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SLANT LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE
SASAKIAN MANIFOLD

Jae Won Lee a, ∗ and Dae Ho Jin b

Abstract. In this paper, we introduce the notion of a slant lightlike submanifold
of an indefinite Sasakian manifold. We provide a non-trivial example and obtain
necessary and sufficient conditions for the existence of a slant lightlike submanifold.
Also, we prove some characterization theorems.

0. Introduction

The study of lightlike submanifolds of semi-Riemannian geometry appears to fill a
gap in the general theory of submanifolds. The main difference between the lightlike
submanifolds and non-degenerate submanifolds comes to the fact that the normal
vector bundle has non-trivial intersection with the tangent vector bundle. The
geometry of lightlike submanifolds of indefinite Kaehler manifolds was presented in a
book by Duggal and Bejancu [4]. Chen has introduced the notion of slant immersions
by generalizing the concept of holomorphic and totally real immersions [2]. To
define the notion of slant submanifolds, one needs to consider the angle between
two vector fields. A lightlike submanifold has two (radical and screen) distributions.
The radical distribution is totally lightlike and therefore it is impossible to define
an angle between two vector fields of radical distribution. On the other hand, the
screen distribution is non-degenerate. Using these facts, the notion of slant lightlike
submanifold was introduced by Sahin, Gupta and Sharfuddin [8, 9, 11].

The purpose of this paper is to introduce the notion of slant lightlike submanifold
of an indefinite Sasakian manifold. In Section 1, we have collected the formulae and
information which are useful in our subsequent sections. In Section 2, we introduce
the concept of a slant lightlike submanifold of an indefinite Sasakian manifold and
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provide a non-trivial example. After then, we provide a characterization theorem for
the existence of slant lightlike submanifolds and show that co-isotropic CR-lightlike
submanifolds are slant lightlike submanifolds. Finally, we consider minimal slant
ligthlike submanifolds and prove two characterization thoerems.

1. Preliminaries

Let (M̄, ḡ) be a real (m + n)-dimensional semi-Riemannian manifold of constant
index q such that m, n ≥ 1, 1 ≤ q ≤ m + n − 1 and (M, g) be a submanifold of
dimension m of M̄ . We follow Duggal-Jin [5] for notations and results used in this
paper. Throughout this paper we denote by F (M) the algebra of smooth functions
on M and by Γ(E) the F (M) module of smooth sections of any vector bundle E over
M . We say that M is a lightlike submanifold of M̄ if it admits a degenerate metric
g induced from ḡ. In this case the radical distribution Rad(TM) = TM ∩ TM⊥ of
M is a vector subbundle of the tangent bundle TM and the normal bundle TM⊥,
of rank r. In general, there exist two complementary non-degenerate distributions
S(TM) and S(TM⊥) of Rad(TM) in TM and TM⊥ respectively, called the screen
and co-screen distributions on M , such that

(1.1) TM = Rad(TM)⊕orth S(TM) , TM⊥ = Rad(TM)⊕orth S(TM⊥),

where the symbol ⊕orth denotes the orthogonal direct sum. We denote such a light-
like submanifold by (M, g, S(TM), S(TM⊥)). We say that a lightlike submanifold
(M, g, S(TM), S(TM⊥)) of M̄ is

(1) r-lightlike if 1 ≤ r < min{m, n};
(2) co-isotropic if 1 ≤ r = n < m;
(3) isotropic if 1 ≤ r = m < n;
(4) totally lightlike if 1 ≤ r = m = n.

The above three classes (2)∼(4) are particular cases of the class (1) as follows:
S(TM⊥) = {0}, S(TM) = {0} and S(TM) = S(TM⊥) = {0} respectively. The
geometry of r-lightlike submanifolds is more general than that of the other three type
submanifolds. For this reason, in this paper we consider only r-lightlike submanifolds
M ≡ (M, g, S(TM), S(TM⊥)).

For the rest of this paper, by a lightlike submanifold we shall mean an r-lightlike
submanifold, unless specified.

Let tr(TM) and ltr(TM) be complementary (but not orthogonal) vector bundles
to TM in TM̄|M and TM⊥ in S(TM)⊥ respectively. Then we have
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tr(TM) = ltr(TM) ⊕ S(TM⊥),(1.2)

TM̄ |M = TM ⊕ tr(TM)(1.3)

= (Rad(TM)⊕ ltr(TM)) ⊕ S(TM) ⊕ S(TM⊥).

