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DYNAMICAL SYSTEMS AND GROUPOID ALGEBRAS
ON HIGHER RANK GRAPHS

INHYEOP Y1

ABSTRACT. For a locally compact higher rank graph A, we construct a two-sided
path space A® with shift homeomorphism o and its corresponding path groupoid
I'. Then we find equivalent conditions of aperiodicity, cofinality and irreducibility
of Ain (A®,0), I, and the groupoid algebra C*(T").

1. PRELIMINARY

Since Kumjian and Pask’s ground breaking paper for higher rank graph ([3]),
main interest of higher rank graph (or k-graph) algebras has been the ‘one-sided’
path space A2 of k-graph A and its corresponding path groupoid Ga. On the other
hand, as in the case of subshift of finite types and Cuntz-Krieger algebras ([1]), two-
sided path space A® was constructed by Kumjian and Pask in [4] to study Smale
space structure on k-graphs. This paper is a partial result of the author’s attempt
to understand Kumjian and Pask’s results on ZF-actions on k-graphs ([4]).

Although one-sided path space is easier to use combinatorially, in the view point
of dynamical systems, two sided path space A® is more natural for shift map o is
a homeomorphism on A? comparing to the fact that ¢ is a local homeomorphism
on A?. We construct a dynamical system (A®,0) and its corresponding groupoid
I' from the two-sided path space of a k-graph A. Then we show that some basic
properties of A are naturally transferred to properties of (A%, o), I', and C*(T) the
groupoid C*-algebra of T'.

For this purpose, we make an assumption on our higher rank graph A that it
is locally compact with no sources to assure that A2 is a locally compact Haus-

dorff space with infinitely many elements. Under this assumption, we show that
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aperiodicity of A, topological freeness of (A%, o), and essential principality of T' are
equivalent to each other (Proposition 3.1).

This result may need a little explain: In k-graphs, obtaining aperiodicity with
combinatorial method is not an easy task. But, in dynamical systems, topological
freeness is a relatively mild restriction, e.g., every minimal system is topologically
transitive, and every topologically transitive system is topologically free ([7]). And,
in groupoids, essentially principal property implies that there is an order preserving
bijective relation between the open invariant subsets of the unit space of a groupoid
and its groupoid C*-algebra ([5]). Because our groupoid I' comes from the dynamical
system (AA, o), invariant subsets of T'” are strongly related to orbits and invariant
subsets of (AA, o). So dynamical properties and groupoid properties will interdispaly
those of k-graphs. After we give relevant definitions of k-graphs, dynamical systems
and groupoids in Section 2, we use this property to find equivalent conditions of
cofinality and irreducibility of A on (A, o), T', and C*(T') in Section 3.

2. HIGHER RANK GRAPHS

We briefly review definitions and basic properties of k-graphs, dynamical systems

and groupoids. All materials in this section are taken from [3, 4, 5, 7].
Definition 2.1 ([3, 4]). A k-graph is a pair (A, d) where
A = (Obj(A),Hom(A),r, s)
is a countable small category and d: A — N is a morphism, called the degree
map, satisfying the factorization property: For every X € A and m,n € NF with
d(\) = m + n, there exist unique elements p, v € A such that
d(p) =m, d(v) =n and A = pv.

Every A € A is called a path. For every nonzero n € N¥ define A" = d~!(n) and
identify A with Obj(A). Let r,s: A — A® denote the range and source maps. We

abbreviate (A,d) to A when there is no confusion.

Standing Assumption. Throughout this paper, every k-graph is locally finite
and has no sources in the sense of Kumjian and Pask ([3, 4]), every groupoid is a

topological groupoid, and an ideal of a C*-algebra means a closed two-sided ideal.

