FUZZY r-MINIMAL β -OPEN SETS ON FUZZY MINIMAL SPACES

Won Keun Min a and Myeong Hwan Kim b,*

ABSTRACT. We introduce the concept of fuzzy r-minimal β -open set on a fuzzy minimal space and basic some properties. We also introduce the concept of fuzzy r-M β -continuous mapping which is a generalization of fuzzy r-M continuous mapping and fuzzy r-M semicontinuous mapping, and investigate characterization for the continuity.

1. Introduction

The concept of fuzzy set was introduced by Zadeh [5]. Chang [1] defined fuzzy topological spaces using fuzzy sets. In [2], Ramadan introduced the concept of smooth topological space, which is a generalization of fuzzy topological space. We introduced the concept of fuzzy r-minimal space [4] which is an extension of the smooth fuzzy topological space. The concepts of fuzzy r-open sets and fuzzy r-M continuous mappings are also introduced and studied. We introduced the concepts of fuzzy r-minimal semiopen sets [3] and fuzzy r-M semicontinuous mappings, and investigate properties of such concepts. In this paper, we introduce the concept of fuzzy r-minimal β -open set on a fuzzy minimal space and basic some properties. We also introduce the concept of fuzzy r-M β -continuous mapping which is a generalization of fuzzy r-M continuous mapping and fuzzy r-M semicontinuous mapping, and investigate characterization for the continuity.

2. Preliminaries

Let I be the unit interval [0,1] of the real line. A member A of I^X is called a fuzzy set [5] of X. By $\tilde{0}$ and $\tilde{1}$, we denote constant maps on X with value 0 and 1,

Received by the editors April 6, 2012. Accepted August 13, 2012.

²⁰⁰⁰ Mathematics Subject Classification. 54C08.

Key words and phrases. fuzzy minimal structures, r-minimal open, r-minimal β -open, fuzzy r-M continuous, fuzzy r-M β -continuous.

^{*}Corresponding author.

respectively. For any $A \in I^X$, A^c denotes the complement $\tilde{1} - A$. All other notations are standard notations of fuzzy set theory.

An fuzzy point x_{α} in X is a fuzzy set x_{α} defined as follows

$$x_{\alpha}(y) = \begin{cases} \alpha & \text{if } y = x \\ 0 & \text{if } y \neq x. \end{cases}$$

A smooth topology [2] on X is a map $\mathcal{T}: I^X \to I$ which satisfies the following properties:

- (1) $T(\tilde{0}) = T(\tilde{1}) = 1$.
- (2) $\mathcal{T}(A_1 \cap A_2) \geq \mathcal{T}(A_1) \wedge \mathcal{T}(A_2)$.
- (3) $\mathcal{T}(\cup A_i) \geq \wedge \mathcal{T}(A_i)$.

The pair (X, \mathcal{T}) is called a *smooth topological space*.

Let X be a nonempty set and $r \in (0,1] = I_0$. A fuzzy family $\mathcal{M}: I^X \to I$ on X is said to have a fuzzy r-minimal structure [4] if the family

$$\mathcal{M}_r = \{ A \in I^X \mid \mathcal{M}(A) \ge r \}$$

contains $\tilde{0}$ and $\tilde{1}$.

Then the (X, \mathcal{M}) is called a fuzzy r-minimal space [4] (simply r-FMS). Every member of \mathcal{M}_r is called a fuzzy r-minimal open set. A fuzzy set A is called a fuzzy r-minimal closed set if the complement of A (simply, A^c) is a fuzzy r-minimal open set.

Let (X, \mathcal{M}) be an r-FMS and $r \in I_0$. The fuzzy r-minimal closure of A, denoted by mC(A, r), is defined as

$$mC(A,r) = \cap \{B \in I^X : B^c \in \mathcal{M}_r \text{ and } A \subseteq B\}.$$

The fuzzy r-minimal interior of A, denoted by mI(A, r), is defined as

$$mI(A,r) = \bigcup \{B \in I^X : B \in \mathcal{M}_r \text{ and } B \subseteq A\}.$$

Theorem 2.1 ([4]). Let (X, \mathcal{M}) be an r-FMS and $A, B \in I^X$.

