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LIGHTLIKE SUBMANIFOLDS OF A SEMI-RIEMANNIAN
MANIFOLD WITH A SEMI-SYMMETRIC

NON-METRIC CONNECTION

Dae Ho Jin

Abstract. We study lightlike submanifolds M of a semi-Riemannian manifold M̄
with a semi-symmetric non-metric connection subject to the conditions; (a) the
characteristic vector field of M̄ is tangent to M , (b) the screen distribution on M is
totally umbilical in M and (c) the co-screen distribution on M is conformal Killing.

1. Introduction

In the classical theory of spacetime, while the rest spaces of timelike curves are
spacelike subspaces of the tangent spaces, the rest spaces of null curves are lightlike
subspaces of the tangent spaces [9]. To investigate this, Hawking and Ellis introduced
the notion of so-called screen spaces in section 4.2 of their book [5]. As for any semi-
Riemannian manifold there is a natural existence of lightlike subspaces, in a 1996
book [3] Duggal-Bejancu published their work on the general theory of degenerate
(lightlike) submanifolds to fill a gap in the study of submanifolds. Since then there
has been very active study on lightlike geometry of submanifolds. The geometry
of lightlike submanifolds is used in mathematical physics, in particular, in general
relativity since lightlike submanifolds produce models of different types of horizons
(event horizons, Cauchy’s horizons, Kruskal’s horizons). Lightlike hypersurfaces are
also studied in the theory of electromagnetism [3].

Ageshe and Chafle [1] introduced the notion of a semi-symmetric non-metric con-
nection on a Riemannian manifold. Although now we have lightlike version of a large
variety of Riemannian submanifolds, a general notion of lightlike submanifolds of a
semi-Riemannian manifold with a semi-symmetric non-metric connection has not
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been introduced as yet. Only there are some limited papers on particular subcases
recently studied by Yaşar, Çöken and Yücesan [10], Jin [6] and Jin and Lee [7].

Motivated by the notion of a semi-symmetric non-metric connection on a Rie-
mannian manifold, the objective of this article is to study the geometry of lightlike
submanifolds M of a semi-Riemannian manifold M̄ with a semi-symmetric non-
metric connection. In section 2, we recall some of fundamental formulas in the
theory of such a lightlike submanifold and prove some results which will be used in
the rest of this article. In section 3, we find the condition that M has an induced
symmetric Ricci tensor. In section 4, we study irrotational lightlike submanifolds of
a semi-Riemannian space form M̄(c) with a semi-symmetric non-metric connection
subject to the conditions; (a) the characteristic vector field of M̄ is tangent to M ,
(b) the screen distribution on M is totally umbilical in M and (c) the co-screen
distribution on M is conformal Killing.

2. Semi-symmetric Non-metric Connections

Let (M̄, ḡ) be an (m + n)-dimensional semi-Riemannian manifold. A connection
∇̄ on M̄ is called a semi-symmetric non-metric connection [1] if, for any vector fields
X, Y and Z on M̄ , ∇̄ and its torsion tensor T̄ satisfy

(∇̄X ḡ)(Y, Z) = −π(Y )ḡ(X, Z)− π(Z)ḡ(X, Y ),(2.1)

T̄ (X, Y ) = π(Y )X − π(X)Y,(2.2)

where π is a 1-form associated with a non-zero vector field ζ by π(X) = ḡ(X, ζ).
We say that ζ is the characteristic vector field of M̄ . In the entire discussion of this
article, we shall assume ζ to be unit spacelike vector field.

Let (M, g) be an m-dimensional lightlike submanifold of M̄ . The radical distri-
bution Rad(TM) = TM ∩ TM⊥ is a vector subbundle of the tangent bundle TM

and the normal bundle TM⊥, of rank r (1 ≤ r ≤ min{m, n}). Then, in general,
there exist two complementary non-degenerate distributions S(TM) and S(TM⊥)
of Rad(TM) in TM and TM⊥ respectively, which called the screen distribution and
co-screen distribution on M , such that

(2.3) TM = Rad(TM)⊕orth S(TM) ; TM⊥ = Rad(TM)⊕orth S(TM⊥),

where ⊕orth denotes the orthogonal direct sum. We denote such a lightlike subman-
ifold by (M, g, S(TM), S(TM⊥)). Denote by F (M) the algebra of smooth functions
on M and by Γ(E) the F (M) module of smooth sections of a vector bundle E over
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M . Let tr(TM) and ltr(TM) be complementary (but not orthogonal) vector bun-
dles to TM in TM̄|M and TM⊥ in S(TM)⊥ respectively and let {N1, . . . , Nr} be
a lightlike basis of ltr(TM) [3] such that

ḡ(Ni, ξj) = δij , ḡ(Ni, Nj) = ḡ(X, Ni) = ḡ(W,Ni) = 0,

for all X ∈ Γ(S(TM)) and W ∈ Γ(S(TM⊥)), where the set {ξ1, · · · , ξr} is a lightlike
basis of Rad(TM). Then the tangent bundle TM̄ is decomposed as follow:

TM̄ = TM ⊕ tr(TM) = {Rad(TM)⊕ tr(TM)} ⊕orth S(TM)(2.4)

= {Rad(TM)⊕ ltr(TM)} ⊕orth S(TM) ⊕orth S(TM⊥).

