$h{ ext{-}} ext{STABILITY}$ OF NONLINEAR PERTURBED DIFFERENTIAL SYSTEMS VIA $t_\infty{ ext{-}} ext{SIMILARITY}$

Yoon Hoe Goo a,* and Seung Bum Yang b

ABSTRACT. The main purpose of this paper is to investigate h-stability of the nonlinear perturbed differential systems using the notion of t_{∞} -similarity. As results, we generalize some previous h-stability results on this topic.

1. Introduction

The nonlinear variation of constants formula of Alekseev[1] has been used by several authors [2-4, 6-8] to study h-stability of solutions of nonlinear differential systems. In this paper we use the nonlinear variation of constants formular of Alekseev [1] to study h-stability of solutions of nonlinear perturbed differential systems.

The notion of h-stability (hS) was introduced by Pinto [13,15] with the intention of obtaining results about stability for a weakly stable system (at least, weaker than those given exponential asymptotic stability) under some perturbations. Also, he obtained some properties about asymptotic behavior of solutions of perturbed h-systems, some general results about asymptotic integration and gave some important examples in [14]. Choi and Ryu [3] investigated the important properties about hS for the various differential systems. Recently, Choi et al. [4] and Goo [6] obtained results for hS of nonlinear differential systems via t_{∞} -similarity. Furthermore, Goo and Ryu [7], Goo and Yang [8], and Goo [9] have investigated hS for the nonlinear differential systems with different forms of perturbed terms.

In this paper, we investigate h-stability of the nonlinear perturbed differential systems with perturbed integral forms using the notion of t_{∞} -similarity.

Received by the editors April 4, 2012. Revised May 16, 2012. Accepted May 19, 2012. 2000 Mathematics Subject Classification. 34D10.

Key words and phrases. h-system, h-stability, t_{∞} -similarity, nonlinear nonautonomous system. The second author is supported by Hanseo University Fund in 2010.

^{*}Corresponding author.

2. Preliminaries

We consider the nonlinear nonautonomous differential system

$$(2.1) x'(t) = f(t, x(t)), x(t_0) = x_0,$$

where $f \in C[\mathbb{R}^+ \times \mathbb{R}^n, \mathbb{R}^n]$, $\mathbb{R}^+ = [0, \infty)$ and \mathbb{R}^n is the Euclidean *n*-space. We assume that the Jacobian matrix $f_x = \partial f/\partial x$ exists and is continuous on $\mathbb{R}^+ \times \mathbb{R}^n$ and f(t,0) = 0.

Let $x(t, t_0, x_0)$ denote the unique solution of (2.1) with $x(t_0, t_0, x_0) = x_0$, existing on $J = [t_0, \infty)$. Consider the associated variational systems around the zero solution of (2.1) and around x(t), respectively,

$$(2.2) v'(t) = f_x(t,0)v(t), \ v(t_0) = v_0$$

and

$$(2.3) z'(t) = f_x(t, x(t, t_0, x_0))z(t), \ z(t_0) = z_0.$$

The fundamental matrix $\Phi(t, t_0, x_0)$ of (2.3) is given by

$$\Phi(t, t_0, x_0) = \frac{\partial}{\partial x_0} x(t, t_0, x_0),$$

and $\Phi(t, t_0, 0)$ is the fundamental matrix of (2.2).

We recall some notions of h-stability [13] and the notion of t_{∞} -similarity [5]. The symbol |.| denotes arbitrary vector norm in \mathbb{R}^n .

Definition 2.1. The system (2.1) (the zero solution x = 0 of (2.1)) is called an h-system if there exist a constant $c \ge 1$, and a positive continuous function h on \mathbb{R}^+ such that

$$|x(t)| \le c |x_0| h(t) h(t_0)^{-1}$$

for $t \ge t_0 \ge 0$ and $|x_0|$ small enough (here $h(t)^{-1} = \frac{1}{h(t)}$).

Definition 2.2. The system (2.1) (the zero solution x = 0 of (2.1)) is called h-stable (hS) if there exist $\delta > 0$ such that (2.1) is an h-system for $|x_0| \le \delta$ and h is bounded.

Let \mathcal{M} denote the set of all $n \times n$ continuous matrices A(t) defined on $\mathbb{R}^+ = [0, \infty)$ and \mathcal{N} be the subset of \mathcal{M} consisting of those nonsingular matrices S(t) that are of class C^2 with the property that S(t) and $S^{-1}(t)$ are bounded. The notion of t_{∞} -similarity in \mathcal{M} was introduced by Conti [5].

