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SHORTFALL RISK MINIMIZATION: THE DUAL APPROACH

Ju Hong Kim

Abstract. We find the solution minimizing the shortfall risk by using the Lagrange-
multiplier method. The conventional duality method in the expected utility maxi-
mization problem is used and we get the same results as in the paper [21].

1. Introduction

We consider an agent or an investor who sell a contingent claim and want to get
rid of the associated shortfall risk by means of a dynamic hedging strategy. The
shortfall risk is the difference between the payoff of the contingent claim and the
value of the agent’s or the investor’s hedging strategy at maturity.

It is known that there is a dynamic self-financing hedging strategy with arbitrage-
free hedging price to super-replicate a contingent claim in complete or incomplete
markets. The super-hedging price is the minimal initial capital that an agent or
an investor has to invest to find a strategy which dominates the claim payoff with
certainty [15]. The super-hedging price of a contingent claim is given by the supre-
mum of the expected values over all equivalent martingale measures. If an agent or
an investor sells the claim for the super-hedging price, then he/she could eliminate
the shortfall risk completely by choosing a suitable hedging strategy. The corre-
sponding value process is a supermartingale under equivalent martingale measures.
The super-hedging strategy is determined by the optional decomposition [18]. But
the prices derived by super-replication are too high and not acceptable in practice.
Then the claim should be sold for a price less than the super-hedging price. With
the initial capital less than the super-hedging price, i.e., under the capital constraint
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an agent or an investor is unable to eliminate all exposed risk associated to the con-
tingent claim completely and so wants to find optimal strategies which minimize the
shortfall risk.

Föllmer and Leukert [11] constructed a quantile hedging strategy which maxi-
mizes the probability of a successful hedge under the objective measure P under the
capital constraint. In the quantile hedging approach, the size of the shortfall is not
taken into account but only the probability of its occurrence. Föllmer and Leuk-
ert [12] also introduced optimal hedging strategies which minimize the shortfall risk
under the capital constraint by using the expected loss functions as risk measures.
In these papers the Neyman-Pearson lemma approach is used to find the solution
to the static problem. In [12], the risk measure ρ is the form of ρ(X) = EP [`(X+)],
where X is a random variable on (Ω,F), P is a fixed probability measure on Ω,
and ` : R → R is a strictly convex function. See the papers [6, 7, 23, 20] for the
related works. Nakano [19] uses coherent risk measures [3, 8] as risk measures in the
L1(Ω,F , P ) random variable spaces instead of the loss function. Arai [1] obtained
robust representation results of shortfall risk measures on Orlicz hearts under the
continuous time setting. The Orlicz hearts setting allows us to treat various loss
functions and various claims in a unified framework.

In this paper, we find the solution minimizing the shortfall risk by the dual
approach [22]. The conventional duality method used in the expected utility max-
imization problem is adopted and we get the same results as in [21]. This paper
is constructed as follows. The definition of a superhedging price and mathemati-
cal settings are given in section 2. The optimal solution of shortfall risk is found in
complete market case and in incomplete market case in section 3 and 4, respectively.

2. Mathematical Settings and Superhedging

Let (Ω,F , (Ft)0≤t≤T , P ) be a complete filtered probability space. Let

S = (St)0≤t≤T

be an adapted positive process which is a semimartingale. It is assumed that the
riskless interest rate is zero for simplicity.

Definition 2.1. A self-financing strategy with initial capital x ≥ 0 is defined as a
predictable process ξt such that the value process (value of the current holdings)

Xt = x +
∫ t

0
ξudSu, t ∈ [0, T ]
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is P -a.s. well-defined.

Definition 2.2. A self-financing strategy (x, ξt) is called admissible if there exists
some constant c > 0 such that

∀t ∈ [0, T ] x +
∫ t

0
ξudSu ≥ −c P − a.s.

Here c is a credit line of an agent or an investor.

Definition 2.3. A contingent claim H is called attainable (or replicable, redundant)
if there exists admissible strategy such that

H = x0 +
∫ T

0
ξudSu.