We say that a lightlike submanifold M ≡ (M, g, S(TM), S(TM⊥)) of M̄ is
(1) r-lightlike if 1 ≤ r < min{m, n};
(2) co-isotropic if 1 ≤ r = n < m;
(3) isotropic if 1 ≤ r = m < n;
(4) totally lightlike if 1 ≤ r = m = n.

The above three classes (2)∼(4) are particular cases of the class (1) as follows:
S(TM⊥) = {0}, S(TM) = {0} and S(TM) = S(TM⊥) = {0} respectively. The
geometry of r-lightlike submanifolds is more general form than that of the other
three type submanifolds. For this reason, we consider only r-lightlike submanifolds
M , with the following local quasi-orthonormal field of frames of M̄ :

(2.5) {ξ1, · · · , ξr , N1, · · · , Nr , Fr+1, · · · , Fm , Wr+1, · · · , Wn},

where {Fr+1, · · · , Fm} and {Wr+1, · · · , Wn} are orthonormal bases of S(TM) and
S(TM⊥) respectively. We use the following range of indices:

i, j, k, · · · ∈ {1, · · · , r}, a, b, c, · · · ∈ {r + 1, · · · , m},
α, β, γ, · · · ∈ {r + 1, · · · , n}, A, B, C, · · · ∈ {1, · · · , m}.

Let P be the projection morphism of TM on S(TM) with respect to the decom-
position (2.3). Then the local Gauss-Weingartan formulas are given by

∇̄XY = ∇XY +
r∑

i=1

h`
i(X, Y )Ni +

n∑

α=r+1

hs
α(X,Y )Wα,(2.6)

∇̄XNi = −ANi
X +

r∑

j=1

τij(X)Nj +
n∑

α=r+1

ρiα(X)Wα,(2.7)
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∇̄XWα = −AWα
X +

r∑

i=1

φαi(X)Ni +
n∑

β=r+1

θαβ(X)Wβ,(2.8)

∇XPY = ∇∗XPY +
r∑

i=1

h∗i (X,PY )ξi,(2.9)

∇Xξi = −A∗ξi
X −

r∑

j=1

σij(X)ξj ,(2.10)

for any X, Y ∈ Γ(TM), where ∇ and ∇∗ are induced linear connections on TM and
S(TM) respectively, the bilinear forms h`

i and hs
α on M are called the local lightlike

and local screen second fundamental forms on TM respectively, h∗i is called the local
second fundamental forms on S(TM). ANi

, A∗ξi
and AWα

are linear operators on
TM and τij , ρiα, φαi, θαβ and σij are 1-forms on TM . We say that

h(X, Y ) =
r∑

i=1

h`
i(X, Y )Ni +

n∑

α=r+1

hs
α(X,Y )Wα

is the second fundamental tensor of M . Using (2.1), (2.2) and (2.6), we show that

(∇Xg)(Y, Z) = − π(Y )g(X,Z) − π(Z)g(X, Y )(2.11)

+
r∑

i=1

{h`
i(X,Y )ηi(Z) + h`

i(X, Z)ηi(Y )},

T (X,Y ) = π(Y )X − π(X)Y, ∀X, Y, Z ∈ Γ(TM),(2.12)

and each h`
i and hs

α are symmetric on TM , where T is the torsion tensor with respect
to the induced connection ∇ and ηi is a 1-form on TM such that

ηi(X) = ḡ(X, Ni), ∀X ∈ Γ(TM), i ∈ {1, · · · , r}.

From the facts h`
i(X, Y ) = ḡ(∇̄XY, ξi) and hs

α(X, Y ) = εαḡ(∇̄XY,Wα), we know
that h`

i and hs
α are independent of the choice of a screen distribution. Note that τij

depend on the section ξ ∈ Γ(Rad(TM)|U ) and d(tr(τij)) = d(tr(τ̄ij)) [4].
Taking Y = ξi to h`

j(X, Y ) = ḡ(∇̄XY, ξj) and hs
α(X, Y ) = εαḡ(∇̄XY, Wα), we get

(2.13) h`
i(X, ξj) + h`

j(X, ξi) = 0, hs
α(X, ξi) = −εαφαi(X), ∀X ∈ Γ(TM),

due to (2.1) and (2.8). From the first equation of (2.13) [denote (2.13)1], we have

(2.14) h`
i(X, ξi) = 0, h`

i(ξj , ξk) = 0, ∀X ∈ Γ(TM).
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The above local second fundamental forms are related to their shape operators by

h`
i(X, Y ) = g(A∗ξi

X,Y ) + λig(X, Y )−
r∑

k=1

h`
k(X, ξi)ηk(Y ),(2.15)

ḡ(A∗ξi
X, Nj) = 0, τij(X)− σji(X) = λjηi(X),

εαhs
α(X, Y ) = g(AWα

X, Y ) + εαναg(X, Y )−
r∑

i=1

φαi(X)ηi(Y ),(2.16)

ḡ(AWα
X, Ni) = εα{ρiα(X)− ναηi(X)},

h∗i (X, PY ) = g(ANi
X, PY ) + µig(X, PY ) + π(PY )ηi(X),(2.17)

ηj(ANi
X) + ηi(ANjX) + µiηj(X) + µjηi(X) = 0,

εβθαβ = −εαθβα, ∀X, Y ∈ Γ(TM),

where εα = ḡ(Wα,Wα)(= ±1) denotes the causal character of Wα, and λi, µi and
να are smooth functions given by λi = π(ξi), µi = π(Ni) and να = εαπ(Wα).