- (1) $mI(A,r) \subseteq A$ and if A is a fuzzy r-minimal open set, then mI(A,r) = A.
- (2) $A \subseteq mC(A,r)$ and if A is a fuzzy r-minimal closed set, then mC(A,r) = A.
- (3) If $A \subseteq B$, then $mI(A,r) \subseteq mI(B,r)$ and $mC(A,r) \subseteq mC(B,r)$.
- (4) $mI(A,r) \cap mI(B,r) \supseteq mI(A \cap B,r)$ and $mC(A,r) \cup mC(B,r) \subseteq mC(A \cup B,r)$.
- (5) mI(mI(A,r),r) = mI(A,r) and mC(mC(A,r),r) = mC(A,r).
- (6) $\tilde{1} mC(A, r) = mI(\tilde{1} A, r)$ and $\tilde{1} mI(A, r) = mC(\tilde{1} A, r)$.

Let (X, \mathcal{M}) be an r-FMS and $A \in I^X$. Then a fuzzy set A is called a fuzzy r-minimal semiopen set [3] in X if

$$A \subseteq mC(mI(A,r),r).$$

A fuzzy set A is called a fuzzy r-minimal semiclosed set if the complement of A is fuzzy r-minimal semiopen.

Let (X, \mathcal{M}) and (Y, \mathcal{N}) be two r-FMS's. Then $f: X \to Y$ is said to be fuzzy r-M continuous function if for every $A \in \mathcal{N}_r$, $f^{-1}(A)$ is in \mathcal{M}_r .

3. Fuzzy r-minimal β -open Sets

In this section, we introduce and study the concept of fuzzy r-minimal β -open sets. The two operators $m\beta C(A,r)$ and $m\beta I(A,r)$ are introduced and investigated.

Definition 3.1. Let (X, \mathcal{M}) be an r-FMS and $A \in I^X$. Then a fuzzy set A is called a fuzzy r-minimal β -open set in X if

$$A \subseteq mC(mI(mC(A,r),r),r).$$

A fuzzy set A is called a fuzzy r-minimal β -closed set if the complement of A is fuzzy r-minimal β -open.

Remark 3.2. From definitions of fuzzy r-minimal semiopen set and fuzzy r-minimal β -open set, the following implications are obtained but the converses are not true in general.

fuzzy r-minimal open \Rightarrow fuzzy r-minimal semiopen \Rightarrow fuzzy r-minimal β -open

Example 3.3. Let X = I = [0, 1] and let A and B be fuzzy sets defined as follows

$$A(x) = \begin{cases} -x + \frac{1}{2}, & \text{if } 0 \le x \le \frac{1}{4}, \\ \frac{1}{3}(x-1) + \frac{1}{2}, & \text{if } \frac{1}{4} \le x \le 1; \end{cases}$$

$$B(x) = \frac{1}{4}(x+3)$$
, if $0 \le x \le 1$.

Let us consider a fuzzy minimal structure

$$\mathcal{M}(\mu) = \begin{cases} \frac{2}{3}, & \text{if } \mu = \tilde{0}, \tilde{1}, A, \\ 0, & \text{otherwise.} \end{cases}$$

Then the fuzzy set B is a fuzzy $\frac{2}{3}$ -minimal β -open set but not fuzzy $\frac{2}{3}$ -minimal semiopen.

Lemma 3.4. Let (X, \mathcal{M}) be an r-FMS. Then a fuzzy set A is fuzzy r-minimal β -closed if and only if $mI(mC(mI(A, r), r), r) \subseteq A$.

Theorem 3.5. Let (X, \mathcal{M}) be an r-FMS. Any union of fuzzy r-minimal β -open sets is fuzzy r-minimal β -open.

Proof. Let A_i be a fuzzy r-minimal β -open set for $i \in J$. Then from Theorem 2.1,

$$A_i \subseteq mI(mC(A_i, r), r) \subseteq mI(mC(\cup A_i, r), r).$$

This implies $\cup A_i \subseteq mI(mC(\cup A_i, r), r)$ and so $\cup A_i$ is fuzzy r-minimal β -open. \square

Remark 3.6. In general, the intersection of two fuzzy r-minimal β -open sets may not be fuzzy r-minimal β -open as shown in the next example.