Lemma 2.4. Let H ≥ 0 be a FT -measurable contingent claim.Then there exists
admissible strategy (x0, ξ) such that

H ≤ x0 +
∫ T

0
ξudSu P − a.s.(2.1)

if and only if

H ∈
{

X ≥ 0
∣∣∣X is FT −measurable, sup

Q∼P
EQ[X] ≤ x0

}
.(2.2)

Proof. See the proof in [17]. ¤

Lemma (2.4) means that the pricing rule of H, i.e., EQ[H] is less than or equal
to x0 which is the initial capital of the admissible superhedging strategy (x0, ξ) for
H.

Definition 2.5. The superhedge price H0 for H is defined as

H0 = inf

{
x

∣∣∣∃ admissible strategy (x, ξ) s.t. H ≤ x +
∫ T

0
ξudSu P − a.s.

}
.

By the Lemma (2.4) we can see the superhedge price is H0 = supQ∼P EQ[H].
That is, H0 is the smallest initial capital eliminating all shortfall risk. The seller of
H can cover almost any possible obligation from the sale of H and thus eliminate
completely the corresponding risk. However, the super-hedging price of the seller is
too high and can’t be used in practice.

When the seller is unwilling to invest the superhedge price in a hedging strat-
egy, the seller is seeking for the optimal partial hedging strategy minimizing the
problem [13]
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min
(x,ξ)∈X (α)

[
ρ
((

H − x−
∫ T

0
ξudSu

)+)]
(2.3)

with the initial capital constraint

0 < α < H0 = sup
Q∼P

EQ[H].(2.4)

The admissible set X (α) is defined as

X (α) := {(x, ξ) |x ≤ α < H0, (x, ξ) is admissible strategy}.

Hereafter the risk measure ρ is taken as ρ(X) = EP [`(X)] as in the traditional
literature, where X is a random variable on (Ω,F), P is a fixed probability measure
on Ω, and ` : R → R is a strictly convex function as in [12]. We assume that the
function ` ∈ C1(0,∞), the derivative `′ is strictly increasing with `′(0+) = 0 and
`′(+∞) = +∞.

We will often use the short notation (ξ.S)T as the same expression as
∫ T
0 ξudSu.

We consider the general set K(x) of the terminal wealths at T with initial wealth
x, and the set K(x) is defined as

K(x) := {XT |XT = x + (ξ.S)T is FT −measurable}.

We can rewrite the minimizing shortfall problem (2.3) as the primal problem

P(x) := inf
XT∈K(x)

E[`(H −XT )+].(2.5)

Define KQ(x) as

KQ(x) = {X ∈ L1(Q) |EQ[X] ≤ x},

which contains the set K(x) and the norm-closure of K(x)− L1
+(Q) in L1(Q).

The pricing measure Q is unique in complete market but not unique in incomplete
market. The set of pricing measures is

M = {Q |Q ∼ P, S is a local martingale under Q}

as stated in [9].
Assume that M 6= ∅ for the no-arbitrage condition of the markets [9, 10].
Note that if x ≥ supQMEQ[H] := H0, then there exist admissible strategies (x, ξ)

such that H ≤ H0 +(ξ.S)T ≤ x+(ξ.S)T by the Lemma (2.4) and hence it is hedged
completely with the superhedge price.

Assume that x < supQMEQ[H] throughout this paper.
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2.1. Complete market case. Assume the market is complete and then the pricing
measure Q ∈ M is unique. We try to solve the primal problem (2.5) under the
constraint set KQ(x) which is larger than the set K(x).

Fenchel-Legendre transform or conjugate functional `∗ of the convex function `

is defined by

`∗(z) := sup
y∈R

{yz − `(y)}.(2.6)

Note that `∗ is a proper convex function, i.e. it is convex and takes some finite
value. Denote J := (`∗)′+ its right-continuous derivative. Form (2.6), for all y, z ∈ R

yz ≤ `(y) + `∗(z),(2.7)

and the equality holds if y = J(z).
We consider the primal problem

P(x) := inf
XT∈KQ(x)

E[`(H −XT )+].(2.8)

When we use the Lagrange-multiplier method [2], we can express the dual problem
of the primal one as

D(x) := sup
λ>0

inf
XT∈L1(Q)

{E[`(H −XT )+] + λ(x− EQ[XT ])}.(2.9)

We will show that there is no duality gap, i.e.