Definition 1. A vector field X on a differential manifold (M, g) with a metric tensor
g is said to be conformal Killing on M if LX g = −2fg for any smooth function f ,
where LX denotes the Lie derivative with respect to X, that is,

(LX g)(Y, Z) = X(g(Y, Z))− g([X, Y ], Z)− g(Y, [X, Z]), ∀Y,Z ∈ Γ(TM).

In particular, if f = 0, then X is called a Killing vector field on M. A distribution
G on M is called a conformal Killing (or Killing) distribution on M if each vector
field belonging to G is a conformal Killing (or Killing) vector field on M.

Theorem 2.1. Let M be an r-lightlike submanifold of a semi-Riemannian manifold
M̄ admitting a semi-symmetric non-metric connection. Then the following asser-
tions are equivalent:

(1) h`
i vanishes identically on M for all i.

(2) A∗ξi
satisfies A∗ξi

X = −λiPX for all X ∈ Γ(TM) and i.
(3) Rad(TM) is a Killing distribution on M .
(4) ∇ is a semi-symmetric non-metric connection on M .

Proof. (1) ⇔ (2): If h`
i = 0 for all i, then, using (2.15)1 and the fact that S(TM)

is non-degenerate, we have A∗ξi
X = −λiPX for all X ∈ Γ(TM). Conversely, if

A∗ξi
X = −λiPX for all X ∈ Γ(TM), then, from (2.15)1, we obtain

(2.18) h`
i(X, Y ) = −

r∑

k=1

h`
k(X, ξi)ηk(Y ), ∀X, Y ∈ Γ(TM).
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Taking the skew-symmetric part of (2.18) and using h`
i is symmetric, we get

r∑

k=1

{h`
k(X, ξi)ηk(Y )− h`

k(Y, ξi)ηk(X)} = 0.

Replacing Y by ξj to this and using (2.14)2, we have h`
j(X, ξi) = 0 for all j and i.

From this and (2.18), we have h`
i = 0 for all i.

(1) ⇔ (3): From (2.11), (2.12) and the definition of LX g, we obtain

(LX g)(Y, Z) = g(∇Y X,Z) + g(Y,∇ZX)− 2π(X)g(Y, Z)

+
r∑

k=1

{h`
k(X,Y )ηk(Z) + h`

k(X, Z)ηk(Y )}, ∀X, Y, Z ∈ Γ(TM).

Taking X = ξi to this and using (2.10), (2.15)1 and h`
i is symmetric, we have

(Lξig)(X,Y ) = −2h`
i(X, Y ), ∀X, Y ∈ Γ(TM),

which proves the equivalence of (1) and (3).
(1) ⇔ (4): If h`

i = 0 for all i, then, from (2.11) and (2.12), we have

(∇Xg)(Y, Z) = −π(Y )g(X, Z)− π(Z)g(X,Y ), T (X,Y ) = π(Y )X − π(X)Y.

Thus ∇ is a semi-symmetric non-metric connection on M . Conversely if ∇ is a
semi-symmetric non-metric connection on M , from (2.11) we have

r∑

k=1

{h`
k(X, Y )ηk(Z) + h`

k(X, Z)ηk(Y )} = 0,

for all X, Y, Z ∈ Γ(TM). Replacing Z by ξi to this, we obtain (2.18). By the
method of (2) ⇒ (1), we have h`

i = 0 for all i. ¤

Theorem 2.2. Let M be an r-lightlike submanifold of a semi-Riemannian manifold
M̄ admitting a semi-symmetric non-metric connection. Then the following asser-
tions are equivalent:

(1) A∗ξi
are self-adjoint on Γ(TM) with respect to g, for all i.

(2) h`
i satisfy h`

i(X, ξj) = 0 for all X ∈ Γ(TM), i and j.
(3) A∗ξi

ξj = 0 for all i and j, i.e., the image of Rad(TM) with respect to A∗ξi

for each i is a trivial vector bundle.

Proof. From (2.15)1 and the facts g and h`
i are symmetric, we have

g(A∗ξi
X, Y )− g(X, A∗ξi

Y ) =
r∑

k=1

{h`
k(X, ξi)ηk(Y )− h`

k(Y, ξi)ηk(X)}.
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(1) ⇔ (2). If h`
i(X, ξj) = 0 for all X ∈ Γ(TM), i and j, then we have

g(A∗ξi
X, Y ) = g(A∗ξi

Y, X), ∀X, Y ∈ Γ(TM),

for all X, Y ∈ Γ(TM), that is, A∗ξi
are self-adjoint with respect to g. Conversely, if

A∗ξi
are self-adjoint with respect to g, then we have

r∑

k=1

{h`
k(X, ξi) ηk(Y )− h`

k(Y, ξi) ηk(X)} = 0,

for all X, Y ∈ Γ(TM). Replacing Y by ξj in this equation and using the second
equation of (2.14), we have h`

j(X, ξi) = 0 for all X ∈ Γ(TM), i and j.
(2) ⇔ (3). Replacing X by ξj to (2.15)1 and using (2.14)2, we have

h`
i(X, ξj) = g(A∗ξi

ξj , X), ∀X ∈ Γ(TM).

