)dτ

]
ds.

Setting u(t) = |y(t)|h(t)−1 and using Lemma 2.8, we obtain

|y(t)| ≤ c1|y0|h(t)h(t0)−1 exp

(
c2

∫ t

t0

1
h(s)

∫ s

t0

[
λ(τ)(h(τ) +

∫ τ

t0

h(r)γ(r)dr)
]
dτds

)

≤ c|y0|h(t) h(t0)−1, t ≥ t0,

where c = c1 exp(c2

∫∞
t0

1
h(s)

∫ s
t0

[λ(τ)(h(τ) +
∫ τ
t0

h(r)γ(r)dr)]dτds). It follows that
y = 0 of (3.1) is an h-system. Hence, the proof is complete. ¤

Remark 3.2. Letting γ(s) = 0 in Theorem 3.1, we obtain the same result as that
of Theorem 2.5 in [6].

Remark 3.3. In the linear case, we can obtain that if the zero solution x = 0 of
(2.5) is an h-system, then the perturbed system

y′ = A(t)y +
∫ t

t0

g(s, y(s))ds, y(t0) = y0,

is also an h-system under the same hypotheses in Theorem 3.1 except the condition
of t∞-similarity.

Theorem 3.4. Suppose that fx(t, 0) is t∞-similar to fx(t, x(t, t0, x0)) for t ≥ t0 ≥ 0
and |x0| ≤ δ for some constant δ > 0, the solution x = 0 of (2.1) is hS such that the
increasing function h, and g in (3.1) satisfies

∣∣∣∣
∫ s

t0

g(τ, y(τ))dτ

∣∣∣∣ ≤ a(s)
(
|y(s)|+

∫ s

t0

c(τ)|y(τ)|dτ

)
, t ≥ t0 ≥ 0,

where a, c ∈ C[R+,R+] and
∫∞
t0

[a(s)(1 +
∫ s
t0

c(τ)dτ)]ds < ∞. Then, the solution
y = 0 of (3.1) is hS.

Proof. It is known that the solution of (3.1) is represented by the integral equation
(3.3). By Theorem 2.6, since the solution x = 0 of (2.1) is hS, the solution v = 0
of (2.2) is hS. Therefore, by Theorem 2.7, the solution z = 0 of (2.3) is hS. By
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Lemma 2.4 and the increasing property of the function h, we have

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|
∣∣∣∣
∫ s

t0

g(τ, y(τ))dτ

∣∣∣∣ds

≤ c1|y0|h(t) h(t0)−1

+
∫ t

t0

c2h(t) h(s)−1

[
a(s)

(
|y(s)|+

∫ s

t0

h(τ)c(τ)|y(τ)|h(τ)−1dτ

)]
ds.

Set u(t) = |y(t)|h(t)−1. Then, by Gronwall’s inequality, we obtain

|y(t)| ≤ c1|y0|h(t) h(t0)−1 exp
(

c2

∫ t

t0

[
a(s)

(
1 +

∫ s

t0

c(τ)dτ

)]
ds

)

≤ c|y0|h(t) h(t0)−1, c = c1 exp
(

c2

∫ ∞

t0

[
a(s)

(
1 +

∫ s

t0

c(τ)dτ

)]
ds

)
.

It follows that y = 0 of (3.1) is hS and so the proof is complete. ¤

Remark 3.5. In the linear case, we can obtain that if the zero solution x = 0 of
(2.5) is hS, then the perturbed system

y′ = A(t)y +
∫ t

t0

g(s, y(s))ds, y(t0) = y0,

is also hS under the same hypotheses in Theorem 3.4 except the condition of t∞-
similarity.

Remark 3.6. Letting c(τ) = 0 in Theorem 3.4, we obtain the same result as that
of Theorem 3.3 in [7].
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