We call tr(TM) and ltr(TM) transversal and lightlike transversal vector bundle of
M . Consider the following local quasi-orthonormal field of frames of M̄ along M :

(1.4) {ξ1, ... , ξr, N1, ... , Nr, Xr+1, ... , Xm, Wr+1, ... , Wn}
where {ξ1, ... , ξr} is a lightlike basis of Γ (Rad(TM)), {N1, ... , Nr} a lightlike
basis of Γ (ltr(TM)), {Xr+1, ... , Xm} and {Wr+1, ... , Wn} orthonormal basis of
Γ (S(TM)|U) and Γ (S(TM⊥)|U) respectively. Then we have

ḡ (Ni, ξj) = δij , ḡ (Ni, Nj) = 0,

where {ξ1, ... , ξr} is a lightlike basis of Γ(Rad(TM)).
Let ∇̄ be the Levi-Civita connection on M̄ . Due to (1.3) we put

∇̄XY = ∇XY + h(X, Y ), ∀X, Y ∈ Γ(TM),(1.5)

∇̄XV = −AV X + ∇⊥XV, ∀X ∈ Γ(TM), V ∈ Γ(tr(TM)),(1.6)

where {∇XY, AV } and {h(X, Y ),∇⊥XV } belong to Γ(TM) and Γ(tr(TM)) respec-
tively. ∇ and ∇⊥ are linear connections on M and tr(TM) respectively. Besides
∇ is torsion-free linear connection. Also, h is a Γ(tr(TM))-value symmetric F (M)-
bilinear form on Γ(TM) and AV is a shape operator on Γ(TM). We call ∇ and ∇⊥
the induced connection and the transversal connection on M respectively. Also h is
called the second fundamental form of M with respect to tr(TM). Using (1.2) and
(1.3), (1.5) and (1.6) become

∇̄XY = ∇XY + h`(X, Y ) + hs(X, Y ),(1.7)

∇̄XN = −ANX + ∇`
XN + Ds(X, N),(1.8)

∇̄XW = −AW X + ∇s
XW + D`(X, W ),(1.9)

for any X, Y ∈ Γ(TM), N ∈ Γ(ltr(TM)) and W ∈ Γ(S(TM⊥)). By using (1.5) ∼
(1.9) and the fact that ∇̄ is metric, we obtain

(1.10) ḡ (hs(X, Y ), W ) + ḡ (Y, D`(X, W )) = g (AW X, Y ),

(1.11) ḡ (h`(X, Y ), ξ) + ḡ (Y, h`(X, ξ)) + g (Y, ∇Xξ) = 0,

(1.12) ḡ (Ds(X, N), W ) = ḡ (N, AW X),
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(1.13) ḡ (ANX, N ′) + ḡ (AN ′X, N)) = 0,

(1.14) ḡ (ANX, PY ) = ḡ (N, ∇̄XPY ),

for any ξ ∈ Γ(Rad(TM)), W ∈ Γ(S(TM⊥) and N, N ′ ∈ Γ(ltr(TM)).
The induced connection ∇ on TM is not metric and satisfies

(1.15) (∇Xg)(Y, Z) =
r∑

i=1

{h`
i(X,Y ) ηi(Z) + h`

i(X,Z) ηi(Y )},

for all X, Y ∈ Γ(TM), where ηis are the r differential 1-forms such that

(1.16) ηi(X) = ḡ(X, Ni), ∀X ∈ Γ(TM).

But the connection ∇∗ on S(TM) is metric. Denote by P the projection morphism
of TM on S(TM) with respect to (1.1). According to (1.1) we set

∇XPY = ∇∗XPY + h∗(X, PY ),(1.17)

∇Xξ = −A∗ξX + ∇∗tXξ,(1.18)

for any X, Y ∈ Γ(TM) and ξ ∈ Γ(Rad(TM)), where the sets {∇∗XPY, A∗ξX} and
{h∗(X,PY ), ∇∗tXξ} belong to Γ(S(TM)) and Γ(Rad(TM)) respectively. It follows
that ∇∗ and ∇∗t are linear connections on complementary distributions S(TM) and
Rad(TM) respectively. On the other hand, h∗ is Γ(Rad(TM))-valued F (M)-bilinear
form on Γ(TM) × Γ(S(TM)) and A∗ξ is a linear operator on Γ(TM). Call h∗ the
second fundamental form of S(TM) and A∗ the shape operator of S(TM) with re-
spect to ξ. Also, call ∇∗ and ∇∗t the induced connections on S(TM) and Rad(TM)
respectively. It is important to note that both ∇∗ and ∇∗t are metric connections.
The second fundamental form and the shape operator of a non-degenerate subman-
ifold of a semi-Riemannian manifold are related by means of the metric tensor field
(see Chen[1]). Contrary to this, in the lightlike case there are interrelations between
geometric objects induced by tr(TM) and S(TM). More precisely, by using (1.7),
(1.17) and (1.18) we obtain