As S(TM) is non-degenerate, we have the equivalence of (2) and (3). ¤
In the sequel, we call self-adjoint A∗ξi

the lightlike shape operators of M . In this
case, we say that M is `-irrotational. It follows from the equivalence of (1) and (3)
in Theorem 2.2 that the radical distribution Rad(TM) of an `-irrotational lightlike
submanifold M is always integrable and auto-parallel due to (2.10).

Theorem 2.3. Let M be an r-lightlike submanifold of a semi-Riemannian manifold
M̄ admitting a semi-symmetric non-metric connection. Then the following asser-
tions are equivalent:

(1) AWα
are self-adjoint on Γ(TM) with respect to g for all α.

(2) hs
α satisfy hs

α(X, ξi) = 0 for all X ∈ Γ(S(TM)), α and i.
(3) φαi(X) = 0 for all X ∈ Γ(S(TM)), α and i.
(4) AWα

ξi =
∑r

j=1 εαρjα(ξi)ξj i.e., the radical distribution Rad(TM) is invari-
ant vector bundle under the operators AWα

.

Proof. From (2.16)1 and the facts g and hs
α are symmetric, we have

(2.19) g(AWα
X, Y )− g(X, AWα

Y ) =
r∑

j=1

{φαj(X)ηj(Y )− φαj(Y )ηj(X)} .

Replace Y by ξi in this and using the fact φαj(ξi) = φαi(ξj) due to (2.13)2, we have
g(AWα

ξi, X) = −φαi(PX) for all X ∈ Γ(TM). Also, from (2.19), we have

g(AWα
PX, PY )− g(PX, AWα

PY ) = g(AWα
ξj , ξk)− g(ξj , AWα

ξk) = 0.

(1) ⇔ (3). If φαi(PX) = 0 for all X ∈ Γ(TM), i and α, then g(ξi, AWα
X) −

g(AWα
ξi, X) = φαi(PX) = 0. Thus g(AWα

X,Y ) = g(X,AWα
Y ) for all X, Y ∈
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Γ(TM), i.e., AWα
are self-adjoint with respect to g. Conversely, if AWα

are self-
adjoint with respect to g, then we have

∑r
k=1{φαk(X)ηk(Y ) − φαk(Y )ηk(X)} = 0

for all X, Y ∈ Γ(TM). Replace X by PX and Y by ξi in this equation, we have
φαi(PX) = 0 for all X ∈ Γ(TM), i and α.

(2) ⇔ (3). By (2.13)2, we have the equivalence of (2) and (3).
(3) ⇔ (4). If φαi(PX) = 0 for all X ∈ Γ(TM), i and α, then g(AWα

ξi, X) = 0.
From this, we have P (AWα

ξi) = 0. In general, since

AWα
X =

r∑

i=1

εαρiα(X)ξi + P (AWα
X),

we get AWα
ξi =

∑r
j=1 εαρjα(ξi)ξj . Conversely if AWα

ξi =
∑r

j=1 εαρjα(ξi)ξj , from
the second equation in this proof, we have φαi(PX) = 0 for all i and α. ¤

In the sequel, we call self-adjoint AWα
the screen shape operators of M . In this

case, we say that M is s-irrotational.

Definition 2. An r-lightlike submanifold M is called irrotational [8] if ∇̄Xξi ∈
Γ(TM) for any X ∈ Γ(TM) and ξi ∈ Γ(Rad(TM)).

Note that M is irrotational if and only if

(2.20) h`
j(X, ξi) = 0, hs

α(X, ξi) = φαi = 0, ∀X ∈ Γ(TM).

If M is irrotational, then A∗ξi
and AWα

are the lightlike and screen shape operators
of M respectively and M is both `-irrotational and s-irrotational.

Theorem 2.4. Let M be an r-lightlike submanifold of a semi-Riemannian manifold
M̄ admitting a semi-symmetric non-metric connection. If S(TM⊥) is a conformal
Killing distribution on M̄ , then there exist smooth functions Bαs such that

(2.21) hs
α(X, Y ) = εαBα g(X, Y ), ∀X, Y ∈ Γ(TM).

In particular, if S(TM⊥) is a Killing distribution on M̄ , then hs
α = 0 for all α.

Proof. Using (2.1), (2.2) and the definition of L̄X ḡ, we have

(L̄X ḡ)(Y, Z) = ḡ(∇̄Y X,Z) + ḡ(Y, ∇̄ZX)− 2π(X)ḡ(Y, Z).

Using (2.8) and (2.16), we have ḡ(∇̄XWα, Y ) = εα{ναg(X, Y )− hs
α(X, Y )}. Thus

(L̄Wα ḡ)(X, Y ) = −2εαhs
α(X, Y ), ∀X, Y ∈ Γ(TM).