ZF-actions on k-graphs ([4]). Suppose that (A,d) is a k-graph defined by

A = {(m,n) | m,n € Z¥ and m < n}
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with the structure maps
(l,m) - (m,n) = (I,n), r(m,n) =m, s(m,n) =n and d(m,n) =m — n.
Let A be a k-graph, and the corresponding two-sided infinite path space be set by
A® ={z: A — A| zis a k-graph homomorphism }
Then A2 is a zero-dimensional space consisting of *two-sided’ paths on A. A topology
is endowed on A® where its basis is given by
Z(A\n)={z e A | z(n,n+dN\)) = A}
with n € Z¥ and A € A. It is not difficult to check that A® is compact (locally
compact, respectively) if A is finite (infinite, respectively) so that A> is a metrizable
space. A metric p on A® is defined as follows: For e = (1,...,1) € Z¥ and j € N,
let §; € A be the element (—je, je). Given z,y € A®, set
1 z(0 0
Wz, y) = | ( )#.y( )
1+ sup{j | z(6;) = y(0;)} otherwise.

Then, for a fixed number r € (0, 1), a metric p is defined by the formula

p(z,y) = @Y for z,y € A®.
Let o be the action of Z* on A® by the homeomorphism o?: A2 — A2, p € ZF,
defined by

(oPx)(m,n) = z(m+ p,n + p).
Definition 2.2 ([3, 4]). A k-graph A is called irreducible if, for every u,v € A°,
there is A € A with d(\) # 0 such that v = r(\) and v = s(\). And A is called
two-sided cofinal if, for every x € A® and v € A, there are o, 8 € A such that
s(a) = z(m,m), r(a) = v = s(B) and r(B) = x(n,n) for some m,n € ZF.

Note that Kumjian and Pask defined cofinality of A for one-sided path space as

follows ([3]): For every € A% and v € A%, there is an a € A such that v = s(a) and

r(a) = x(n,n) for some n € N¥. We modified their definition for two-sided case.

Remark 2.3. In our definition of two-sided cofinality, we can set m < n: If m # n,
let p € Z* be such that m < p and n < p. Then v = 3 - z(n, p) is a path from v to
x(p, p) such that m < p.

Definition 2.4 ([3]). For z € A® and p € ZF, p is called a period of x if, for every

(m,n) € A, oPx(m,n) = x(m,n). That z is called periodic if it has a nonzero period,
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eventually periodic if o™ is periodic for some n € N*. Otherwise z is called to be
aperiodic. A k-graph A is said to satisfy aperiodic condition if, for every v € A,
there is an aperiodic path 2 € A such that z(0,0) = v.

Two-sided path groupoids ([4]). Suppose that A is a k-graph with its corre-
sponding two-sided path space A®. We define the ’two-sided’ path groupoid of A
by
I'={(z,n,y): z,y € A* neZF o'a =o™y,n=1—m for some I,m € VA
with the set of composable pairs
I'® = {((z,n,9), (w,m,2)) €T xT 1y = w}

and the structure maps

s($7 n? y) = (w7 07 x)? 7“(.1‘7 n? y) = (y7 07 y)?
(IL‘, n, y)(ya m, Z) = ($7 n+ m, Z)? and (l’, n, y)_l = (y7 —-n, 33)
The unit space of I', denoted T, is identified with A® via the diagonal map, and
the isotropy group bundle is given by
I ={(z,n,z)el}.
Theorem 2.5 ([2, 3]). Suppose that A is a k-graph and that T' is its two-sided
path groupoid as defined above. Then there is a topology on I that makes I' a second

countable, r-discrete, locally compact, Hausdorff groupoid with the Haar system given

by the counting measures.

Groupoids and dynamical systems.

Definition 2.6 ([5]). Let G be a topological groupoid with open range map and G°
its unit space. A subset E of I'V is said to be invariant if r o s71(F) = E. Then we
say that G is
(1) minimal if the only open invariant subsets of G are the empty set () and
GO itself,
(2) irreducible if every nonempty open invariant subset of G° is dense, and
(3) essentially principal if G is locally compact and, for every closed invariant
subset F of G, {u € F:r~Y(u)Ns~(u) = {u}} is dense in F.

