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ZETA FUNCTIONS ON A CETAIN ORDERS
IN A QUATERNION ALGEBRA

Insuk Kim a, ∗ and Sungtae Jun b

Abstract. There are several types of orders in a Quaternion algebra. Generally,
zeta functions defined on orders of a Quaternion algebra give some informations on
the ideal theory of orders. In this study, we investigate functional equalities between
the zeta functions defined on orders of a Quaternion algebra.

1. Introduction

It is well known that the fundamental tool in the study of prime numbers is the
Riemann zeta function. In a number field, Rieman zeta function is generalized and
it is called Dedekind zeta function. This zeta function gives some informations on
the ideal properties of the orders in the number field. More generally, if we consider
the zeta functions on a quaternion algebra, then there are several ways to define zeta
functions on it. In this paper, we will define a zeta function on a quaternion algebra
as same manner as in [1] and we will study the properties of this zeta function. If
A is a quaternion algebra over Q and O is an order of A, then for a prime p in Q,
A⊗Qp is either a division algebra or an algebra isomorphic to 2× 2 matrix algebra
over Qp. Then O is one of the following types: First, A ⊗ Qp is a division algebra
and an order, O⊗Zp in A⊗Qp is isomorphic to a subring which contains the ring of
integers in a quadratic extension field of Q. Second, A⊗Qp is an algebra isomorphic
to 2×2 matrix algebra over Qp and O⊗Zp is isomorphic to a subring which contains
Z×Z. Finally, A⊗Qp is an algebra isomorphic to 2× 2 matrix algebra over Qp and
O⊗Zp is isomorphic to a subring which contains the ring of integers of a quadratic
extension field of Qp. In [1], the first and the second cases were studied. Thus we
will study the last case in this paper.
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2. Orders of Quaternion Algebra

Let A be a quaternion algebra over Q, i.e. A is a semi-simple algebra of dimension
4 over Q. Then a lattice on A is a finitely generated Z module containing a base of
A over Q and an order of A is a lattice on A which is also a subring with 1. The
analogous definitions hold for lattices and orders in Ap = A ⊗ Qp for a prime p. If
O is an order of A, then Op = O ⊗ Zp is an order of Ap.

It is well known that for a rational quaternion algebra A, A ⊗ Qp is either a
division algebra or an algebra isomorphic to 2×2 matrix algebra over Qp. If A⊗Qp

is a division algebra, p is called ramified, otherwise p is called split (see [3]).

Proposition 2.1. For given square free numbers D and H which are relatively
prime each other, let A be a quaternion algebra ramified at a prime p|D and ∞.
Then an order O of A is either

(a) Op is maximal if p|D,

(b) for all p|H, Op is isomorphic to
{(

a b
pnc d

) ∣∣∣a, b, c, d ∈ Zp

}
for an integer

n,
(c) for all other p, Op is isomorphic to the full matrix ring M(2,Zp),

or

(a) Op is maximal if p|D,
(b) for all p|H, Op is isomorphic to a subring which contains the ring of integers

in a quadratic extension field of Qp,
(c) for all other p, Op is isomorphic to the full matrix ring M(2,Zp).

Proof. See [3], or [5]. ¤

In [1], Eichler considered an order, so called Eichler order when n = 1 in the
first case at Proposition 2.1. That is, the second condition (b) of an order O of A

becomes that Op is isomorphic to
{(

a b
pc d

) ∣∣∣a, b, c, d ∈ Zp

}
for all p|H.

On this Eichler order O, the zeta function is defined by the sum

ζ(s) =
∑

M⊂O
n(M)−2s,

where M is an integral left O- ideals (See [1]).
Locally, it can be expressed as

ζ(s) =
∏
p

ζp(s),
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where ζp(s) =
∑

(Mp)−2s is summed over all integral Mp ideals in Op whose norm
are powers of the prime p.

Remark. Since zeta function on orders of a quaternion algebra is closely related
with Riemann zeta function, we need its definition,

ζQ(s) =
∑

n−s =
∏

(1− p−s)−1,

where the sum is over all integers n > 0 and the product is over all primes p. The
following theorem treats an order which is the generalization of Eichler order. For
the computational convenience, we restrict ourselves D = q and H = p case only.

Theorem 2.2. Let O be an order of a quaternion algebra A with the following
properties.

(i) Oq is the maximal oreder of Aq,
(ii) there is a prime number p such that Op is isomorphic to{(

a b
pnc d

) ∣∣∣a, b, c, d ∈ Zp

}
, where n is a positive integer,

(iii) for all other prime number l, Ol is isomorphic to the full matrix ring M(2,Zl).

Then

(2.1) ζO(s) = ζQ(2s)ζQ(2s− 1)(1− q1−2s)−1
n−1∑

k=1

(
1 + p2(n+k)s

)−1
.

Proof. Let Oq be the maximal order. Then there is a unique prime ideal of norm qk

for a positive integer k. Hence

ζOq(s) =
1

(1− q−2s)
.