Definition 2.3. A matrix $A(t) \in \mathcal{M}$ is t_{∞} -similar to a matrix $B(t) \in \mathcal{M}$ if there exists an $n \times n$ matrix F(t) absolutely integrable over \mathbb{R}^+ , i.e.,

$$\int_0^\infty |F(t)|dt < \infty$$

such that

(2.4)
$$\dot{S}(t) + S(t)B(t) - A(t)S(t) = F(t)$$

for some $S(t) \in \mathcal{N}$.

The notion of t_{∞} -similarity is an equivalence relation in the set of all $n \times n$ continuous matrices on \mathbb{R}^+ , and it preserves some stability concepts [5, 10].

We give some related properties that we need in the sequal.

Lemma 2.4 ([15]). The linear system

$$(2.5) x' = A(t)x, \ x(t_0) = x_0,$$

where A(t) is an $n \times n$ continuous matrix, is an h-system (respectively h-stable) if and only if there exist $c \geq 1$ and a positive and continuous (respectively bounded) function h defined on \mathbb{R}^+ such that

$$|\phi(t,t_0)| \le c h(t) h(t_0)^{-1}$$

for $t \ge t_0 \ge 0$, where $\phi(t, t_0)$ is a fundamental matrix of (2.5).

We need Alekseev formula to compare between the solutions of (2.1) and the solutions of perturbed nonlinear system

$$(2.7) y' = f(t, y) + g(t, y), y(t_0) = y_0,$$

where $g \in C[\mathbb{R}^+ \times \mathbb{R}^n, \mathbb{R}^n]$, g(t,0) = 0. Let $y(t) = y(t,t_0,y_0)$ denote the solution of (2.7) passing through the point (t_0,y_0) in $\mathbb{R}^+ \times \mathbb{R}^n$.

The following is a generalization to nonlinear system of the variation of constants formula due to Alekseev [1].

Lemma 2.5. If $y_0 \in \mathbb{R}^n$, for all t such that $x(t, t_0, y_0) \in \mathbb{R}^n$,

$$y(t, t_0, y_0) = x(t, t_0, y_0) + \int_{t_0}^t \Phi(t, s, y(s)) g(s, y(s)) ds.$$

Theorem 2.6 ([3, 15]). If the zero solution of (2.1) is hS, then the zero solution of (2.2) is hS.

Theorem 2.7 ([4]). Suppose that $f_x(t,0)$ is t_{∞} -similar to $f_x(t,x(t,t_0,x_0))$ for $t \ge t_0 \ge 0$ and $|x_0| \le \delta$ for some constant $\delta > 0$. If the solution v = 0 of (2.2) is hS, then the solution z = 0 of (2.3) is hS.

We need the following lemma for an h-system of perturbed nonlinear system.

Lemma 2.8 ([8]). Let $u, p, q, w, and r \in C[\mathbb{R}^+, \mathbb{R}^+]$ and suppose that, for some $c \geq 0$, we have

(2.8)
$$u(t) \le c + \int_{t_0}^t p(s) \int_{t_0}^s \left[q(\tau)u(\tau) + w(\tau) \int_{t_0}^\tau r(a)u(a)da \right] d\tau ds, \ t \ge t_0.$$

Then

(2.9)
$$u(t) \le c \exp\left(\int_{t_0}^t p(s) \int_{t_0}^s \left[q(\tau) + w(\tau) \int_{t_0}^\tau r(a) da \right] d\tau ds \right), \ t \ge t_0.$$

3. Main Results

In this section, we investigate hS for the nonlinear perturbed differential systems.

We consider the perturbed system of (2.1)

(3.1)
$$y' = f(t,y) + \int_{t_0}^t g(s,y(s))ds, \ y(t_0) = y_0,$$

where $g \in C[\mathbb{R}^+ \times \mathbb{R}^n, \mathbb{R}^n]$ and g(t, 0) = 0.

Theorem 3.1. Suppose that $f_x(t,0)$ is t_{∞} -similar to $f_x(t,x(t,t_0,x_0))$ for $t \geq t_0 \geq 0$ and $|x_0| \leq \delta$ for some constant $\delta > 0$. If the solution x = 0 of (2.1) is an h-system such that a positive continuous function h and g in (3.1) satisfies

$$|g(t,y)| \le \lambda(t)(|y| + \int_{t_0}^t \gamma(s)|y(s)|ds), \ t \ge t_0, \ y \in \mathbb{R}^n,$$

where $\lambda, \gamma : \mathbb{R}^+ \to \mathbb{R}^+$ is continuous with

$$(3.2) \qquad \int_{t_0}^{\infty} \frac{1}{h(s)} \int_{t_0}^{s} \left[\lambda(\tau) \left(h(\tau) + \int_{t_0}^{\tau} h(r) \gamma(r) dr \right) \right] d\tau ds < \infty,$$

for all $t_0 \ge 0$, then the solution y = 0 of (3.1) is an h-system.