Notation 2.7. For a groupoid G, we denote C*(G) the groupoid C*-algebra of G.

The following theorem gives a relation between gropoids and their groupoid al-

gerba:



DYNAMICAL SYSTEMS AND GROUPOID ALGEBRAS ON HIGHER RANK GRAPHS 203

Theorem 2.8 ([5, I1.4.5 and 4.6]). Suppose that G is a groupoid with its groupoid
algebra C*(G). Let O(G) be the lattice of invariant open subsets of the unit space G°
of G and Z(C*(Q)) the lattice of ideals of C*(G). Then there is a one-to-one order
preserving relation from O(G) to Z(C*(G)). Moreover, if G is essentially principal,

then the correspondence is bijective.

Definition 2.9 ([7]). Suppose that X is a locally compact Hausdorff space and that,
for every p € ZF, h?: X — X is a homeomorphism. Then the dynamical system
(X, h) is called
(1) minimal if every orbit is dense in X,
(2) topologically transitive if for every pair of open sets {U, V'} there is an n € Z*
such that h™(U) NV # (), and
(3) topologically free if Per®(X) is dense in X.

3. MAIN RESULTS

We will find equivalent conditions of aperiodicity of k-graphs in their corre-
sponding dynamical systems and two-sided path groupoids. Then we use this prop-
erty to investigate cofinality and irreducibility of k-graphs from dynamical systems,
groupoids, and groupoid C*-algebras.

Before go further, we may need to mention that similar relations between dy-
namical systems and groupoids are already proved in [8] under a little different

conditions.
Proposition 3.1. For a k-graph A, the following are equivalent:
(1) A satisfies the aperiodic condition.
(2) (A2, 0) is topologically free.
(3) T is essentially principal.
Proof. (1) <= (2). If A satisfies the aperiodic condition, then, for every A € A
with d()\) = n, there are aperiodic paths x,3 € A® such that z(0,0) = r(\) and
y(0,0) = s(A). Then z = o™y - \ - x defined by
y(p+n,0) ¢=—dQ)
z(p,q) = ¢ A p=n=—d(\) and ¢ =0
z(0, q) p=0
is an aperiodic path, and, for Z(\,m) with m € Z*, we have o= " 2(m, m +n) =
s(—n,0) = . So the aperiodic points are dense in A®, and (A®, o) is a topologically

free system.
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If aperiodic points are dense in A?, then, for v € A? and A € A such that
s(\) = v, there is an aperiodic path z € Z(A,0). Then we have x(0,d()\)) = A and
x(0,0) = s(\) = v. Therefore A satisfies the aperiodic condition.

(2) <= (3). Let A = {z € A® : oF(z) = o'(z) implies k = I}, the set of aperiodic
points in A®, and B = {b = (z,0,2) € T? : {b} = r~1(b) N s7(b) C T'}, the set
of elements in I'" with trivial isotopy. Then it is trivial that 2 € A if and only if
(z,0,2) € B. Hence A is dense in A® if and only if B is dense in T°.

For a closed invariant subset F of I'?, we note {u € F : r~1(u)Ns1(u) = {u}} =
F N B. Thus B is dense in I'? implies that, for every closed invariant subset F' of
I'Y, FN B is dense in F. Conversely, density of F'N B in F implies B is dense in I'°
when we set F' = I'". g

Proposition 3.2. For a k-graph A, the followings are equivalent:
(1) A is a two-sided cofinal graph.
(2) (A2, 0) is a minimal system.
(3) T is a minimal groupoid.
(4) C*(T') is a simple algebra.