If Ol is isomorphic to the full matrix ring M(2,Zl), by the elementary divisor

theorem, every ideal Ol of norm ln is of the form, Ol

(
la r
0 lb

)
with a + b = i and

0 ≤ r ≤ la. Thus

ζOl
(s) =

∞∑

i=0

∑

a+b=i

la

l2is
=

∞∑

i=0

1− li+1

1− l

1
l2is

=
1

1− l

(
1

1− l−2s
− l

1− l1−2s

)

=
(

1
1− l−2s

)(
1

1− l1−2s

)
.



300 Insuk Kim & Sungtae Jun

If Op is isomorphic to
{(

a b
pnc d

) ∣∣∣a, b, c, d ∈ Zp

}
, let a = pta′ and c = pt+mc′.

Then, since gcd(a′, pmc′) = 1, there exist α, β ∈ Zp such that αa′ + βpmc′ = 1. If

m ≥ 0, take U =
(

α β
−pnpmc′ a′

)
∈ O×p and by the elementary divisor theorem, we

have

U

(
a b

pnc d

)
=

(
A B
0 D

)
.

Multiplying V =
(

1 r
0 1

)
on the right, we can reduce B (mod A) and D. So we can

get

U

(
a b

pnc d

)
V =

(
A 0
0 D

)
,

unless A and D are both divisible by p while B is not.

If m < 0,
(

0 p−m

pn 0

)(
a b

pnc d

)
becomes the previous case, m ≥ 0. That is,

(
0 p−m

pn 0

)(
a b

pnc d

)
=

(
pn−mc p−md
pna pnb

)

=
(

pn−mpt+mc′ p−md
pnpta′ pnb

)

=
(

pn+tc′ p−md
pn+ta′ pnb

)
.

Thus every ideal Op is of the form, U

(
0 pk

pn 0

)
Op

(
pa 0
0 pb

)(
1 r
0 1

)
where k =

1, · · · , n− 1, a + b = i , 0 ≤ r ≤ pa. Thus

ζOp(s) =
(

1
1− p−2s

)(
1

1− p1−2s

) n−1∑

k=1

(
1 + p2(n+k)s

)−1
.

Therefore, combining the above three cases altogether gives us

ζO(s) = ζQ(2s)ζQ(2s− 1)(1− q1−2s)−1
n−1∑

k=1

(
1 + p2(n+k)s

)−1
.

¤
Next, from the above theorem, we have the relation between zeta functions de-

fined on a certain order in a quaternion algebra.
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Theorem 2.3. Let the notations be as in Theorem 2.2. Then

ζO(s)(1− q1−2s)
n−1∑

k=1

(
1 + p2(n+k)s

)

= π−2+4s

[
Γ

(
1− 2s

2

)
Γ(1− s)

]/[
Γ(s)Γ

(
2s− 1

2

)]

· ζO(1− s)(1− q2s−1)
n−1∑

k=1

(
1 + p2(n+k)(1−s)

)
.

Proof. It is well known that the functional equation of ζQ(s) is as follows;

ζQ(s) = π−
1
2
+s

[
Γ

(
1− s

2

) /
Γ

(s

2

)]
ζQ(1− s).

Then we have

(2.2) ζQ(2s) = π−
1
2
+2s

[
Γ

(
1− 2s

2

) /
Γ(s)

]
ζQ(1− 2s),

(2.3) ζQ(2s− 1) = π−
3
2
+2s

[
Γ(1− s)

/
Γ

(
2s− 1

2

)]
ζQ(2− 2s).

By (2.1),

ζO(s) = ζQ(2s)ζQ(2s− 1)(1− q1−2s)−1
n−1∑

k=1

(
1 + p2(n+k)s

)−1

and

ζO(1− s) = ζQ(2− 2s)ζQ(1− 2s)(1− q2s−1)−1
n−1∑

k=1

(
1 + p2(n+k)(1−s)

)−1

imply

ζO(s)(1− q1−2s)
n−1∑

k=1

(
1 + p2(n+k)s

)

= ζQ(2s)ζQ(2s− 1)

= π−2+4s

[
Γ

(
1− 2s

2

)/
Γ(s)

]
·
[
Γ(1− s)

/
Γ

(
2s− 1

2

)]
ζQ(2− 2s)ζQ(1− 2s)

= π−2+4s

[
Γ

(
1− 2s

2

)
Γ(1− s)

]/[
Γ(s)Γ

(
2s− 1

2

)]

· ζO(1− s)(1− q2s−1)
n−1∑

k=1

(
1 + p2(n+k)(1−s)

)
.

¤
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Next, we treat the second case in Proposition 2.1, and for this syudy we restrict
ourselves for a rational quaternion algebra A ramified precisely at one finite prime
q and ∞.

Fix a prime p (6= q) and let L be a quadratic extension field of Qp, OL the ring
of integers in L and PL its the prime ideal.

Then
{(

α β̄
β ᾱ

) ∣∣∣α, β ∈ L

}
= L + ξL is a quaternion algebra over Qp, where

ξ =
(

0 1
1 0

)
. Obiously, we can see that ξα = αξ, ξ2 = 1 and ξ = −ξ (see Proposition

2.1 in [3]). Hence, we can define the norm of an element in A as its determinant.