ḡ(h`(X, PY ), ξ) = ḡ(A∗ξX, PY ),(1.19)

ḡ (h∗(X, PY ), N) = ḡ (ANX, PY ),(1.20)

for any X, Y ∈ Γ(TM), ξ ∈ Γ(Rad(TM)) and N ∈ Γ(ltr(TM)). As h` is sym-
metric, from (1.19) it follows that the shape operator of S(TM) is a self-adjoint
operator on S(TM), i.e., we have

g(A∗ξPX, PY ) = g(PX, A∗ξPY ), ∀X, Y ∈ Γ(TM).
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Replace Y by ξ in (1.11) we deduce

(1.21) ḡ(h`(X, ξ), ξ) = 0, ∀X ∈ Γ(TM).

Then replace X by ξ in (1.19) and by using (1.21), we obtain

A∗ξξ = 0.

By using the linear connections introduced by (1.9)∼(1.11), we use the following
covariant derivatives:

(∇Xh`)(Y, Z) = ∇`
X(h`(Y, Z)) − h`(∇XY, Z) − h`(Y, ∇XZ),(1.22)

(∇Xhs)(Y, Z) = ∇s
X(hs(Y, Z)) − hs(∇XY, Z) − hs(Y, ∇XZ),(1.23)

for X, Y, Z ∈ Γ(TM), ξ ∈ Γ(Rad(TM))), N ∈ Γ(ltr(TM)) and W ∈ Γ(S(TM⊥)).
An odd dimensional semi-Riemannian manifold (M̄, ḡ) is called a contact metric

manifold [6, 7] if there exists a (1, 1)-type tensor field ϕ, a vector field V , called the
characteristic vector field, and its 1-form θ satisfying

ϕ2X = −X + η(X)V, ϕV = 0, η ◦ ϕ = 0, η(V ) = 1,

ḡ(V, V ) = ε, ḡ(ϕX, ϕY ) = ḡ(X, Y )− ε η(X)η(Y ),(1.24)

η(X) = εḡ(V,X), dη(X,Y ) = ḡ(ϕX, Y ), ε = ±1,

for any X, Y ∈ Γ(TM̄). Then (ϕ, η, V, ḡ) is called a contact metric structure on
M̄ . We say that M̄ has a normal contact structure if Nϕ + dθ ⊗ V = 0, where Nϕ

is the Nijenhuis tensor field of ϕ [6, 7]. A normal contact metric manifold is called
a Sasakian manifold [12] for which we have

∇̄XV = ϕX,(1.25)

(∇̄Xϕ)Y = ε η(Y )X − ḡ(X, Y )V.(1.26)

The next ingredient we consider is a semi-Riemannian metric ḡ of index µ(> 0) on
the Sasakian manifold M̄ = (M̄, ϕ, V, η, ḡ). Then we say that M̄ is an indefinite
Sasakian manifold. In an indefinite Sasakian manifold M̄ , the characteristic vector
field V is a spacelike vector field on M̄ [10].

A general notion of a minimal lightlike submanifold in a semi-Riemannian man-
ifold, as introduced by Bejancu and Duggal [4], is as follows:

Definition 1.1. A lightlike submanifold (M̄, ḡ, S(TM)) isometrically immersed in
a semi-Riemannian manifold (M̄, ḡ) is said to be minimal if
(1) hs = 0 on Rad(TM);
(2) traceh = 0, when trace is written with respect to g restricted to S(TM).
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Similar to the definition for a contact CR-lightlike submanifold of indefinite
Sasakian manifold [7], we state the following:

Definition 1.2. Let (M, g, S(TM), S(TM⊥) be a lightlike submanifold and im-
mersed in an indefinite Sasakian manifold (M̄, ḡ). We say hat M is a contact CR-
lightlike submanifold of M̄ if the following conditions are satisfied:
(1) ϕRad(TM) is a distribution on M such that Rad(TM) ∩ ϕ(Rad(TM)) = {0};
(2) There exist vector bundles D0 and D′ over M such that





S(TM) = {ϕ(Rad(TM))⊕D′}⊥D0 ⊥ {ζ}
ϕD0 = D0

ϕD′ = L1⊥ltr(TM),

where ⊥ is the orthogonal direct sum, D0 is nondegenerate and L1 is a vector
subbundle of S(TM⊥). A contact CR-lightlike submanifold is proper if D0 6= {0}
and L1 6= {0}.
Example 1.3 ([7]). Let M be a lightlike hypersurface of M̄ . Then M is a contact
CR-lightlike hypersurface.