Proof. (1) = (2). Suppose that A is a two-sided cofinal graph and A € A. Then
for s(\) and 7()\), there are a, 3 € A and m,n € ZF such that s(a) = z(m,m),
r(a) = s(A), r(A) = s(B), and 7(8) = z(n,n). As in the case of Remark 2.3, we may
set m < n. Then y € Z(\,0) defined by

z(m+p+d(a),m) q=—d(a)

« p=—d(a),g=0
y(p,a) = 4 A p=0,g=d(A

B p=d(X),q=d(\) +d(B)

z(n,n+q—dA) —d(B)) p=dA)+d(p)

has the same orbit as that of 2, and o~!(y) € Z(),1) for every | € Z¥. Hence (A>, )
is a minimal system.

(2) = (1). Suppose that (A®,0) is a minimal system. For every z € A%
and v € A%, let a and B be paths such that r(a) = v = s(3). Since the orbit of
z is dense in A%, there is an n € ZF such that "z € Z(a3,0). Then we have
z(n,n+d(a)) = a and xz(n + d(a),n + d(a) + d(B)) = [ such that s(a) = x(n,n)
and 7(8) = z(n+d(a) +d(B),n+ d(a) +d(5)) Thus A is a two-sided cofinal graph.

(2) = (3). Remark that for a subset E of I, (y,0,y) € r o s }(E) if and
only if y = ¢™(z) for some (x,0,z) € E and n € Z*, i.e., r o s~1(E) is identified
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as U(z,0,2)eOrb(r). So minimality of (A®, o) implies that the only open invariant
subsets of I'? are empty set and I'°.

(3) = (2). Assume that (A®,0) is not a minimal system. Then there is an
z € A® such that Orb(z) € A%, Let Y = A® — Orb(z) and E = {(y,0,y): y € Y}.
We show that E is an invariant open subset of I'V.

First we remark that E is an open subset of T ([5]) and E C ros~!(E). We also

note that, for (a,0,a) € ros™(E), there are y € Y and n € Z* such that ¢"(y) = a.

Assume that E is not an invariant open subset of I', and obtain a contradiction.
Then we have, as E C ros™'(E) and ros™!(E) is open in I'?, ros™ 1 (E)N(I°—E) # ()
and r o s H(E)NInt(T° — E) # (. Thus there exists an

(a,0,a) € ros 1 (E)NInt(I° — E)

such that a € Orb(z) and a € Orb(y) for some y € E. So there are n,m € Z*
such that 0"(y) = a and ¢™(z) = a. But this is a contradiction to the fact that
yeyY =A>— OT(.T) Therefore we have a nontrivial invariant open subset of I'?,
and I' is not a minimal groupoid.

(3) = (4). We recall that every minimal system is topologically free ([7]). Thus
I' is essentially principal by Proposition 3.1, and there is a bijective relation between
the lattice of invariant open subsets of the unit space of I' and the lattice of closed
two-sided ideal of C*(T"). Then C*(I") is a simple algebra as I is a minimal groupoid.

(4) = (3) If C*(T") is simple, then C*(I") does not have a nontrivial ideal, and
I' cannot have any nontrivial open invariant subset by Theorem 2.8. Thence I' is a
minimal groupoid. 0
Remark 3.3. In the above proposition, we need aperiodicty of A only for (3) =
(4). Even in one-sided case ([3, Proposition 4.8]), because of Renault’s theorem
(Theorem 2.8), simplicity of C*(A) implies cofinality of A does not require the ape-

riodic condition of A.

As an application of our dynamical approach to k-graphs, it may be noteworthy to
mention simplicity of C*(A), the C*-algebra of a k-graph A obtained from one-sided
path space A? ([3]).

Corollary 3.4. If a k-graph A is two-sided cofinal, then C*(A) is a simple algebra.