P(x) = D(x).

First we show that for XT satisfying EQ[XT ] ≤ x

inf
XT∈L1(Q)

{E[`(H −XT )+] + λ(x−EQ[XT ])}

≥ λ(EQ[H]− x)− E

[
`∗

(
λ

dQ

dP

)]
.(2.10)

If we take y = (H −XT )+ and z = λdQ
dP in the equation (2.7), and then take the

expectation and add λ(x− EQ[XT ]) to both sides of the inequality, then we have

E[`(H −XT )+]− λ(x−EQ[XT ]) ≥ λ(EQ[H]− x)− E

[
`∗

(
λ

dQ

dP

)]
,(2.11)

since EQ[H] > x ≥ EQ[XT ] and so EQ[(H − XT )+] = (EQ[H] − EQ[XT ])+ =
EQ[H]−EQ[XT ]. So we have

P(x) := inf
XT∈KQ(x)

E[`(H −XT )+] ≥ λ(EQ[H]− x)−E

[
`∗

(
λ

dQ

dP

)]
.(2.12)
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The inequality (2.10) holds from (2.11) and the equality in (2.10) holds if for each
λ > 0 the relation

(H −XT )+ = (`∗)′
(

λ
dQ

dP

)
(2.13)

satisfies. Hence the dual problem (2.9) becomes

D(x) := sup
λ>0

inf
XT∈L1(Q)

{E[`(H −XT )+] + λ(x− EQ(XT ))}

≥ sup
λ>0

{
λ(EQ[H]− x)− E

[
`∗

(
λ

dQ

dP

)]}
.(2.14)

If the equation (2.13) satisfies, then the equality in (2.14) holds. If EQ[XT ] ≤ x

satisfies in addition to the equation (2.13), then the following relation between the
primal and the dual problem holds:

P(x) := inf
XT∈KQ(x)

E[`(H −XT )+] ≥ D(x).

For each λ > 0 define

g(λ) = λ(EQ[H]− x)−E

[
`∗

(
λ

dQ

dP

)]
.

Note that for λ ∈ (0, +∞) the function g(λ) is concave function. Under the as-
sumption of (`∗)′

(
λdQ

dP

)
≤ h for some h ∈ L1(P ), g is differentiable by the Fubini’s

theorem. Let’s find the critical point of g.

g′(λ) = 0 if and only if EQ[H]− x− EQ

[
(`∗)′

(
λ

dQ

dP

)]
= 0.

It is said that the function f : R → R has or admits a supporting line at x ∈ R
if there exists a ∈ R such that

f(y) ≥ f(x) + a(y − x)

for all y ∈ R.

Theorem 2.6. If f admits a strict supporting line at xk with slope k, then f∗ admits
a tangent supporting line at k with slope (f∗)′(k) = xk.

Proof. From the Legendre-Fenchel transform

f∗(k) := sup
x∈R

{kx− f(x)},

we have f∗(k) = kxk − f(xk) and (f∗)′(k) = xk where xk is the solution of f ′(xk) =
k. ¤
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Since ` : R → R is a strict convex function and the tangent slope of ` belongs
to the range (0,+∞), the function (`∗)′ : (0,+∞) → (−∞, +∞) is bijective by
the Theorem (2.6). Hence ψ(λ) := EQ

[
(`∗)′

(
λdQ

dP

)]
is a bijective function from

(0, +∞) to (−∞, +∞). Thus there exists a unique solution λ∗ of

EQ

[
H − (`∗)′

(
λ

dQ

dP

)]
= x.

Therefore, the supremum of the right hand side of (2.14) is taken at λ∗.
Since x ≥ 0, H ≥ (`∗)′

(
λdQ

dP

)
Q-a.s.

If we set X∗
T = H − (`∗)′

(
λ∗ dQ

dP

)
, then EQ[X∗

T ] = x and so X∗
T ∈ KQ(x). By the

Lemma (2.4), there exists admissible strategy (x, ξ) satisfying

X∗
T = x +

∫ T

0
ξu dSu ∈ K(x).