2. Slant Lightlike Submanifolds

Lemma 2.1. Let M be an r-lightlike submanifoldof an indefinite Sasakian mani-
fold M̄ of index 2q. Suppose that ϕ(Rad(TM)) is a distribution on M such that
Rad(TM) ∩ ϕ(Rad(TM)) = {0}. Then ϕ(Rad(TM)) is a subbundle of the screen
distribution S(TM) and ϕ(ltr(TM)) ∩ ϕ(Rad(TM)) = {0}.
Proof. By hypothesis, since ϕ(Rad(TM)) is a distribution on M such that

Rad(TM) ∩ ϕ(Rad(TM)) = {0},

we have ϕ(Rad(TM)) ∈ S(TM). Choose N ∈ ltr(TM), ξ ∈ Rad(TM), X ∈
S(TM), and W ∈ S(TM⊥) such that ḡ(N, ξ) = ḡ(X,X) = ḡ(W,W ) = 1, we can
write that

(2.1) ϕN = k1N + k2ξ + k3X + k4W,

where k1, k2, k3, and k4 are smooth functions on M . Taking the scalar product of
(2.1) with N and ξ, we get k2 = 0 and k1 = 0 , respectively. Thus we have

(2.2) ϕN = k3X + k4W,
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Let us suppose that ϕN belongs to S(TM⊥). Then we have 1 = ḡ(ξ,N) =
ḡ(ϕξ, ϕN) = 0 due to ϕN ∈ Γ(S(TM⊥))) and ϕξ ∈ Γ(S(TM)), which is a contra-
diction. Therefore, from (2.2) we conclude ϕN belongs to S(TM) and ϕ(ltr(TM))
is a distribution on M.
Moreover, ϕN dose not belong to ϕ(Rad(TM)). Indeed if ϕN ∈ Γ(Rad(TM)), we
would have ϕ2N = −N + θ(N)V = −N ∈ Γ(Rad(TM)), but this is impossible.
Thus, we conclude ϕ(ltr(TM)) ⊂ S(TM) and ϕ(ltr(TM)) ∩ ϕ(Rad(TM)) = {0}.

¤

Lemma 2.2. Let M be q-lightlike submanifold of an indefinite Sasakian manifold
M̄ of index 2q with the characteristic field tangent to M . Suppose that ϕ(Rad(TM))
is a distribution on M such that Rad(TM) ∩ ϕ(Rad(TM)) = {0}. Then any com-
plementary distribution to ϕ(ltr(TM)) ⊕ ϕ(Rad(TM)) in the screen distribution
S(TM) is Reimannian.

Proof. Let D′ be the complemantary distribution to ϕ(ltr(TM))⊕ ϕ(Rad(TM)) ⊂
S(TM) and let dim(M̄) = m + n and dim(M) = m. We can choose a local quasi
orthornomal frame on M̄ along M as follows:

{ξi, Ni, ϕξi, ϕNi, Xα, V,Wβ}, i ∈ {1, . . . , q},
α ∈ {3q + 1, . . . ,m− 1}, β ∈ {q + 1, . . . , n},

where {ξi} and {Ni} are lightlike basis of Rad(TM) and ltr(TM), respectively, and
{ϕξi, ϕNi, Xα, V } is an orhonormal basis of S(TM) and {Wβ} is an orthonormal
basis of S(TM⊥). Now, we construct an orthonormal basis {U1, . . . , U2q, V1, . . . , V2q}
as follows:

U1 =
1√
2
{ξ1 + N1} U2 =

1√
2
{ξ2 −N2},

U3 =
1√
2
{ξ3 + N3} U4 =

1√
2
{ξ4 −N4},

· · · · · ·
· · · · · ·

U2q−1 =
1√
2
{ξq + Nq} U2q =

1√
2
{ξq −Nq},

V1 =
1√
2
{ϕξ1 + ϕN1} V2 =

1√
2
{ϕξ2 − ϕN2},

· · · · · ·
· · · · · ·
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V2q−11 =
1√
2
{ϕξq + ϕNq} V2q =

1√
2
{ϕξq − ϕNq}.