From this equation we deduce our assertions. ¤
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3. Induced Ricci Curvature Tensors

Denote by R̄ , R and R∗ the curvature tensors of the semi-symmetric non-metric
connection ∇̄ on M̄ , the induced connection ∇ on M and the induced connection ∇∗
on S(TM) respectively. Using the Gauss -Weingarten equations for M and S(TM),
we obtain the Gauss-Codazzi equations for M and S(TM) :

ḡ(R̄(X, Y )Z, PU) = g(R(X, Y )Z, PU)(3.1)

+
r∑

i=1

{h`
i(X, Z)g(ANi

Y, PU)− h`
i(Y,Z)g(ANi

X, PU)}

+
n∑

α=r+1

{hs
α(X, Z)g(AWα

Y, PU)− hs
α(Y, Z)g(AWα

X, PU)},

ḡ(R̄(X,Y )Z, ξi) = (∇Xh`
i)(Y, Z)− (∇Y h`

i)(X,Z)(3.2)

−π(X)h`
i(Y, Z) + π(Y )h`

i(X, Z)

+
r∑

k=1

{τki(X)h`
k(Y,Z)− τki(Y )h`

k(X, Z)}

+
n∑

α=r+1

{φαi(X)hs
α(Y, Z)− φαi(Y )hs

α(X, Z)},

ḡ(R̄(X,Y )Z, Ni) = ḡ(R(X,Y )Z, Ni)(3.3)

+
r∑

j=1

{h`
j(X, Z)ηi(ANjY )− h`

j(Y,Z)ηi(ANjX)}

+
n∑

α=r+1

{hs
α(X, Z)ηi(AWα

Y )− hs
α(Y,Z)ηi(AWα

X)},

εα ḡ(R̄(X, Y )Z, Wα) = (∇Xhs
α)(Y, Z)− (∇Y hs

α)(X,Z)(3.4)

−π(X)hs
α(Y,Z) + π(Y )hs

α(X,Z)

+
r∑

i=1

{ρiα(X)h`
i(Y, Z)− ρiα(Y )h`

i(X, Z)}

+
n∑

β=r+1

{θβα(X)hs
β(Y,Z)− θβα(Y )hs

β(X, Z)},

ḡ(R̄(X, Y )Ni, ξj) = h`
j(Y, ANi

X)− h`
j(X, ANi

Y ) + 2dτij(X,Y )(3.5)

+
r∑

k=1

{τik(Y )τkj(X)− τik(X)τkj(Y )}
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+
n∑

α=r+1

{ρiα(Y )φαj(X)− ρiα(X)φαj(Y )}

= h∗i (X, A∗ξj
Y )− h∗i (Y, A∗ξj

X) + 2dσji(X,Y )

+
r∑

k=1

{σjk(X)σki(Y )− σjk(Y )σki(X)}

+
n∑

α=r+1

{ρiα(Y )φαj(X)− ρiα(X)φαj(Y )}

+
n∑

α=r+1

να{φαj(Y )ηi(X)− φαj(X)ηi(Y )}

+
r∑

k=1

{h`
k(Y, ξj)ηi(ANk

X)− h`
k(X, ξj)ηi(ANk

Y )},

ḡ(R(X, Y )PZ, PU) = g(R∗(X,Y )PZ, PU)(3.6)

+
r∑

i=1

{h∗i (X,PZ)g(A∗ξi
Y, PU)− h∗i (Y, PZ)g(A∗ξi

X, PU),

ḡ(R(X,Y )PZ, Ni) = (∇Xh∗i )(Y, PZ)− (∇Y h∗i )(X, PZ)(3.7)

−π(X)h∗i (Y, PZ) + π(Y )h∗i (X,PZ)

+
r∑

j=1

{σji(Y )h∗j (X, PZ)− σji(X)h∗j (Y, PZ)}.

Let R̄ic be the Ricci tensor of M̄ and let R(0, 2) denote the induced Ricci type
tensor on M given respectively by

R̄ic(X,Y ) = trace{Z → R̄(Z, X)Y }, ∀X, Y ∈ Γ(TM̄),

R(0, 2)(X,Y ) = trace{Z → R(Z, X)Y } , ∀X, Y ∈ Γ(TM).

Using the quasi-orthonormal frame field (2.5), the above equations reduce to

R̄ic(X, Y ) =
r∑

i=1

ḡ(R̄(ξi, X)Y, Ni) +
m∑

a=r+1

εa ḡ(R̄(Fa, X)Y, Fa)(3.8)

+
r∑

i=1

ḡ(R̄(Ni, X)Y, ξi) +
n∑

α=r+1

εα ḡ(R̄(Wα, X)Y, Wα),

R(0, 2)(X, Y ) =
r∑

i=1

ḡ(R(ξi, X)Y, Ni) +
m∑

a=r+1

εa g(R(Fa, X)Y, Fa),(3.9)



LIGHTLIKE SUBMANIFOLDS OF A SEMI-RIEMANNIAN MANIFOLD 221

respectively, where εa denotes the causal character of Fa. Substituting (3.1) and
(3.3) into (3.8) and using (2.13), (2.15) and (2.16), we obtain

R(0, 2)(X,Y ) = R̄ic(X, Y ) +
r∑

i=1

h`
i(X, Y )trANi

+
n∑

α=r+1

hs
α(X, Y )trAWα

(3.10)

−
r∑

i=1

h`
i(ANi

X,Y )−
n∑

α=r+1

hs
α(AWα

X,Y )

−
r∑

i=1

ḡ(R̄(Ni, X)Y, ξi)−
n∑

α=r+1

εα ḡ(R̄(Wα, X)Y, Wα),

for all X, Y ∈ Γ(TM). This shows that R(0, 2) is not symmetric. The tensor field
R(0, 2) is called the induced Ricci tensor [3, 4] of M , denoted by Ric, if it is symmetric.
M is Ricci flat if its induced Ricci tensor vanishes identically on M .