Since H − X∗
T = (`∗)′

(
λ∗ dQ

dP

)
≥ 0 Q − a.s., from Fenchel-Legendre transform

we have (
λ∗

dQ

dP

)
· (H −X∗

T )+ = `(H −X∗
T )+ + `∗

(
λ∗

dQ

dP

)
.(2.15)

By taking expectation to (2.15) with respect to P , we get

E[`(H −X∗
T )+] = λ∗(EQ[H]− x)− E

[
`∗

(
λ∗

dQ

dP

)]
.

Hence X∗
T ∈ KQ(x) is a solution of the primal problem. Thus we are ended up with

P(x) = D(x) = λ∗(EQ[H]− x)−E

[
`∗

(
λ∗

dQ

dP

)]
.

2.2. Incomplete market case. In this section we adopt notations and the proof
methods from [5, 4] for the more general approaches. Since equivalent martingale
measure is not unique in an incomplete market, the main job is to choose econom-
ically suitable one in this subsection, and the rest is the same as in a complete
market.

Let G be the convex cone which is a subset of L0. Define

`P,G(x) := inf
X∈G

EP [`(H − x−X)+].

Define the set K as

K :=
{∫ T

0
ξu · dSu

∣∣∣ ξ is admissible
}

,

which is the cone of bounded from below claims that are attainable, at zero initial
cost, from trading in the d assets with admissible trading strategies.



186 Ju Hong Kim

Define C as

C := (K − L0
+) ∩ L∞.

We know that the norm dual space of L∞ is ba = ba(Ω,F ,P), the set of bounded
additive set functions on (Ω,F) that are absolutely continuous with respect to P .

Let C0 be the polar cone of C with respect to the dual system (L∞, ba),

C0 := {ζ ∈ ba | ζ(X) ≤ 0 ∀X ∈ C}.
Definition 2.7. Q << P is called a separating measure if K ⊆ L1(Q) and if
K ⊆ L1(Q) and EQ[X] ≤ 0 ∀X ∈ K.

Define M as

M := C0 ∩ L1(P ) = {z ∈ L1
+(P ) |EP [zX] ≤ 0 ∀X ∈ C}.

Define the set M1 as

M1 = {z ∈ M |Ep[z] = 1}.
A P -absolute continuous probability measure Q is identified with its Radon-Nikodym
derivative z = dQ

dP . So we have

M1 = {Q << P |EQ[X] ≤ 0 ∀X ∈ C}.
For all P ∈ P, M ⊂ L1

+(P ), M is closed in L1(P ) and if M1 6= ∅, the convex cone
M is generated by the convex set M1.

Lemma 2.8. Q is a separating measure if and only if Q ∈ M1. If S is bounded,
then M = {Q << P |X is a Q − martingale}. If S is locally bounded, then M =
{Q << P |S is a Q− local martingale}.
Proof. It is clear that M ⊂ M1. Conversely, suppose that Q ∈ M1. Let X ∈ K

and set Xn = min{X, n}. Then Xn = X − (X − Xn) ∈ C, and Xn ↑ X P -a.s.,
and hence Q-a.s.. By the Lebesgue Dominated Convergence Theorem, EQ[X] =
limn→∞EQ[Xn] ≤ 0. Hence Q is a separating measure. If S is bounded and S =
1A(St − Ss), A ∈ Fs, 0 ≤ s < t ≤ T , then S ∈ K and −S ∈ K. Q ∈ M1 implies
EQ[1A(St − Ss)] = 0 and Q is a martingale measure. ¤

Define `P,K(x) as

`P,K(x) := inf
X∈K

EP [`(H − x−X)+]

= inf
ξ∈X (x)

EP [`(H − x− (ξ.S)T )+] with EP [`(H + c)] < +∞,

where −c is the credit line of the investors.
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Note that 0 ≤ `P,K(x) < +∞.
Delbaen and Schchermayer [10] showed that NFLVR (no free lunch with vanishing

risk) : C̄ ∩ L∞+ = {0}, which is the weak no-arbitrage condition of the market, is
equivalent to M1 ∩ P 6= ∅. Here C̄ is the L∞-norm closure of C.