Hence, {ξi, Ni, ϕξi, ϕNi} gives a non-degenerate space of constant index 2q which
implies that Rad(TM)⊕ ltr(TM)⊕ ϕ(Rad(TM))⊕ ϕ(ltr(TM)) is nod-degenerate
and of constant index 2q on M̄ . As

index(TM̄) = index(Rad(TM)⊕ ltr(TM))

+ index(ϕ(Rad(TM))⊕ ϕ(ltr(TM)))

+ index(D′ ⊕ S(TM⊥)),

we have

2q = 2q + index(D′ ⊕ S(TM⊥)),

which implies that index(D′ ⊥ S(TM⊥)) = 0. Hence D′ is Riemannian. ¤

To define slant lightlike submanifolds of indefinite Sasakian manifolds, one needs
to consider an angle between two vector fields. We shown from Section 1 that a
lightlike submanifold has two(radical and screen) distributions. The radical distri-
bution is totally lightlike and therefore it is not impossilbe to define angle between
two vector fields of radical distribution. On the other hand, the screen distribution
is non-degenerate. Thus one way to define slant lightlike submanifolds is to choose a
Riemannian screen distribution on lightlike submanifolds, for which we use Lemma
2.2.

Definition 2.3. Let M be a q-lightlike submaifold of an indefinite Sasakian manifold
M̄ of index 2q with V tangent to M . Then we say that M is a slant lightlike
submanifold of M̄ if the following conditions are satisfied:

(i) ϕRad(TM) is a distribution on M such that Rad(TM) ∩ ϕ(Rad(TM)) =
{0}.

(ii) For all x ∈ U ⊂ M and for each non-zero vector field X tangent to D̄ = D ⊥
{V }, if X and V are linearly independent , then the angle θ(X) between ϕX

and the vector space D̄x is constant, where D is complementary distribution
to ϕ(ltr(TM))⊕ ϕ(Rad(TM)) in screen distribution S(TM).

The constant angle θ(X) is called the slant angle of D̄. A slant lightlike submanifold
M is said to be proper if D 6= {0} and θ 6= 0, φ

2 .
If M is totally lightlike submanifold of M̄ , then we have TM = Rad(TM), and
hence D = {0}. Therefore we have the following:
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Proposition 2.4. There exist no proper slant totally lightlike or isotropic subman-
ifold M in indefinite Sasakian manfiold M̄ with the characteristic vector field V

tangent to M .

From now on,
(
R2m+1

q , ϕ0, V, η, ḡ
)

will denote the manifold R2m+1
q with its usual

Sasakian structure given by

η =
1
2
(dz −

m∑

i=1

yidxi), V = 2∂z

ḡ = η ⊗ η(2.3)

+
1
4
{−

q∑

i=1

(dxi ⊗ dxi + dyi ⊗ dyi) +
m∑

i=q+1

(dxi ⊗ dxi + dyi ⊗ dyi)},

ϕ0(
m∑

i=1

(Xi∂xi + Yi∂yi) + Z∂z) =
m∑

i=1

(Yi∂xi −Xi∂yi) +
m∑

i=1

Yiy
i∂z,

where (xi, yi, z) are the Cartesian coordinates.

Example 1. Let M̄ = (R9
2, ḡ) be a semi-Euclidean space, where ḡ is of signature

(−, +, +,−,+,+,+,+) with respect to canonical basis

{∂x1, ∂x2, ∂x3, ∂x4, ∂y1, ∂y2, ∂y3, ∂y4, ∂z}
Suppose M is a submanifold of R9

2 defined by

x1 = y4, x2 =
√

1− (y2)2, y2 6= ±1

It is easy to see that a local frame of TM is given by

Z1 = 2(∂x1 + ∂y4 + y1∂z), Z2 = 2(∂x4 − ∂y1 + y4∂z)

Z3 = ∂x3 + ∂y2 + y3∂z, Z4 = ∂y1 + 2∂y3,(2.4)

Z5 = −y2

x2
∂x2 + ∂y2 − (y2)2

x2
∂z, Z6 = ∂x4 + ∂y1, ∂Z7 = V = 2∂z.