Example 3.7. Let X = I = [0,1] and let A, B and C be fuzzy sets defined as follows

$$A(x) = -\frac{1}{2}(x-1), \quad \text{if } x \in I;$$

$$B(x) = \frac{1}{2}x, \text{ if } x \in I;$$

$$C(x) = \frac{3}{4}x, \quad x \in I.$$

Let us consider a fuzzy minimal structure

$$\mathcal{N}(\mu) = \begin{cases} \frac{2}{3}, & \text{if } \mu = \tilde{0}, \tilde{1}, A, B, A \cup B \\ 0, & \text{otherwise.} \end{cases}$$

Then the fuzzy sets A and B are fuzzy $\frac{2}{3}$ -minimal β -open. But $A \cap B$ is not fuzzy $\frac{2}{3}$ -minimal β -open, because of $mI(mC(A \cap B, \frac{2}{3}), \frac{2}{3}) = \tilde{0}$.

Definition 3.8. Let (X, \mathcal{M}) be an r-FMS. For $A \in I^X$, $m\beta C(A, r)$ and $m\beta I(A, r)$, respectively, are defined as the following:

$$m\beta C(A,r) = \bigcap \{ F \in I^X : A \subseteq F, F \text{ is fuzzy } r\text{-minimal } \beta\text{-closed} \}$$

 $m\beta I(A,r) = \bigcup \{ U \in I^X : U \subseteq A, U \text{ is fuzzy } r\text{-minimal } \beta\text{-open } \}.$

Theorem 3.9. Let (X, \mathcal{M}) be an r-FMS and $A \in I^X$. Then

- (1) $m\beta I(A,r) \subseteq A$.
- (2) If $A \subseteq B$, then $m\beta I(A, r) \subseteq m\beta I(B, r)$.
- (3) A is r-minimal β -open iff $m\beta I(A, r) = A$.
- (4) $m\beta I(\beta mI(A,r),r) = m\beta I(A,r).$
- (5) $m\beta C(\tilde{1}-A,r) = \tilde{1} m\beta I(A,r)$ and $m\beta I(\tilde{1}-A,r) = \tilde{1} m\beta C(A,r)$.

Proof. (1), (2), (3) and (4) are clear from Theorem 3.5.

(5) For $A \in I^X$,

$$\begin{split} \tilde{1} - m\beta I(A,r) &= \tilde{1} - \cup \{U \in I^X : U \subseteq A, U \text{ is fuzzy r-minimal β-open} \} \\ &= \cap \{\tilde{1} - U : U \subseteq A, U \text{ is fuzzy r-minimal β-open} \} \\ &= \cap \{\tilde{1} - U : \tilde{1} - A \subseteq \tilde{1} - U, U \text{ is fuzzy r-minimal β-open} \} \\ &= m\beta C(\tilde{1} - A, r). \end{split}$$

Similarly, we can show that $m\beta I(\tilde{1}-A,r)=\tilde{1}-m\beta C(A,r)$.

Theorem 3.10. Let (X, \mathcal{M}) be an r-FMS and $A \in I^X$. Then

- (1) $A \subseteq m\beta C(A, r)$.
- (2) If $A \subseteq B$, then $m\beta C(A, r) \subseteq m\beta C(B, r)$.
- (3) F is r-minimal β -closed iff $m\beta C(F, r) = F$.
- (4) $m\beta C(m\beta C(A,r),r) = m\beta C(A,r).$

Proof. It is similar to the proof of Theorem 3.9.

Lemma 3.11. Let (X, \mathcal{M}) be an r-FMS and $A \in I^X$. Then

- (1) $x_{\alpha} \in m\beta C(A,r)$ if and only if $A \cap V \neq \tilde{0}$ for every r-minimal β -open set V containing x_{α} .
- (2) $x_{\alpha} \in m\beta I(A,r)$ if and only if there exists a fuzzy r-minimal β -open set G such that $G \subseteq A$.
- Proof. (1) If there is a fuzzy r-minimal β -open set V containing x_{α} such that $A \cap V = \tilde{0}$, then $\tilde{1} V$ is a fuzzy r-minimal β -closed set such that $A \subseteq \tilde{1} V$, $x_{\alpha} \notin \tilde{1} V$. From this fact, $x_{\alpha} \notin m\beta C(A, r)$.