Assume that M1 ∩ P 6= ∅ hereafter.
Note that if x ≥ supQ∈M1

EQ[H] := H0, then there exists an admissible strategy ξ

satisfying H ≤ H0+(ξ.S)T ≤ x+(ξ.S)T by the Lemma (2.4) and hence `P,K(x) = 0.
For each ζ ∈ ba define ζ(X) = EP [ζX] for all X ∈ C.

Lemma 2.9. If M1 ∩ P 6= ∅, then we have

C = M0.

Proof. From the definition of polar cone of C, we have

C0 = {ζ ∈ ba | ζ(X) ≤ 0 ∀X ∈ C}
= {ζ ∈ ba |EP [ζX] ≤ 0 ∀X ∈ C} = M.

Since NFLV R implies that C is weak*-closed, by the bipolar theorem we have

M0 = C00 = C.

¤
The above lemma is adopted from the paper [4].

Lemma 2.10. The following equality holds.

`P,K(x) = `P,C(x) = `P,M0(x).

Proof. By (2.9), the second equality hold. For the proof of the first equality, let
X ∈ K and Xn ∈ min{X, n}. Then Xn ↑ X and Xn ∈ L∞. Since Xn = X −
(X − Xn) ∈ K − L0

+, Xn ∈ C. Moreover, since H − x − Xn ↓ H − x − X and
`(H − x − Xn) ↓ `(H − x − X), by Lebesgue Dominated Convergence Theorem,
EP [`(H − x−Xn)] ↓ EP [`(H − x−X)]. Therefore, we have

`P,C(x) = inf
X∈C

EP [`(H − x−X)+] ≤ inf
X∈K

EP [`(H − x−X)+] = `P,K(x).

On the other hand, we have

inf
X∈C

EP [`(H − x−X)+] = inf
X∈K−L0

+

EP [`(H − x−X)+]

≥ inf
X∈K

EP [`(H − x−X)+].

Thus the proof is done. ¤
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For Q << P , define

`(x; Q,P ) := inf{EP [`(H − x−X)+] |X ∈ L∞, EQ[X] ≤ 0}
= inf{EP [`(H − x)+] |X ∈ L∞, EQ[X] ≤ x}.

Since M1 6= ∅ by assumption and M is generated by the convex set M1, the polar
cone M0 can be expressed as

M0 = {X ∈ L∞ |EQ[X] ≤ 0 ∀Q ∈ M1}.
Note that

`P,M0(x) ≤ `(x; Q,P ),

since `P,M0(x) = inf{EP [`(H −X)+] |X ∈ L∞, EQ[X] ≤ x ∀Q ∈ M1}.
Definition 2.11. Q̂x is called a minimax measure if

`P,M0(x) = min
Q∈M1

`(x;Q,P ) = `(x; Q̂x, P ).

If there exists Q∗ ∈ M1 such that `P,M0(x) 6= `(x; Q∗, P ), then

`P,K(x) = `P,M0(x) < `(x;Q∗, P ) ≤ inf{EP [`(H − x)+] |X ∈ L∞, EQ[X] ≤ x}.
That is,

inf
ξ∈X (x)

EP [`(H − x− (ξ.S)T )+] < inf{EP [`(H −X)+] |X ∈ L∞, EQ∗ [X] ≤ x},

which is economically unreasonable.
Define the indicator functional of a convex set F ⊂ L∞ with

δ(w|F ) :=
{

0 w ∈ F,
+∞ w 6∈ F.

The convex conjugate δ∗F : ba → R is denoted by

δ∗F (ζ) := sup
w∈F

{ζ(w)− δ(w)} = sup
w∈F

ζ(w).

Let g : L∞ → R be

g(X) = δ(X|G + H − x).

Define the convex integral functional Iu : L∞ → R as

I`(X) := EP [`(X)+].

Lemma 2.12. Suppose that ` : R→ R is a convex function and that G is a convex
cone. Then

`P,G(x) := inf
X∈x+G

EP [`(H −X)+]} = min
ζ∈G0

{g∗(ζ)− I∗` (ζ)}.
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Proof. Let’s consider the dual expression g∗ of g.

g∗(ζ) = sup
X∈G+H−x

ζ(X) = ζ(H − x) + sup
X∈G

ζ(X) =
{

ζ(H − x) X ∈ G0 ⊂ ba,
+∞ otherwise

.