Proof. Using the nonlinear variation of constants formula of Alekseev[1], any solution $y(t) = y(t, t_0, x_0)$ of (3.1) passing through (t_0, x_0) is given by

(3.3)
$$y(t, t_0, y_0) = x(t, t_0, y_0) + \int_{t_0}^t \Phi(t, s, y(s)) g(\tau, y(\tau)) d\tau ds,$$

where $x(t) = x(t, t_0, x_0)$ is a solution of (2.1) passing through (t_0, x_0) . By Theorem 2.6, since the solution x = 0 of (2.1) is an h-system, the solution v = 0 of (2.2) is an h-system. Therefore, by Theorem 2.7, the solution z = 0 of (2.3) is an h-system.

By Lemma 2.4, we have

$$|y(t)| \le |x(t)| + \int_{t_0}^t |\Phi(t, s, y(s))| \int_{t_0}^s |g(\tau, y(\tau))| d\tau ds$$

$$\le c_1 |y_0| h(t) h(t_0)^{-1}$$

$$+ \int_{t_0}^t c_2 \frac{h(t)}{h(s)} \left[\int_{t_0}^s \lambda(\tau) (h(\tau) \frac{|y(\tau)|}{h(\tau)} + \int_{t_0}^\tau h(r) \gamma(r) \frac{|y(r)|}{h(r)} dr) d\tau \right] ds.$$

Setting $u(t) = |y(t)|h(t)^{-1}$ and using Lemma 2.8, we obtain

$$|y(t)| \le c_1 |y_0| h(t) h(t_0)^{-1} \exp\left(c_2 \int_{t_0}^t \frac{1}{h(s)} \int_{t_0}^s \left[\lambda(\tau)(h(\tau) + \int_{t_0}^\tau h(r)\gamma(r)dr)\right] d\tau ds\right)$$

$$\le c|y_0| h(t) h(t_0)^{-1}, \ t \ge t_0,$$

where $c = c_1 \exp(c_2 \int_{t_0}^{\infty} \frac{1}{h(s)} \int_{t_0}^{s} [\lambda(\tau)(h(\tau) + \int_{t_0}^{\tau} h(r)\gamma(r)dr)]d\tau ds)$. It follows that y = 0 of (3.1) is an h-system. Hence, the proof is complete.

Remark 3.2. Letting $\gamma(s) = 0$ in Theorem 3.1, we obtain the same result as that of Theorem 2.5 in [6].

Remark 3.3. In the linear case, we can obtain that if the zero solution x = 0 of (2.5) is an h-system, then the perturbed system

$$y' = A(t)y + \int_{t_0}^t g(s, y(s))ds, \ y(t_0) = y_0,$$

is also an h-system under the same hypotheses in Theorem 3.1 except the condition of t_{∞} -similarity.

Theorem 3.4. Suppose that $f_x(t,0)$ is t_{∞} -similar to $f_x(t,x(t,t_0,x_0))$ for $t \geq t_0 \geq 0$ and $|x_0| \leq \delta$ for some constant $\delta > 0$, the solution x = 0 of (2.1) is hS such that the increasing function h, and g in (3.1) satisfies

$$\left| \int_{t_0}^s g(\tau, y(\tau)) d\tau \right| \le a(s) \left(|y(s)| + \int_{t_0}^s c(\tau) |y(\tau)| d\tau \right), \ t \ge t_0 \ge 0,$$

where $a, c \in C[\mathbb{R}^+, \mathbb{R}^+]$ and $\int_{t_0}^{\infty} [a(s)(1 + \int_{t_0}^s c(\tau)d\tau)]ds < \infty$. Then, the solution y = 0 of (3.1) is hS.

