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AN EXTENSION WHICH IS A WEAKLY LINDELÖFF SPACE

Yong Sik Yun a and ChangIl Kim b, ∗

Abstract. In this paper, we construct an extension (kX, kX) of a space X such
that kX is a weakly Lindelöff space and for any continuous map f : X −→ Y , there
is a continuous map g : kX −→ kY such that g |X= f . Moreover, we show that υX
is Lindelöff if and only if kX = υX and that for any P ′-space X which is weakly
Lindelöff, kX = υX.

1. Introduction

All spaces in this paper are assumed to be Tychonoff spaces and βX(υX, resp.)
denotes the Stone-Čech compactification(the Hewitt realcompactification, resp.) of
a space X.

One of the many charaterizations of (βX, βX) is following :
(1) βX is a compact space, and
(2) for any continuous map f : X −→ Y , there is a continuous map fβ : βX −→

βY such that fβ |X= f ([5]).
There have been many ramifications from the Stone-Čech compactifications of spaces.
In fact, realcompactifications of spaces and zero-dimesional compactifisations of zero-
dimensional spaces have been studied by various authors ([3], [5]).

The purpose to write this paper is to construct an extension of a space which has
similar properties to the above extensions. We first construct an extension (kX, kX)
of a space X such that υX ⊆ kX ⊆ βX and kX is a weakly Lindelöff space.
We show that for any continuous map f : X −→ Y , there is a continuous map
g : kX −→ kY such that g |X= f . Blasco ([1], [2]) showed that for a paracompact
(or separable) space X, υX is a Lindelöff space if and only if every separating nest
generated intersection ring on X is complete. We show that υX is Lindelöff if and
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only if kX = υX. Using these, we then show that kX = X if and only if X is
Lindelöff. Finally, we will show that for any P ′-space X which is weakly Lindelöff,
kX = υX.

For the terminology, we refer to [3] and [5].

2. An Extnsion Which is a Weakly Lindelöff Space

For any space X, let Z(X) be the set of all zero-sets in X. A Z(X)-filter is called
a z-filter on X.

Definition 2.1. Let X be a space and F a z-filter on X. Then F is called

(1) real if it has the countable intersection property, and
(2) free(fixed, resp.) if ∩{F | F ∈ F} = ∅(∩{F | F ∈ F} 6= ∅, resp.).

A space X is called a realcompact space if every real z-ultrafilter on X is fixed. It
is known that for any real z-ultrafilter F on a space X, ∩{clυX(F ) | F ∈ F} 6= ∅ ([3]).

Let X be a space and kX = υX ∪{p ∈ βX − υX | there is a real z-filter F on X

such that ∩{clυX(F ) | F ∈ F} = ∅ and p ∈ ∩{clβX(F ) | F ∈ F}}.
Let X be a set and F ⊆ P(X). For any A ⊆ X, let FA denote the set {F ∩ A |

F ∈ F}.
Proposition 2.2. Let X be a space. Then we have the following :

(1) υX ⊆ kX ⊆ βX,
(2) k(υX) = kX, and
(3) kX is realcompact if for any non-empty zero-set Z in kX, Z ∩X 6= ∅.

Proof. (1) It is trivial.
(2) Let p ∈ kX −υX. Then there is a real z-filter F on X such that ∩{clυX(F ) |

F ∈ F} = ∅ and p ∈ ∩{clβX(F ) | F ∈ F}. Let Fυ = {clυX(F ) | F ∈ F}. Note
that for any zero-set Z in X, clυX(Z) is a zero-set in υX and for any sequence (Zn)
in Z(X), clυX(∩{Zn | n ∈ N}) = ∩{clυX(Zn) | n ∈ N}([3]). Hence Fυ is a real
z-filter F on υX. Note that ∩{clυX(H) | H ∈ Fυ} = {clυX(F ) | F ∈ F} = ∅
and p ∈ ∩{clβX(H) | H ∈ Fυ} = ∩{clβX(F ) | F ∈ F}. Since υ(υX) = υX and
β(υX) = βX, p ∈ k(υX). Hence kX ⊆ k(υX).