`P,G(x) = inf
X∈G

EP [`(H − x−X)+] = inf
X∈G+H−x

EP [`(X)+]

= inf
X∈L∞

{EP [`(X)+]− δ(X|G + H − x)}
= max

ζ∈G0
{g∗(ζ)− I∗` (ζ)},

by the Fenchel duality theorem. ¤
Proposition 2.13. Suppose that ` : R → R is a convex function and that G is a
convex cone with L∞− ⊂ G ⊂ L∞, and N ⊂ L1

+(P ) is not an empty convex cone
σ(ba, L∞)-closed, G is defined as

G := N0 = {w ∈ L∞ |EP [zw] ≤ 0 ∀z ∈ N}.
Then G0 = N and

`P,G(x) = max
z∈N

EP [z(H − x)− `∗(z)].

Proof. Since N ⊂ L1
+(P ) is σ(ba, L∞)-closed, by the bipolar theorem G0 = N00 =

N .
If z ∈ G0 ⊂ L1

+(P ), then g∗(z) = z(H − x) = EP [z(H − x)]. Hence we have

`P,G(x) = max
ζ∈G0

{g∗(ζ)− I∗` (ζ)}
= max

z∈N
EP [z(H − x)− `∗(z)].

¤
Corollary 2.14. Suppose that ` : R → R is a convex function, Q << P , and that
`(x; Q,P ) > infy∈R `(y). Then

`(x; Q,P ) := inf{EP [`(H − x−X)+] |X ∈ L∞, EQ[X] ≤ 0}
= inf{EP [`(H −X)+] |X ∈ L∞, EQ[X] ≤ x}

= max
λ∈(0,+∞)

{
λ(EQ[H]− x)−EP

[
`∗

(
λ

dQ

dP

)]}
.

Proof. Let Q be given. Set

N =
{

z ∈ L1
+(P ) | z = λ

dQ

dP
, λ ≥ 0

}
.
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Then

G := N0 = {X ∈ L∞ |E[zX] ≤ 0 ∀z ∈ N} = {X ∈ L∞ |EQ[X] ≤ 0},
and so by definition

`(x; Q,P ) = `P,G(x).

Hence we have

`(x; Q,P ) = `P,G(x) = max
z∈N

EP [z(H − x)− `∗(z)]

= max
λ∈[0,+∞)

{
λ(x−EQ[H])−EP

[
`∗

(
λ

dQ

dP

)]}
.

If λ = 0, then

`(x; Q,P ) = EP [−`∗(0)] = −`∗(0) = − sup
y∈R

{y · 0− `(y)} = inf
y∈R

`(y).

So λ = 0 is excluded. ¤
Lemma 2.15.

M = {Q << P |EQ[X] ≤ 0∀X ∈ C}.

inf{EP [`(H − x−X)+] |X ∈ K} = inf{E[`(H − x−X)+] |X ∈ C}.
Proof. Let X ∈ K and

Xn := min{X,n} ∈ X − (X −Xn) ∈ (K − L0
+) ∩ L∞(P ) := C.

Then Xn ↑ X P -a.s. and 0 ≥ lim EQ[Xn] = EQ[X] by Monotone Convergence
Theorem. The right hand set includes M . The other inclusion is obvious by the
definition of C. ¤
Theorem 2.16. M 6= ∅ and there exists Qx ∈ M that satisfies

inf{EP [`(H − x−X)+] |X ∈ C} = `P,G(x) = max
Q∈M

`(x;Q,P ) = `(x; Qx, P ).

Proof. If X ∈ C, then X ≤ 0 and so EP [X] ≤ 0. Therefore P ∈ M 6= ∅.
`P,G(x) = max

z∈N,z 6=0
EP [z(H − x)− `∗(z)]

= max
Q∈M1

{
max

λ∈(0,+∞)

{
λ(x− EQ[H])− EP

[
`∗

(
λ

dQ

dP

)]}}

= max
Q∈M1

`(x; Q,P ).

¤
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