Theorem 3.1. Let M be an r-lightlike submanifold of a semi-Riemannian manifold
M̄ admitting a semi-symmetric non-metric connection ∇̄. Then the Ricci type tensor
R(0, 2) of the induced connection ∇ on M of ∇̄ is symmetric if and only if the 1-form
d(tr(τij)) is closed, i.e., d(tr(τij)) = 0, on any coordinate neighborhood U ⊂ M .

Proof. Using (2.16), (2.19), (3.5)1, (3.10) and the first Bianchi’s identity, we get

R(0, 2)(X,Y )−R(0, 2)(Y, X) = 2d(tr(τij))(X, Y ), ∀X, Y ∈ Γ(TM).

From which, we show that R(0, 2) is symmetric if and only if d(tr(τij)) = 0. ¤

Note 1. For any r-lightlike submanifold M of a semi-Riemannian manifold M̄

admits a Levi-Civita connection, the similar result proved by Duggal and Jin [4].

A semi-Riemannian manifold M̄ of constant curvature c is called a space form
and denote it by M̄(c). In this case, the curvature tensor R̄ of M̄ is given by

(3.11) R̄(X, Y )Z = c{ḡ(Y,Z)X − ḡ(X,Z)Y }, ∀X, Y, Z ∈ Γ(TM̄).

In case the ambient manifold M̄ is a semi-Riemannian space form M̄(c), we have

R(0, 2)(X, Y ) = (m− 1)cg(X, Y )(3.12)

+
r∑

i=1

h`
i(X, Y )trANi

+
n∑

α=r+1

hs
α(X, Y )trAWα

−
r∑

i=1

h`
i(ANi

X, Y )−
n∑

α=r+1

hs
α(AWα

X, Y ),

for all X, Y ∈ Γ(TM).
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4. Tangential Characteristic Vector Field

In this section, we may assume that ζ is tangent to M . Then we show that
λi = π(ξi) = 0, να = εαπ(Wα) = 0 and τij = σji due to (2.15)3, for all i, j and α.

Proposition 4.1. Let M be an r-lightlike submanifold of a semi-Riemannian man-
ifold M̄ admitting a semi-symmetric non-metric connection. If ζ is tangent to M ,
then there exists a screen distribution S(TM) such that it contains ζ.

Proof. Assume that ζ belongs to Rad(TM). Then we have

ζ =
r∑

i=1

µiξi, 1 = ḡ(ζ, ζ) =
r∑

i, j=1

µiµjg(ξi, ξj) = 0.

It is a contradiction. Thus ζ does not belong to Rad(TM). Due to the decomposition
(2.3)1, this result enables one to choose a screen distribution S(TM) which contains
ζ. We call such a S(TM) the natural screen distribution of M . ¤

Note 2. Although S(TM) is not unique, it is canonically isomorphic to the factor
vector bundle S(TM)] = TM/Rad(TM) considered by Kupeli [8]. Thus all S(TM)
are mutually isomorphic. For this reason, in this section we consider only r-lightlike
submanifolds M of a semi-Riemannian manifold M̄ admitting a semi-symmetric
non-metric connection equipped with a natural screen distribution S(TM).

Theorem 4.1. Let M be an r-lightlike submanifold of a semi-Riemannian manifold
M̄ admitting a semi-symmetric non-metric connection. If the characteristic vector
field ζ is tangent to M , then we have

(4.1) h`
i(X, ζ) = 0, ∀X ∈ Γ(TM).

Moreover, if ζ is tangent to M and M is s-irrotational, then we have

(4.2) hs
α(X, ζ) = 0, ∀X ∈ Γ(TM).

Proof. Using the equations of (3.5) and the facts να = 0 and τij = σji, we get

h`
j(Y, ANi

X)− h`
j(X, ANi

Y ) = h∗i (X, A∗ξj
Y )− h∗i (Y, A∗ξj

X)

+
r∑

k=1

{h`
k(Y, ξj)ηi(ANk

X)− h`
k(X, ξj)ηi(ANk

Y )},

for all X, Y ∈ Γ(TM). Using (2.15)1, (2.17)1, 2 and the fact λi = µi = 0, we have

π(A∗ξj
X)ηi(Y ) = π(A∗ξj

Y )ηi(X), ∀X, Y ∈ Γ(TM).
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Taking X = ξi and Y = ζ to (2.15)1 and using (2.14)1, 2, we show that π(A∗ξi
ξi) = 0

for all i. Replacing Y by ξj to the last equation and using (2.15)1, we have

h`
i(X, ζ) = π(A∗ξi

X) = 0, ∀X ∈ Γ(TM).