Proof. It is known that the solution of (3.1) is represented by the integral equation (3.3). By Theorem 2.6, since the solution x = 0 of (2.1) is hS, the solution v = 0 of (2.2) is hS. Therefore, by Theorem 2.7, the solution z = 0 of (2.3) is hS. By

Lemma 2.4 and the increasing property of the function h, we have

$$|y(t)| \le |x(t)| + \int_{t_0}^t |\Phi(t, s, y(s))| \left| \int_{t_0}^s g(\tau, y(\tau)) d\tau \right| ds$$

$$\le c_1 |y_0| h(t) h(t_0)^{-1}$$

$$+ \int_{t_0}^t c_2 h(t) h(s)^{-1} \left[a(s) \left(|y(s)| + \int_{t_0}^s h(\tau) c(\tau) |y(\tau)| h(\tau)^{-1} d\tau \right) \right] ds.$$

Set $u(t) = |y(t)|h(t)^{-1}$. Then, by Gronwall's inequality, we obtain

$$|y(t)| \le c_1 |y_0| h(t) h(t_0)^{-1} \exp\left(c_2 \int_{t_0}^t \left[a(s) \left(1 + \int_{t_0}^s c(\tau) d\tau \right) \right] ds \right)$$

$$\le c |y_0| h(t) h(t_0)^{-1}, \quad c = c_1 \exp\left(c_2 \int_{t_0}^\infty \left[a(s) \left(1 + \int_{t_0}^s c(\tau) d\tau \right) \right] ds \right).$$

It follows that y = 0 of (3.1) is hS and so the proof is complete.

Remark 3.5. In the linear case, we can obtain that if the zero solution x = 0 of (2.5) is hS, then the perturbed system

$$y' = A(t)y + \int_{t_0}^t g(s, y(s))ds, y(t_0) = y_0,$$

is also hS under the same hypotheses in Theorem 3.4 except the condition of t_{∞} similarity.

Remark 3.6. Letting $c(\tau) = 0$ in Theorem 3.4, we obtain the same result as that of Theorem 3.3 in [7].

Acknowledgment. The authors are very grateful for the referee's valuable comments.

References

- 1. V.M. Alekseev: An estimate for the perturbations of the solutions of ordinary differential equations. Vestn. Mosk. Univ. Ser. I. Math. Mech. 2 (1961), 28-36.
- 2. S.K. Choi, K.S. Koo & K.H. Lee: Lipschitz stability and exponential asymptotic stability in perturbed systems. *J. Korean Math. Soc.* **29** (1992), 175-190.
- 3. S.K. Choi & H.S. Ryu: h-stability in differential systems. Bull. Inst. Math. Acad. Sinica **21** (1993), 245-262.
- 4. S.K. Choi, N.J. Koo & H.S. Ryu: h-stability of differential systems via t_{∞} -similarity. Bull. Korean. Math. Soc. **34** (1997), 371-383.
- 5. R. Conti: Sulla t_{∞} -similitudine tra matricie l'equivalenza asintotica dei sistemi differenziali lineari. Rivista di Mat. Univ. Parma 8 (1957), 43-47.

- 6. Y.H. Goo: h-stability of the nonlinear differential systems via t_{∞} -similarity. J. Chungcheong Math. Soc. 23 (2010), 383-389.
- 7. Y.H. Goo & D.H. Ry: h-stability of the nonlinear perturbed differential systems. J. Chungcheong Math. Soc. 23 (2010), 827-834.
- 8. Y.H. Goo & S.B. Yang: h-stability of the nonlinear perturbed differential systems via t_{∞} -similarity. J. Changeheong Math. Soc. **24** (2011), 695-702.
- 9. Y.H. Goo: h-stability of perturbed differential systems. J. Korean Soc. Math. Edu. Ser. B: Pure Appl. Math. 18 (2011), 337-344.
- 10. G.A. Hewer: Stability properties of the equation by t_{∞} -similarity. J. Math. Anal. Appl. 41 (1973), 336-344.
- 11. V. Lakshmikantham & S. Leela: Differential and Integral Inequalities: Theory and Applications Vol. I. Academic Press, New York and London, 1969.
- 12. B.G. Pachpatte: A note on Gronwall-Bellman inequality. J. Math. Anal. Appl. 44 (1973), 758-762.
- 13. M. Pinto: Perturbations of asymptotically stable differential systems. Analysis 4 (1984), 161-175.
- 14. _____: Asymptotic integration of a system resulting from the perturbation of an h-system. J. Math. Anal. Appl. 131 (1988), 194-216.
- 15. _____: Stability of nonlinear differential systems. Applicable Analysis 43 (1992), 1-20.
- $^{\rm a}{\rm Department}$ of Mathematics, Hanseo University, Seosan, Chungnam, 356-706, Korea Email~address: yhgoo@hanseo.ac.kr
- ^bDepartment of Mathematics, Hanseo University, Seosan, Chungnam, 356-706, Korea *Email address*: ysb-good@hanmail.net