The converse is easily proved by definition of the operator of $m\beta C(A,r)$.

(2) Obvious.
$$\Box$$

4. Fuzzy r-M β -continuity and Fuzzy r- $M(M^*)$ β -open Mappings

In this section, we introduce the concepts of fuzzy r-M β -continuous mapping, fuzzy r-M β -open mapping and fuzzy r-M* β -open mapping, and investigate characterization for such mappings.

Definition 4.1. Let (X, \mathcal{M}) and (Y, \mathcal{N}) be r-FMS's. Then a mapping $f: (X, \mathcal{M}) \to (Y, \mathcal{N})$ is said to be fuzzy r-M β -continuous if for each point x_{α} and each fuzzy r-minimal open set V containing $f(x_{\alpha})$, there exists a fuzzy r-minimal β -open set U containing x_{α} such that $f(U) \subseteq V$.

Let (X, \mathcal{M}) and (Y, \mathcal{N}) be r-FMS's. Then a mapping $f: (X, \mathcal{M}) \to (Y, \mathcal{N})$ is said to be fuzzy r-M semicontinuous [3] if for each point x_{α} and each fuzzy r-minimal open set V containing $f(x_{\alpha})$, there exists a fuzzy r-minimal semiopen set U containing x_{α} such that $f(U) \subseteq V$.

Remark 4.2. It is obvious that every fuzzy r-M semicontinuous mapping is fuzzy r-M β -continuous but the converse may not be true as shown in the next example.

fuzzy r-M continuous \Rightarrow fuzzy r-M semicontinuous \Rightarrow fuzzy r-M β -continuous

Example 4.3. For X = [0,1], consider two fuzzy minimal structures \mathcal{M} and \mathcal{N} defined in Example 3.3 and Example 3.7, respectively. The identity mapping $f:(X,\mathcal{M}) \to (X,\mathcal{N})$ is fuzzy r-M β -continuous but not fuzzy r-M semicontinuous.

Theorem 4.4. Let $f:(X,\mathcal{M})\to (Y,\mathcal{N})$ be a mapping on r-FMS's (X,\mathcal{M}) and (Y,\mathcal{N}) . Then the following statements are equivalent:

- (1) f is fuzzy r-M β -continuous.
- (2) $f^{-1}(V)$ is a fuzzy r-minimal β -open set for each fuzzy r-minimal open set V in Y.
- (3) $f^{-1}(B)$ is a fuzzy r-minimal β -closed set for each fuzzy r-minimal closed set B in Y.
 - (4) $f(m\beta C(A,r)) \subseteq mC(f(A),r)$ for $A \subseteq X$.
 - (5) $m\beta C(f^{-1}(B), r) \subseteq f^{-1}(mC(B, r))$ for $B \in I^Y$.
 - (6) $f^{-1}(mI(B,r)) \subseteq m\beta I(f^{-1}(B),r)$ for $B \in I^Y$.

Proof. (1) \Rightarrow (2) Let V be any fuzzy r-minimal open set in Y and $x_{\alpha} \in f^{-1}(V)$. By hypothesis, there exists a fuzzy r-minimal β -open set U containing x_{α} such that $f(U) \subseteq V$. This implies that $\bigcup U = f^{-1}(V)$ and hence from Theorem 3.5, $f^{-1}(V)$ is fuzzy r-minimal β -open.

- $(2) \Rightarrow (3)$ Obvious.
- $(3) \Rightarrow (4) \text{ For } A \in I^X$

$$f^{-1}(mC(f(A),r)) = f^{-1}(\cap \{F \in I^Y : f(A) \subseteq F \text{ and } F \text{ is fuzzy } r\text{-minimal closed}\})$$

$$= \cap \{f^{-1}(F) \in I^X : A \subseteq f^{-1}(F) \text{ and }$$

$$f^{-1}(F) \text{ is fuzzy } r\text{-minimal } \beta\text{-closed}\}$$

$$\supseteq \cap \{K \in I^X : A \subseteq K \text{ and } K \text{ is fuzzy } r\text{-minimal } \beta\text{-closed}\}$$

$$= m\beta C(A,r).$$

Hence $f(m\beta C(A,r)) \subseteq mC(f(A),r)$.

$$(4) \Rightarrow (5)$$
 For $B \in I^Y$,

$$f(m\beta C(f^{-1}(B),r)) \subseteq mC(f(f^{-1}(B)),r) \subseteq mC(B,r).$$

So $m\beta C(f^{-1}(B), r) \subseteq f^{-1}(mC(B, r))$.