Taking the scalar product with Wα and Ni to the Weingarten equations R̄(X,Y )Ni

and R̄(X, Y )Wα for M respectively, and then, comparing this two results, we get

εα{hs
α(Y, ANi

X)− hs
α(X, ANi

Y ) + 2dρiα(X, Y )

+
r∑

j=1

[τij(Y )ρjα(X)− τij(X)ρjα(Y )]

+
n∑

β=r+1

[ρiβ(Y )θβα(X)− ρiβ(X)θβα(Y )]}

= ḡ(∇X(AWα
Y )−∇Y (AWα

X)−AWα
[X, Y ], Ni)

+
r∑

j=1

{φαj(Y )ηi(ANjX)− φαj(X)ηi(ANjY )}

+
n∑

β=r+1

{θαβ(Y )ηi(AWβ
X)− θαβ(X)ηi(AWβ

X)},

for all X, Y ∈ Γ(TM). Using this, (2.16)2 and (2.17)3, we have

εα{hs
α(Y, ANi

X)− hs
α(X,ANi

Y ) + 2dρiα(X,Y )(4.3)

+
r∑

j=1

[τij(Y )ρjα(X)− τij(X)ρjα(Y )]}

= ḡ(∇X(AWα
Y )−∇Y (AWα

X)−AWα
[X, Y ], Ni)

+
r∑

j=1

{φαj(Y )ηi(ANjX)− φαj(X)ηi(ANjY }.

Applying ∇̄X to ḡ(AWα
Y, Ni) = εαρiα(Y ) and using (2.1), (2.7) and (2.8), we get

ḡ(∇X(AWα
Y ), Ni) = εαX(ρiα(Y )) + π(AWα

Y )ηi(X) + g(AWα
Y,ANi

X)

−
r∑

j=1

εατij(X)ρjα(Y ), ∀X, Y ∈ Γ(TM).

Substituting this equation into (4.3) and using (2.16)1, we have

π(AWα
X)ηi(Y ) = π(AWα

Y )ηi(X), ∀X,Y ∈ Γ(TM).
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Replacing Y by ξi to this equation and using ηi(ξi) = 1, we have

π(AWα
X) = π(AWα

ξi)ηi(X), ∀X ∈ Γ(TM).

As M is s-irrotational, taking X = ξi and Y = ζ to (2.16)1, we get π(AWα
ξi) =

−φαi(ζ) = 0 due to (3) in Theorem 2.3. Replacing Y by ζ to (2.16)1 and using the
above result, we have hs

α(X, ζ) = π(AWα
X) = 0 for all X ∈ Γ(TM). ¤

Definition 3. An r-lightlike submanifold M of M̄ is said to be totally umbilical [4]
if there is a smooth vector field H ∈ Γ(tr(TM)) such that

h(X, Y ) = H g(X,Y ), ∀X, Y ∈ Γ(TM).

In case H = 0, we say that M is totally geodesic.

It is easy to see [4] that M is totally umbilical if and only if, on each coordinate
neighborhood U , there exist smooth functions Ai and Bα such that

(4.4) h`
i(X, Y ) = Ai g(X,Y ), hs

α(X,Y ) = Bα g(X,Y ), ∀X, Y ∈ Γ(TM).

Corollary 1. Let M be an r-lightlike submanifold of a semi-Riemannian manifold
M̄ admitting a semi-symmetric non-metric connection such that ζ is tangent to M .
If M is totally umbilical, then M is totally geodesic.

Proof. As M is totally umbilical, M is s-irrotational by Theorem 2.3. Thus, by
Theorem 4.1, we get h`

i(X, ζ) = 0 and hs
α(X, ζ) = 0 for all X ∈ Γ(TM). From this

results and (4.4), we have Aiπ(X) = 0 and Bαπ(X) = 0. Replacing X by ζ to this
results, we get Ai = Bα = 0 for all i and α. Thus M is totally geodesic. ¤

Definition 4. We say that S(TM) is totally umbilical [3] in M if, on any coordinate
neighborhood U ⊂ M , there is a smooth function γi such that

(4.5) h∗i (X, PY ) = Ci g(X,Y ), ∀X, Y ∈ Γ(TM), i.

In case Ci = 0 on U , we say that S(TM) is totally geodesic in M .

Theorem 4.2. Let M be an r-lightlike submanifold of a semi-Riemannian manifold
M̄ admitting a semi-symmetric non-metric connection such that ζ is tangent to M .
If S(TM) is totally umbilical in M , then S(TM) is totally geodesic in M .

Proof. Taking i = j to (2.17)2 and using µi = 0, we have ḡ(ANi
Y,Ni) = 0. Applying

∇̄X to this equation and using (2.1), (2.6), (2.7) and (2.17)2, we have

ḡ(∇X(ANi
Y ), Ni) = π(ANi

Y )ηi(X) + g(ANi
X,ANi

Y ) +
r∑

j=1

τij(X)ηi(ANjY ),
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for all X, Y ∈ Γ(TM). Substituting this equation into the following equation

0 = ḡ(R̄(X, Y )Ni, Ni)

= ḡ(−∇X(ANi
Y ) +∇Y (ANi

X) + ANi
[X, Y ], Ni)

+
r∑

j=1

{τij(X)ηi(ANj
Y − τij(Y )ηi(ANj

X}

+
n∑

α=r+1

{ρiα(X)ηi(AWα
Y )− ρiα(Y )ηi(AWα

X)}

= − ḡ(∇X(ANi
Y ), Ni) + ḡ(∇Y (ANi

X), Ni)

+
r∑

j=1

{τij(X)ηi(ANjY )− τij(Y )ηi(ANjX)}

due to (2.16)2 and the fact να = 0, we have

π(ANi
X)ηi(Y ) = π(ANi

Y )ηi(X), ∀X, Y ∈ Γ(TM).

Replacing Y by ξj to this equation and using ηi(ξj) = δij , we have

π(ANjX) = π(ANi
ξj)ηi(X), ∀X ∈ Γ(TM).