Let q ∈ k(υX) and q /∈ υX. Since υ(υX) = υX, there is a real z-filter G on
υX such that ∩{G | G ∈ G} = ∅ and q ∈ ∩{clβX(G) | G ∈ G}. Then GX is
a real z-filter on X and ∩{clυX(H) | H ∈ GX} = ∩{G | G ∈ G} = ∅. Since
q ∈ ∩{clβX(H) | H ∈ GX} = ∩{clβX(G) | G ∈ G}, q ∈ kX. Hence k(υX) ⊆ kX.

(3) Take any real z-ultrafilter F on kX. By the assumption, for any F ∈ F ,



AN EXTENSION WHICH IS A WEAKLY LINDELÖFF SPACE 275

F ∩ X 6= ∅ and so FX is a z-filter on X. Let Z be a zero-set in X such that
for any F ∈ F , Z ∩ F 6= ∅. Since X ⊆ kX ⊆ βX, there is a zero-set B in
kX such that Z = B ∩ X. Then for any F ∈ F , F ∩ B 6= ∅. Since F is a z-
ultrafilter on kX, B ∈ F and B ∩ X = Z ∈ FX . Hence FX is a z-ultrafilter on
X. Since FX is real, ∩{clυX(F ∩ X) | F ∈ F} = {q} for some q ∈ υX. Note
that ∩{clυX(F ∩ X) | F ∈ F} = ∩{clυX(F ∩ υX) | F ∈ F} and for any F ∈ F ,
clυX(F ∩ υX) ⊆ F . Hence q ∈ ∩{F | F ∈ F} and so ∩{F | F ∈ F} 6= ∅. Thus kX

is a realcompact space. ¤
Let S be a subspace of a space X. Then S is called C(C∗, resp.)-embedded in

X if for any real-valued (bounded, resp.) continuous function f on S, there is a
real-valued (bounded, resp.) continuous function g on X such that g |S= f .

Note that X is a dense C-embedded subspace of Y if and only if X ⊆ Y ⊆ υX,
equivalently, υX = υY and that a dense subspace X of a space Y is C∗-embedded
in Y if and only if βX = βY ([3]). Using these, we have the following :

Proposition 2.3. Let X be a dense C-embedded subspace of Y . Then kX = kY .

Proof. Since X is a dense C-embedded subspace of Y , υX = υY ([3]). Let p ∈
kX − υX. Then there is a real z-filter F on X such that ∩{clυX(F ) | F ∈ F} = ∅
and p ∈ ∩{clβX(F ) | F ∈ F}. Let G = {G ∈ Z(Y ) | G ∩ X ∈ F}. Then GX = F
and since υX = υY , G is a real z-filter on Y .

Let G ∈ G and x ∈ υX − clυX(G ∩X). Then there is a zero-set neighborhood Z

of x in υX such that G ∩X ∩ Z = ∅. Since X ⊆ Y ⊆ υX, there is a zero-set H in
υX such that G = H ∩ Y . Since H ∩ Z ∩ X = ∅ and H ∩ Z is a zero-set in υX,
H ∩ Z = ∅([5]). Hence G ∩ Z = ∅ and x /∈ clυX(G). Thus clυX(G) ⊆ clυX(G ∩X).
Clearly, clυX(G ∩X) ⊆ clυX(G) and so clυX(G ∩X) = clυX(G).

Since ∩{clυX(G ∩ X) | G ∈ G} = ∅, ∩{clυY (G) | G ∈ G} = ∅. Since X is C∗-
embedded in Y , βX = βY and p ∈ ∩{clβY (G) | G ∈ G}. Hence p ∈ kY and so
kX ⊆ kY .

Similarly, we have kY ⊆ kX. ¤
For any space X, let kX : X −→ kX denote the inclusion map. Then (kX, kX)

is an extension of X.
Note that for any continuous map f : X −→ Y , there is a unique continuous map

fυ : υX −→ υY such that fυ |X= f .