Proof. By [3, Proposition 4.8], if A is a cofinal graph and satisfies the aperiodic
condition, then C*(A) is simple. It is trivial that two-sided cofinality implies (one-

sided) cofinality, and we just need to obtain aperiodic condition from two-sided
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cofinality: By Proposition 3.2, (A®,0) is a minimal system, and every minimal
system is topologically free ([7]). Hence (A, o) is a topologically free system, and
A satisfies the aperiodic condition by Proposition 3.1. Therefore C*(A) is a simple
algebra. O

Corollary 3.5. If a k-graph A is an irreducible graph, then (A, o) is a minimal
system.
Since every irreducible graph is two-sided cofinal by definition, the above Corol-

lary is trivial. And there is a little more to say about irreducible graphs.

Definition 3.6 ([6]). A point x in a dynamical system (X, h) is called a nonwan-
dering point if for every open neighborhood U of x, there is an n € Z*\{0} such that
R (U)NU # ).

Proposition 3.7. Suppose that A is a k-graph. Then A is an irreducible graph if

and only if the corresponding dynamical system (AA, 0) s a topologically transitive

system and every point in A2 s a nonwandering point.

Proof. (=) It suffices to show this for cylinder sets U = Z(\,l) and V = Z(v,n).
Since A is irreducible, for s(v),r(\) € AY, there is a u € A such that r(u) = s(v)
and s(u) = r(A\). Then, for every x € Z(Auv,l),
(L, 1+ dAuv)) = z(l,l + d\ + dp + dv)
=z(l,l+dX\) - z(l +d\ 1+ d\+ dup)
cx(l+dXN+dp, L+ dX+ dp + dv)
= A\uv
and the factorization property imply that
x e ZN)NZ(v,l+d\+ dup).
Since 04 (Z(v,n)) = Z(v,n — q) for every q € Z*, we have
Zw,l+d\+dp) = Z (v,n— (n—1—d\ —dp)) = o "W 7 (1 n).
Therefore we have
ZAuw, 1) € Z(A 1) Ne Ak z(y n),
and (A, o) is a topologically transitive system.
To show that every point is nonwandering, let z be a point in A® and U = Z (A1)

an open neighborhood of x. Then the irreducible condition implies that there is a
path p such that s(u) = (), r(u) = s(\) and d(u) # 0. It is not difficult to check
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Z(AuX 1) € Z(\ 1) No~Parz (0 1)

and that every point in A? is a nonwandering point.

( <= ) For every u,v € A, we need to show that there is a A € A such that
s(A) = u, r(\) = v and d(\) # 0. Since (A®, ) is transitive, there is n € Z* such
that

0" (Z(u,0)) N Z(v,0) # 0.

Then there exists a k-graph morphism z: A — A such that
z € Z(u,—n)NZ(v,0) = z(—n,—n) =wu and z(0,0) =v

Let ¢ be a finite path in A between (—n,—n) and (0,0) with d(¢) # 0. Then x(¥)
is a path in A with d (z(¢)) # 0 such that either s (z(¢)) = v and r (z({)) = v or
s(x(l)) =v and r (z(f)) = u.

Suppose s (z(£)) = v and 7 (x(£)) = u. Since every point in A is nonwandering,
for an open neighborhood Z (z(¢),0) of x(£), there is an m € Z* such that

0™ 7 (2(£),0) N Z (2(£),0) = Z (2(£), —m) N Z (2(£),0) £ 0.
Then, for every y € Z(x(¢),—m) N Z (x(¥),0), y(—m + d(£),0) is a path whose
source is u and range is v. Therefore the graph A is an irreducible graph. 0

Remark 3.8. We need the nonwandering condition for a graph to be irreducible.

Consider the following 1-graph A. Then the corresponding dynamical system is

e

topologically transitive, but A is not irreducible.

To connect topologically transitive systems, irreducible groupoids and prime C*-
algebras, we need a few technical lemmas. Recall that a C*-algebra is called a prime

C*-algebra if intersection of any two nonzero ideals is nonzero.

Lemma 3.9 ([5, 1.4.1]). Suppose that G is a groupoid and that (s,r) : G — GY x GY
is given by the source map s and range map r of G. Then G is an irreducible
groupoid if and only if Im(G) under (s,r) is dense in G° x GV.