Hence, we show that Rad(TM) = span{Z1}, ϕ0(Rad(TM)) = span{Z2}, and
Rad(TM) ∩ ϕ0(Rad(TM)) = {0}, hence (i) holds. Next, D̄ = D ⊥ {V } =
{Z3, Z4} ⊥ {V } is Riemannian, where ⊥ is the orthogonal direct sum. By direct
calculations, we get

S(TM⊥) = span{W = ∂x2 +
y2

x2
∂y2 + y2∂z} such that ϕ0(W ) = −Z5,

and ltr(TM) = span{N = −∂x1 + ∂y4 − y∂z} such that ϕ0(N) = Z6. Next, we
have D̄ = D ⊥ V = {Z3, Z4, Z5} ⊥ {V } is Riemannian, where ⊥ is the orthogonal
direct sum. Then M is proper slant lightlike.
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Proposition 2.5. Slant lightlike submanifolds M of an indefinite Sasakian manifold
M̄ with the characteristic vector field V tangent to M do not include invariant and
screen real lightlike submanifolds.

Proposition 2.6. Let M be a q-lightlike submanifold of an indefinite Sasakian
manifold M̄ of index 2q. Then any coisotropic CR-lightlike submanifold is a slant
lightlike submanifold with θ = 0. In particular, a lightlike real hypersurface of an
indefinite Sasakian manifold M̄ of index 2 is a slant lightlike submanifold with θ = 0.
Moreover, any CR-lightlike submanifold of M̄ with D0 = {0} is a slant lightlike
submanifold with θ = π

2 .

Proof. Let M be a q-lightlike CR-lightlike submanifold of an indefinite Sasakian
manifold M̄ . Then ϕ(Rad(TM)) is a distribution on M such that Rad(TM) ∩
ϕ(Rad(TM)) = {0}. If M is coisotropic, then S(TM⊥) = {0}. Then the comple-
mentary distribution to ϕ(ltr(TM))∩ϕ(Rad(TM)) is the screen distribution S(TM)
is D̄ = D0 ⊥ {V } where D0 is Riemannian by Lemma 2.2. Since D0 is invariant with
respect to ϕ, it follows that V = 0. The second assertion is obvious as a lightlike
real hypersurface on M̄ is coisotropic. Now, if M is CR-lightlike submanifold with
D0 = {0}, then the complementary distribution to ϕ(ltr(TM)) ∩ ϕ(Rad(TM)) in
the screen distribution S(TM) is D̄ = D′ ⊥ {V }. Since D′ is anti-invariant with
respect to ϕ, it follows that θ = π

2 , which completes the proof. ¤

We know that for any X ∈ TM and W ∈ tr(TM),

ϕX = TX + FX, ϕW = BW + CW,(2.5)

TX and FX are the tangential and transversal components of φX, respectively
and BW and CW are tangential and transversal components of φW , respectively.
Morveover, for a slant lightlike submanifold, we denote by P1, P2, Q1, and Q2 and
Q̄2 the projections on the distributions Rad(TM), ϕ(Rad(TM)), ϕ(ltr(TM)), D
and D̄ = D ⊥ {V }, respectively. Then for any X ∈ TM , we can write

X = P1X + P2X + Q1X + Q̄2X,(2.6)

where Q̄2X = Q2X + θ(X)V . Using (2.5) in the above equation, we obtain

ϕX = ϕP1X + ϕP2X + TQ2X + FQ1X + FQ2X, ∀X ∈ TM.(2.7)

Then the tangential components are

TX = TP1X + TP2X + TQ2X.(2.8)
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We now prove two characterization theorems for slant lightlike submanifolds.

Theorem 2.7. Let M be a q-lightlike submanifold of an indefinite Sasakian manifold
M̄ of index 2q with the characteristic vector field tangent to M . Then M is slant
lightlike submanifold if and only if the following conditions are satisfied:

(a) ϕ(ltr(TM)) is a distribution on M .
(b) There exist a constant λ ∈ [−1, 0] such that

T 2Q̄2X = λ(Q̄2X − θ(Q̄2X)V ),

for all X ∈ Γ(TM) linearly independent of the characteristic vector field V . More-
over, in such a case, λ = − cos2 θ when θ is the slant angle of M .