Proposition 2.4. Let f : X −→ Y be a continuous map. Then there is a unique
continuous map g : kX −→ kY such that g ◦ kX = kY ◦ f .
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Proof. Note that there is a continuous map h : βX −→ βY such that h◦βX = βY ◦f

and h(υX) ⊆ υY . Let p ∈ kX − υX. Then there is a real z-filter F on X such
that ∩{clυX(F ) | F ∈ F} = ∅ and p ∈ ∩{clβX(F ) | F ∈ F}. Let G = {Z ∈ Z(Y ) |
h−1(Z) ∈ F}. Since F is a real z-filter on X, G is a real z-filter on Y . Let
G ∈ G. Then h−1(G) ∈ F . Since p ∈ clβX(h−1(G)), h(p) ∈ h(clβX(h−1(G))) ⊆
clβY (h(h−1(G))) ⊆ clβY (G). Hence h(p) ∈ ∩{clβX(G) | G ∈ G} and so h(p) ∈ kY .
Let g : kX −→ kY be the restriction and corestriction of h with respect to kX and
kY , respectively. Then g : kX −→ kY is a continuous map and g ◦ kX = kY ◦ f .
Since kX : X −→ kX is a dense embedding, such an g is unique. ¤

It is well-known that a space X is Lindelöff if and only if for any real z-filter F
in X, ∩{F | F ∈ F} 6= ∅.
Proposition 2.5. Let X be a space. Then the following are equivalent :

(1) υX = kX,
(2) υX is a Lindelöff space,
(3) for any free real z-filter F on X, ∩{clυX(F ) | F ∈ F} 6= ∅, and
(4) for any free real z-filter F on X, there is a free real z-ultrafilter A on X

such that F ⊆ A.

Proof. (1) ⇒ (2) Take any real z-filter G on υX. Then GX is a real z-filter on X.
Suppose that ∩{G ∩ X | G ∈ G} = ∅. Then ∩{clβX(G ∩ X) | G ∈ G} 6= ∅. Pick
p ∈ ∩{clβX(G ∩X) | G ∈ G}. Then p ∈ kX and since kX = υX, p ∈ υX. Hence
p ∈ (∩{clβX(G) | G ∈ G}) ∩ υX = ∩{G | G ∈ G} and so ∩{G | G ∈ G} 6= ∅. Thus
υX is a Lindelöff space.

(2) ⇒ (3) It is trivial.
(3) ⇒ (4) Let F be a free real z-filter on X. By the assumption, ∩{clυX(F ) |

F ∈ F} 6= ∅. Pick p ∈ ∩{clυX(F ) | F ∈ F}. Let Ap = {A ∈ Z(X) | p ∈ clυX(A)}.
Then Ap is a free real z-ultrafilter on X and F ⊆ Ap.

(4) ⇒ (1) Let p ∈ kX − υX. Then there is a real z-filter F on X such that
∩{clυX(F ) | F ∈ F} = ∅ and p ∈ ∩{clβX(G ∩X) | G ∈ G}. Since F is free, by (4),
there is a free real z-ultrafilter A on X such that F ⊆ A. Since ∩{clυX(A) | A ∈
A} 6= ∅, ∩{clυX(F ) | F ∈ F} 6= ∅ and this is a contradiction. ¤

By Proposition 2.2. and Proposition 2.5., we have the following :

Corollary 2.6. Let X be a sapce. Then kX = X if and only if X is Lindelöff.

Recall that a space X is called a pseudo-compact space if every real-valued
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continuous function on X is bounded, equivalently, υX = βX.

Corollary 2.7. If X is a pseudo-compact space, then kX = βX.

Let X be a space. The collection R(X) of all regular closed sets in X, when
partially ordered by inclusion, becomes a complete Boolean algebra, in which the
join, meet, and complementation operations are defined as follows : For any A ∈
R(X) and any F ⊆ R(X),∨F = clX(∪{F | F ∈ F}),∧F = clX(intX(∩{F | F ∈ F})), and

A′ = clX(X −A).
A sublattice of R(X) is a subset of R(X) that contains ∅, X and is closed under
finite joins and finite meets ([7]).

An R(X)-filter A is said to have the countable meet property if for any sequence
(An) in R(X),

∧{An | n ∈ N} 6= ∅.
Let Z(X)# = {clX(intX(A)) | A ∈ Z(X)}. Then Z(X)# is a sublattice of R(X).
A space X is called a weakly Lindelöff space if for any open cover U of X, there

is a countable subset V of U such that ∪{V | V ∈ V} is dense in X.
A space X is a weakly Lindelöff space if and only if for any Z(X)#-filter A with

the countable meet property, ∩{A | A ∈ A} 6= ∅ ([4]).