Theorem 2.4. Let A be a quaternion algebra over Q. For an odd prime p 6= q, if
an order Op of Ap contains OL, then Op is one of the followings.

(i) If p is a unramified prime in L, Op(ν) = OL + ξP ν
L.

(ii) If p is a ramified prime in L, Op(ν) = OL + (1 + ξ)P ν−1
L or Op(ν) =

OL + (1− ξ)P ν−1
L .

Here, ν is a nonnegative integer.

Proof. See [3]. ¤

Remark. If p is a ramified prime in L, then for ν ≥ 1, Op(ν) = OL +(1+ ξ)P ν−1
L =

Op(ν) = OL + (1− ξ)P ν−1
L = OL + ξP ν−1

L .

For computational convenience, we will consider the case that p is ramified in
L(p) where L(p) is a quadratic extension field of Qp.

Definition 1. Let A be a rational quaternion algebra ramified precisely at one finite
prime q and ∞. An order O of A has level Ñ = (q; L(p), ν) with ν ≥ 1 if

(i) O ⊗ Zl is the maximal order of A⊗Ql for a prime l (6= p),
(ii) O ⊗ Zp = OL + ξP ν

L .

Let O be an order of level N ′ = (q, L(p), ν) in A. A left O ideal I is a lattice on
A such that Ip = Opap (for some ap ∈ A×p ) for all p < ∞. Two left O ideals I and
J are said to belong to the class if I = Ja for some a ∈ A×. Analogously, right O
ideals can be defined. The class number of left ideals for any order O of level N ′ is
the number of distinct classes of such ideals as usual sense.

The norm of an ideal, denoted by N(I), is the positive rational number which
generates the fractional ideal, {N(a)|a ∈ I} of Q. The conjugate of an ideal I,
denoted by Ī, is given by Ī = {ā|a ∈ I}. The inverse of an ideal, denoted by I−1, is
given by I−1 = {a ∈ A|IaI ⊂ I}.
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Theorem 2.5. Let O be an order of a quaternion algebra A with level Ñ = (q; L(p), ν).
Then

(2.4) ζO(s) = ζQ(2s)ζQ(2s− 1)(p− 1)(1− p1−2s)(1 + p−2ns)(1− q1−2s).

Proof. As in Theorem 2.2, if Oq is the maximal order in Aq,

ζOq(s) =
1

(1− q−2s)
.

Next, if Ol is isomorphic to the full matrix ring M(2,Zl), by the proof of Theorem
2.2,

ζOl
(s) =

(
1

1− l−2s

)(
1

1− l1−2s

)
.

Finally, if Op = O ⊗ Zp = OL + ξP ν
L , then every ideal of Op is of the form,

(α + ξπν
L)Op.

To compute the norm of ideal, it is enough to consider N(α+ξπν
L) = N(α)−pν =

pn where πLOL = PL. If ν > n, there are |OL/PL| − 1 = p − 1 elements for α. If
ν ≤ n, in order to be N(α + ξπν

L) ∈ pnZ, α = πν
L + βπn−ν

L with β ∈ ( OL/PL)×.
Therefore, there are |(OL/PL)×| = p− 1 elements for β. Now,

ζOp(s) = (p− 1)
n−1∑

k=1

1
p−2ks

+ 2(p− 1)
∞∑

k=n

1
p−2ks

= (p− 1)
1

(1− p−2s)
+ (p− 1)p−2ns 1

(1− p−2s)

=
(p− 1)(1 + p−2ns)

(1− p−2s)
.

From the above three cases, we have

ζO(s) = ζQ(2s)ζQ(2s− 1)(p− 1)(1− p1−2s)(1 + p−2ns)(1− q1−2s).

¤
Analogously as in Theorem 2.3, we are able to find the functional equation be-

tween zeta functions using Theorem 2.5.

Theorem 2.6. Let the notations be as in Theorem 2.5. Then we have the following
equation.

ζO(s) =
(1− p1−2s)
(1− p2s−1)

(1− q1−2s)
(1− q2s−1)

(1 + p−2ns)
(1 + p−2n(1−s))

· π−2+4s

·
[
Γ

(
1− 2s

2

)
Γ(1− s)

]/[
Γ(s)Γ

(
2s− 1

2

)]
ζO(1− s).
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Proof. From the equation (2.4),

ζO(1− s) = ζQ(2− 2s)ζQ(1− 2s)(p− 1)(1− p2s−1)(1 + p−2n(1−s))(1− q2s−1).

Combining this equation with (2.2), (2.3) and (2.4), we have

ζO(s) =
(1− p1−2s)
(1− p2s−1)

(1− q1−2s)
(1− q2s−1)

(1 + p−2ns)
(1 + p−2n(1−s))

· π−2+4s

·
[
Γ

(
1− 2s

2

)
Γ(1− s)

]/[
Γ(s)Γ

(
2s− 1

2

)]
ζO(1− s).

¤
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