Proof. Let M be a q-lightlike submanifold of an indefinite Saskian manifold M̄

of index 2q. If M is a slant lightlike submanifold of M̄ , then ϕ(Rad(TM)) is a
distribution on S(TM), and hence from Lemma 2.2, it follows that ϕ(ltr(TM)) is
also a distribution on M and ϕ(ltr(TM)) ⊂ S(TM). Thus (a) is complete. For
X ∈ Γ(TM), Q2X ∈ D̄ − {V }, we have

cos θ(Q2X) =
ḡ(ϕQ2X, TQ2X)
|ϕQ2X||TQ2X|(2.9)

= − ḡ(Q2X, ϕTQ2X)
|ϕQ2X||TQ2X|

= − ḡ(Q2X, T 2Q2X)
|Q2X||TQ2X|

On the other hand, cos θ(X) = |TX|
|ϕX| , and so, by using 2.9, we obtain

cos2 θ(Q2X) = − ḡ(Q2X, T 2Q2X)
|Q2X|2 .

Since θ(Q2X) is constant on D̄, we conclude that

T 2Q̄2X = λQ2X = λ(Q̄2X − θ(Q̄2X)V ), λ ∈ (−1, 0).

Moreover, in this case, λ = − cos2 θ. It is clear that the above equation is valid for
θ = 0 and θ = π

2 . Hence for Q̄2X ∈ D̄, the proof is complete. Conversely, suppose
that (a) and (b) hold. Then (a) implies that ϕ(Rad(TM)) is a distribution on M .
From Lemma 2.2, it follows that the complementary distribution to ϕ(ltr(TM)) ⊕
ϕ(Rad(TM)) is a Riemannian distribution. The rest of the proof is clear. ¤

Corollary 2.8. Let M be a slant submanifold of an indefinite Sasakian manifold
M̄ of index 2q with the characteristic vector field tangent to M . Then, for any
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X, Y ∈ Γ(TM), we have

g(TQ̄2X,TQ̄2Y ) = cos2 θ{g(Q̄2X, Q̄2Y )− θ(Q̄2X)θ(Q̄2Y )},(2.10)

g(FQ̄2X,FQ̄2Y ) = sin2 θ{g(Q̄2X, Q̄2Y )− θ(Q̄2X)θ(Q̄2Y )}.(2.11)

Proof. From g(TX, Y ) = −g(X, TY ) for all X ∈ Γ(TM) and Theorem 2.7, a direct
expension gives (2.10). To prove (2.11), it is enough to take into account (1.19) and
(2.5). ¤

Theorem 2.9. Let M be a q-lightlike submanifold of an indefinite Sasakian manifold
M̄ of index 2q with the characteristic vector field tangent to M . Then M is slant
lightlike submanifold if and only if the following conditions are satisfied:

(a) ϕ(ltr(TM)) is a distribution on M .
(b) There exist a constant µ ∈ [−1, 0] such that

BFQ̄2X = µ(Q̄2X − θ(Q̄2X)V ), ∀X ∈ Γ(TM).

Moreover, in such a case, µ = − sin2 θ when θ is the slant angle of M .

Proof. It is clear to see that ϕ(Rad(TM))∩ϕ(ltr(TM)) = {0} and ϕ(Rad(TM)) is
subbundle of S(TM). Moreover, the complementary distribution to ϕ(ltr(TM)) ⊕
ϕ(Rad(TM)) in S(TM)) is Riemannian. Furthermore, from the proof of Lemma
2.2, S(TM⊥) is also Riemannian. Thus (i) in the Definition 2.3 of slant lightlike
submanifold is satisfied. On the other hand, from (2.5) and (2.7), we obtain

−X = −P1X − P2X + T 2Q2X + FTQ2X + JFQ1X + BFQ2X + CFQ2X.

Since ϕFQ1X = −Q1X ∈ Γ(S(TM)), takining the tangential parts, we have

−X + θ(X)V = −P1X − P2X + T 2Q2X −Q1X + BFQ2X.

From (2.6), we obtain

−Q2X = −T 2Q2X + BFQ2X.(2.12)

Now, if M is slant lightlike, then from Theorem 2.7, we have T 2Q2X = − cos2 θQ2X,
and hence we get BFQ2X = − sin2 θQ2X. Since FV = 0 and Q̄2X = Q2X+θ(X)V ,
we have BFQ̄2X = − sin2 θ{Q̄2X − θ(Q̄2X)V }.

Conversely, suppose that BFQ2X = µQ2X. Then, from (2.12), we obtain

T 2Q2X = −(1 + µ)Q2X.

Thus, the proof follows from Theorem 2.7. ¤
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3. Minimal Slant Lightlike Submanifolds

Now we study minimal slant lightlike submanifolds of indefinite Sasakian man-
ifolds. In what follows, we prove two characterization results for minimal slant
lightlike submanifolds. First we give the following lemma.