Theorem 2.8. Let X be a space. Then kX is a weakly Lindelöff space.

Proof. Take any Z(X)#-filter U on kX with the countable meet property. Let
F = {Z ∈ Z(kX) | clkX(intkX(Z)) ∈ U}. Clearly, ∅ /∈ F 6= ∅. For any A,B ∈ F ,
clkX(intkX(A ∩B)) = clkX(intkX(A)) ∧ clkX(intkX(B)) ∈ U and hence A ∩B ∈ F .
Thus F is a z-filter on kX. By the definition of F , for any F ∈ F , F ∩ X 6= ∅.
Hence FX is also a z-filter on X. Let (An) be a sequence in FX . For any n ∈ N ,
there is a Bn ∈ F such that An = Bn∩X. Since U has the countable meet property,
clkX(intkX(∩{Bn | n ∈ N})) 6= ∅ and since X is dense in kX, clkX(intkX(∩{Bn |
n ∈ N})) ∩X 6= ∅. Since clkX(intkX(∩{Bn | n ∈ N})) ∩X

=clkX(intkX(∩{Bn ∩X | n ∈ N}))
=clkX(intkX(∩{An | n ∈ N})),

∩{An | n ∈ N} 6= ∅ and so FX has the countable intersection property. Note that
∩{clυX(F ∩X) | F ∈ F} 6= ∅ or ∩{clυX(F ∩X) | F ∈ F} = ∅.

Assume that ∩{clυX(F ∩X) | F ∈ F} 6= ∅. Pick x ∈ ∩{clυX(F ∩X) | F ∈ F}.
Let U ∈ U . Suppose that x /∈ U . Since U is a closed set in kX, there is a zero-set Z in
kX such that x /∈ Z and U ⊆ Z. Then Z∩X ∈ FX and since clυX(Z∩X) = Z∩υX,
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since clυX(Z ∩X) = Z ∩ υX, x ∈ Z. This is a contradiction and so x ∈ U . Hence
x ∈ ∩{U | U ∈ U}.

Assume that ∩{clυX(F ∩ X) | F ∈ F} = ∅. Let p ∈ ∩{clβX(F ∩ X) | F ∈ F}.
Then p ∈ kX. Let U ∈ U . Suppose that p /∈ U . Then there is a zero-set B in βX

such that p /∈ B and U ⊆ B. Since B ∩X ∈ FX , p ∈ clβX(B ∩X) ⊆ B. This is a
contradiction and so p ∈ U . Hence p ∈ ∩{U | U ∈ U}.

Thus ∩{U | U ∈ U} 6= ∅ and kX is a weakly Lindelöff space. ¤

A space X is called a P ′-space if for any non-empty zero-set Z in X, intX(Z) 6= ∅,
equivalently, every zero-set in X is a reqular closed set in X. Clearly, a space X is a
P ′-space if and only if υX is a P ′-space. If X is a realcompact and locally compact
space, then βX −X is a P ′-space ([6]).

Proposition 2.9. Let X be a P ′-space. Then X is a weakly Lindelöff space if and
only if X is a Lindelöff space.

Proof. Suppose that X is a weakly Lindelöff space. Let F be a real z-filter on X.
Since X is a P ′-space, Z(X) = Z(X)# and since Z(X) is closed under countable
intersections, for any sequence (An) in Z(X),∧{An | n ∈ N} = clX(intX(∩{An | n ∈ N})) = ∩{An | n ∈ N}.
Hence F is a Z(X)#-filter with the countable meet property. Since X is a weakly
Lindelöff space, ∩{F | F ∈ F} 6= ∅ and hence X is a Lindelöff space.

The converse is trivial. ¤
A space with a dense weakly Lindelöff space is also a weakly Lindelöff space.

Using this, Proposition 2.9. and Proposition 2.5., we have the following :

Corollary 2.10. For any P ′-space X which is weakly Lindelöff, υX is a Lindelöff
space and υX = kX.
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