Lemma 3.10 ([8]). Let G be a topological groupoid with open range map and G° its
unit space. If U is an invariant subset of T°, then V =T° — U and W = IntU are

also invariant subsets of T'°.
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For a groupoid G and its groupoid algebra C*(G), the ideals of C*(G) related to
open invariant subsets of G mentioned in Theorem 2.8 are given as follow: For any

open invariant subset U of GV, let

L(U) = {f € Ce(G) : f(z,n,y) = 0if (z,n,y) ¢ s (U)}
and I(U) the closure of I.(U) in C*(G). Then I(U) is an ideal of C*(G) [5, 11.4.5].
Next property is certainly a well-known fact to experts, but we were unable to

find any reference.

Lemma 3.11. Suppose that G is a groupoid and that U and V' are open invariant
subsets of GO. Then I(U)NI(V)=1UNV).

Proof. We just need to check I.(U)NI.(V)=I1.(UNV):
fel.(U)nI(V) < f(z,n,y) =0 for (z,0,2) e U° UV =(UNV)°
— fel(UnNnV).
O
Proposition 3.12. Suppose that A is a k-graph. Then the followings are equivalent:

(1) (A2, 0) is a topologically transitive system.

(2) T is an irreducible groupoid.

(3) C*(T') is a prime C*-algebra.
Proof. (1) = (2). Suppose that (A®,0) is a topologically transitive system and
that U is a nontrivial open invariant subset of I'’. As in the proof of Proposition

3.2, U is an invariant subset of 'Y implies
U=ros 1 (U)={(6"(x),0,6"(x)): (z,0,z) € U and n € Z*}.

So, when 7: T9 — A2 given by (y,0,y) — v is the identification map of T, U is an
invariant subset of '’ means that o™ (w(U)) C U for every n € ZF.

If U is not dense in T°, then T'® — U # @ and (A®, o) is topologically transitive
imply that there is n € Z* such that o™ (7(U)) N 7(I'° — U) # (. Hence we have
UN(°—U) # 0, which is a contradiction. Thus V is an empty set, and a nontrivial
open invariant subset U of T'? is dense in I'V.

(2) = (1). Suppose that (A2, o) is not topologically transitive. then there exist
open subsets U,V C A® such that ¢"U NV = 0 for every n € ZF. So, for any
r€U,yecVandn € ZF we have (z,n,y) ¢ T and (2,0,2) x (y,0,y) ¢ Im(T).
Thus {(z,0,z) x (y,0,y): * € U,y € V} is a nonempty open subset '’ x I'¥ that is
disjoint to Im(I"), and T" is not irreducible by Lemma 3.9.
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(3) = (2). First we remind that, by Lemma 3.11, I(ENF) = I(E)NI(F) when
E and F are open invariant subsets of I'’. Let U be a nonempty open invariant
subset of I'’, and V = Int(I'° — U). Then V is also an open invariant subset of I’
by Lemma 3.10.

If U is not dense in I'Y, then V is also a nonempty open invariant subset, and we
have two nonzero ideals I(U) and I(V'). So we have from prime property of C*(T)
that I(U)NI(V) = I(UNV) is a nonzero ideal, which is a contradiction to the fact
that U NV is an empty set. Therefore every nonempty open invariant subset of 'Y
is dense in I'?, and T is an irreducible groupoid.

(2) = (3). Since every topologically transitive system is topologically free, I is
an essentially principal groupoid, and there is a bijective relation between the set of
open invariant subsets of T'” and that of ideals in C*(T") by Theorem 2.8.

Suppose that I and J are nonzero ideals in C*(I'). Then there are nonempty
open invariant subsets U(I) and U(J) of TY. As T is irreducible, U(I) NU(J) # 0
whose corresponding ideal in C*(I") is I N J by Lemma 3.11. Thus C*(I") is a prime
algebra. O
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