Lemma 3.1. Let M be a proper slant lightlike submanifold of an indefinite Sasakian
manifold M̄ such that dim(D) = dim(S(TM⊥)). If {e1, . . . , em} is a local or-
thonormal basis of Γ(D), then {csc θFe1, . . . , csc θFem} is an orthonormal basis of
S(TM⊥).

Proof. Since {e1, . . . , em} is a local orthonormal basis for D and D is Riemannian,
from Corollary 2.8, we find

ḡ(csc θFei, csc θFej) = δij ,

where i, j = 1, 2, . . . ,m, which proves the assertion. ¤

Theorem 3.2. Let M be a proper slant lightlike submanifold of an indefinite
Sasakian manifold M̄ with the characteristic vector field tangent to M . Then M

is minimal if and only if

traceAWj |S(TM) = 0, traceA∗ξk
|S(TM) = 0, and ḡ(Dl(X,W ), Y ) = 0,

for X, Y ∈ Γ(Rad(TM)),W ∈ Γ(S(TM⊥)), where {ξk}r
k=1 is a basis of Rad(TM)

and {Wj}r
j=1 is a basis of S(TM⊥).

Proof. From (1.25), we have ∇̄V V = 0 and thus from (1.3) we get hl(V, V ) =
hs(V, V ) = 0. Now, take an orthonormal frame basis of S(TM⊥) of D.
From (1.16), we know hl

i = 0 on Rad(TM) for all i. Thus, M is minimal if and only
if

r∑

k=1

h(ϕξk, ϕξk) +
r∑

k=1

h(ϕNk, ϕNk) +
m∑

i=1

h(ei, ei) = 0.

Using (1.10) and (1.19), we obtain
r∑

k=1

h(ϕξk, ϕξk)(3.1)

=
r∑

k=1

1
r

r∑

a=1

ḡ(A∗ξa
ϕξk, ϕξk)Na +

r∑

k=1

1
m

m∑

j=1

ḡ(AWjϕξk, ϕξk)Wj .

Similarly, we have
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r∑

k=1

h(ϕNk, ϕNk)(3.2)

=
r∑

k=1

1
r

r∑

a=1

ḡ(A∗ξa
Nk, ϕNk)Na +

r∑

k=1

1
m

m∑

j=1

ḡ(AWjϕNk, ϕNk)Wj

and

(3.3)
r∑

i=1

h(ei, ei) =
r∑

i=1

1
r

r∑

a=1

ḡ(A∗ξa
ei, ei)Na +

r∑

i=1

1
m

m∑

j=1

ḡ(AWjei, ei)Wj .

Thus our assertion follows from (3.1) ∼ (3.3). ¤

Theorem 3.3. Let M be a proper slant lightlike submanifold of an indefinite
Sasakian manifold M̄ with the characteristic vector field tagent to M such that
dim(D) = dim(S(TM⊥)). Then M is minimal if and only if

traceAFej |S(TM) = 0, traceA∗ξk
|S(TM) = 0, and ḡ(Dl(X, Fej), Y ) = 0,

for X, Y ∈ Γ(Rad(TM)), where {ξk}r
k=1 is a basis of Rad(TM) and {ej}r

j=1 is a
basis of D.

Proof. From (1.25), we have ∇̄V V = 0 and thus from (1.3) we get hl(V, V ) =
hs(V, V ) = 0. Moreover, from Lemma 3.1, {csc θFe1, . . . , csc θFem} is an orthonor-
mal basis of S(TM⊥). Thus,

hs(X,X) =
m∑

i=1

csc θḡ(AFeiX, X),

for X ∈ Γ((ϕ(Rad(TM))⊕ϕ(ltr(TM))) ⊥ D). Thus the proof follows from Theorem
3.2. ¤

Remark 3.4. (a) It is known that a proper slant submanifold of a Sasakian manifold
is odd dimensional, but this is not true in case of our definition of slant lightlike
submanifold. For instance, see two examples given in this paper.

(b) We notice that the second fundamental forms and their shape operators of a
non-degenerate submanifold are related by means of the metric tensor field. Con-
trary to this we see from (1.7) ∼ (1.14) that in case of lightlike submanifold mani-
folds there are interrelations between these geometric objects and those of its screen
distributions. Thus, the geometry of lightlike submanifolds depends on the triplet
(S(TM), S(TM⊥), ltr(TM)).
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