 $(5) \Rightarrow (6)$ For $B \subseteq Y$, from Theorem 2.1 and Theorem 3.9, it follows

$$f^{-1}(mI(B,r)) = f^{-1}(\tilde{1} - mC(\tilde{1} - B, r))$$

$$= \tilde{1} - f^{-1}(mC(\tilde{1} - B, r))$$

$$\subseteq \tilde{1} - m\beta C(f^{-1}(\tilde{1} - B), r)$$

$$= m\beta I(f^{-1}(B), r).$$

This implies $f^{-1}(mI(B,r)) \subseteq m\beta I(f^{-1}(B),r)$.

(6) \Rightarrow (1) Let V be any fuzzy r-minimal open set containing $f(x_{\alpha})$ for a fuzzy point x_{α} . By hypothesis, $x_{\alpha} \in f^{-1}(V) = f^{-1}(mI(V,r)) \subseteq m\beta I(f^{-1}(V),r)$. Since $x_{\alpha} \in m\beta I(f^{-1}(V),r)$, by Lemma 3.11, there exists a fuzzy r-minimal β -open set U containing x_{α} such that $U \subseteq f^{-1}(V)$. This implies $f^{-1}(V)$ is fuzzy r-minimal β -open, and hence f is fuzzy r-M β -continuous.

Definition 4.5. Let $f:(X,\mathcal{M})\to (Y,\mathcal{N})$ be a mapping on r-FMS's (X,\mathcal{M}) and (Y,\mathcal{N}) . Then f is said to be $fuzzy\ r$ - M^* - β -open if for every fuzzy r-minimal β -open set A in X, f(A) is fuzzy r-minimal open in Y.

Theorem 4.6. Let $f:(X,\mathcal{M})\to (Y,\mathcal{N})$ be a mapping on r-FMS's (X,\mathcal{M}) and (Y,\mathcal{N}) .

- (1) f is fuzzy $r-M^*-\beta$ -open.
- (2) $f(m\beta I(A,r)) \subseteq mI(f(A),r)$ for $A \in I^X$.
- (3) $m\beta I(f^{-1}(B), r) \subseteq f^{-1}(mI(B, r)) \text{ for } B \in I^Y.$

Then $(1) \Rightarrow (2) \Leftrightarrow (3)$.

Proof. (1) \Rightarrow (2) For $A \in I^X$,

$$f(m\beta I(A,r)) = f(\cup \{B \in I^X : B \subseteq A, B \text{ is fuzzy } r\text{-minimal } \beta\text{-open}\})$$

$$= \cup \{f(B) \in I^Y : f(B) \subseteq f(A), f(B) \text{ is fuzzy } r\text{-minimal open}\}$$

$$\subseteq \cup \{U \in I^Y : U \subseteq f(A), U \text{ is fuzzy } r\text{-minimal open}\}$$

$$= mI(f(A), r)$$

Hence $f(m\beta I(A,r)) \subseteq mI(f(A),r)$.

 $(2) \Rightarrow (3)$

For $B \in I^Y$, from (3),

$$f(m\beta I(f^{-1}(B),r)) \subseteq mI(f(f^{-1}(B)),r) \subseteq mI(B,r).$$

Similarly, we have the implication $(3) \Rightarrow (2)$.

Let X be a nonempty set and $\mathcal{M}: I^X \to I$ a fuzzy family on X. The fuzzy r-minimal structure \mathcal{M}_r is said to have the property (\mathcal{U}) [4] if for $A_i \in \mathcal{M}_r$ $(i \in J)$,

$$\mathcal{M}_r(\cup A_i) \ge \wedge \mathcal{M}_r(A_i).$$

Theorem 4.7 ([4]). Let (X, \mathcal{M}) be an r-FMS with the property (\mathcal{U}) . Then mI(A, r) = A if and only if A is fuzzy r-minimal open for $A \in I^X$.

From the above Theorem 4.7, obviously the following corollary is obtained:

Corollary 4.8. Let $f:(X,\mathcal{M})\to (Y,\mathcal{N})$ be a mapping on r-FMS's (X,\mathcal{M}) and (Y,\mathcal{N}) . If (Y,\mathcal{N}) has the property (\mathcal{U}) , then the following are equivalent:

- (1) f is fuzzy $r-M^*-\beta$ -open.
- (2) $f(m\beta I(A,r)) \subseteq mI(f(A),r)$ for $A \in I^X$.
- (3) $m\beta I(f^{-1}(B), r) \subseteq f^{-1}(mI(B, r))$ for $B \in I^Y$.

Definition 4.9. Let $f:(X,\mathcal{M})\to (Y,\mathcal{N})$ be a mapping on r-FMS's (X,\mathcal{M}) and (Y,\mathcal{N}) . Then f is said to be $fuzzy\ r$ -M- β -open if for fuzzy r-minimal open set A in $X,\ f(A)$ is fuzzy r-minimal β -open in Y.

Theorem 4.10. Let $f:(X,\mathcal{M})\to (Y,\mathcal{N})$ be a mapping on r-FMS's (X,\mathcal{M}) and (Y,\mathcal{N}) . Then the following are equivalent:

- (1) f is fuzzy r-M- β -open.
- (2) $f(mI(A,r)) \subseteq m\beta I(f(A),r)$ for $A \in I^X$.
- (3) $mI(f^{-1}(B), r) \subseteq f^{-1}(m\beta I(B, r))$ for $B \in I^Y$.

Proof. (1) \Rightarrow (2) For $A \in I^X$,

$$f(mI(A,r)) = f(\cup \{B \in I^X : B \subseteq A, B \text{ is fuzzy } r\text{-minimal open}\})$$

$$= \cup \{f(B) \in I^Y : f(B) \subseteq f(A), f(B) \text{ is fuzzy } r\text{-minimal } \beta\text{-open}\}$$

$$\subseteq \cup \{U \in I^X : U \subseteq f(A), U \text{ is fuzzy } r\text{-minimal } \beta\text{-open}\}$$

$$= m\beta I(f(A), r)$$

Hence $f(mI(A,r)) \subseteq m\beta I(f(A),r)$.

 $(2) \Rightarrow (3)$

For $B \in I^Y$, from (3) it follows that

$$f(mI(f^{-1}(B),r)) \subseteq m\beta I(f(f^{-1}(B)),r) \subseteq m\beta I(B,r).$$

Hence we get (3).

- $(3) \Rightarrow (2)$ It is similar to the proof of the implication $(2) \Rightarrow (3)$.
- $(2) \Rightarrow (1)$ Let A be a fuzzy r-minimal open set in X. Then A = mI(A, r). By (2), $f(A) = m\beta I(f(A), r)$ and hence by Theorem 3.9 (3), f(A) is fuzzy r-minimal β -open.

References

- 1. C.L. Chang: Fuzzy topological spaces. J. Math. Anal. Appl. 24 (1968), 182-190.
- 2. A.A. Ramadan: Smooth topological spaces. Fuzzy Sets and Systems 48 (1992), 371-375.
- 3. W.K. Min & M.H. Kim: Fuzzy r-minimal semiopen sets and fuzzy r-M semicontinuous functions on fuzzy r-minimal spaces. Proceedings of KIIS Spring Conference 2009 19 (2009), no. 1, 49-52.
- 4. Y.H. Yoo, W.K. Min & J.I. Kim: Fuzzy r-Minimal Structures and Fuzzy r-Minimal Spaces. Far East Journal of Mathematical Sciences 33 (2009), no. 2, 193-205.
- 5. L.A. Zadeh: Fuzzy sets. Information and Control 8 (1965), 338-353.

 $^{\rm a}{\rm Department}$ of Mathematics, Kangwon National University, Chuncheon 200-701, Korea

Email address: wkmin@kangwon.ac.kr

^bDepartment of Mathematics, Kangwon National University, Chuncheon 200-701, Korea

Email address: mhkim@kangwon.ac.kr