As S(TM) is totally umbilical in M , replacing PY by ζ to (2.17)1, we have

π(ANjX) = g(ANjX, ζ) = Cjπ(X)− ηj(X), π(ANi
ξj) = g(ANi

ξj , ζ) = −δij .

From the last two results, we have Cjπ(X) = 0 for any X ∈ Γ(TM). Replacing X

by ζ to this and using π(ζ) = 1, we get Cj = 0 for all j. Thus S(TM) is totally
geodesic in M . ¤

Theorem 4.3. Let M be an r-lightlike submanifold of a semi-Riemannian space
form M̄(c) admitting a semi-symmetric non-metric connection such that ζ is tangent
to M and S(TM) is totally umbilical in M .

(1) If M is s-irrotational, then we have c = 0.
(2) If M is `-irrotational, then M is locally a product manifold Mr × Mm−r

where Mr and Mm−r are leaves of the integrable distributions Rad(TM)
and S(TM) respectively.

Proof. (1) As S(TM) is totally umbilical in M , we have h∗i = 0 by Theorem 4.2.
Thus (3.7) reduce to ḡ(R(X, Y )PZ, Ni) = 0 for all X,Y, Z ∈ Γ(TM). Substituting
this result and (3.11) into (3.3) and using (2.16)2 with να = 0, we get
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c {g(Y, PZ)ηi(X)− g(X, PZ)ηi(Y )}(4.6)

=
r∑

j=1

{h`
j(X, PZ)ηi(ANjY )− h`

j(Y, PZ)ηi(ANjX)}

+
n∑

α=r+1

εα{hs
α(X, PZ)ρiα(Y )− hs

α(Y, PZ)ρiα(X)}.

Taking X = ξi and Y = PZ = ζ to this and using (4.1) and (4.2), we have c = 0.
(2) As A∗ξi

is self-adjoint, we have A∗ξi
ξj = 0 due to (3) in Theorem 2.2. From

this and (2.10), we show that Rad(TM) is an auto-parallel distribution on M .
As S(TM) is totally umbilical in M , we have h∗i = 0 and ∇XY = ∇∗XY for all
X, Y ∈ Γ(S(TM)) due to (2.9). Thus S(TM) is also an auto-parallel distribution
on M . By the decomposition theorem of de Rham [2], we have M = Mr ×Mm−r

where Mr and Mm−r are leaves of Rad(TM) and S(TM) of M respectively. ¤

Theorem 4.4. Let M be an r-lightlike submanifold of a semi-Riemannian manifold
M̄ admitting a semi-symmetric non-metric connection. If S(TM⊥) is a conformal
Killing distribution on M̄ , then S(TM⊥) is a Killing distribution on M̄ .

Proof. As S(TM⊥) is a conformal Killing distribution on M̄ , by (2.21) and (2) in
Theorem 2.3, we show that M is s-irrotational. Thus we have hs

α(X, ζ) = 0 for all
X ∈ Γ(TM) by Theorem 4.1. Taking X = Y = ζ to (2.21), we have Bα = 0. Thus
hs

α = 0 for all α. This implies S(TM⊥) is a Killing distribution on M̄ . ¤

Theorem 4.5. Let M be an `-irrotational r-lightlike submanifold of M̄(c) admitting
a semi-symmetric non-metric connection such that ζ is tangent to M . If S(TM) is
totally umbilical in M and S(TM⊥) is conformal Killing, then M is Ricci flat.

Proof. As S(TM) is totally umbilical, we have h∗i = 0. From (2.17)1, we get

ANi
X = −ηi(X)ζ +

r∑

j=1

ηj(ANi
X)ξj , ∀X ∈ Γ(TM),(4.7)

trANi
=

m∑

a=r+1

εag(ANi
Fa, Fa) +

r∑

k=1

ḡ(ANi
ξk, Nk) = 0 +

r∑

k=1

ηk(ANi
ξk).(4.8)

As S(TM⊥) is conformal Killing, we get c = 0 and hs
α = 0 by Theorem 4.3 and

Theorem 4.4. Also as M is `-irrotational, h`
i(X, ξj) = 0. Thus (4.6) reduce to

r∑

j=1

{h`
j(X, Z)ηi(ANjY )− h`

j(Y,Z)ηi(ANjX)} = 0,
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for all X, Y, Z ∈ Γ(TM). Replacing Y by ξi to this result, we have

(4.9)
r∑

j=1

{h`
j(X,Y )ηi(ANjξi)− h`

j(ξi, Y )ηi(ANjX)} = 0, ∀X, Y ∈ Γ(TM).

Substituting (4.7) and (4.8) into (3.12) and using (4.9), we have

R(0, 2)(X,Y ) =
r∑

i=1

{h`
i(X, Y )trANi

− h`
i(ANi

X,Y )}

=
r∑

i, k=1

{h`
i(X, Y )ηk(ANi

ξk)− h`
i(Y, ξk)ηk(ANi

X)} = 0.

Thus M is Ricci flat. ¤

Theorem 4.6. Let M be an r-lightlike submanifold of a semi-Riemannian space
form M̄(c) admitting a semi-symmetric non-metric connection such that ζ is tangent
to M . If S(TM) is totally umbilical in M and S(TM⊥) is a conformal Killing
distribution on M̄ , then the following assertions are equivalent:

(1) M is flat, i.e., the curvature tensor R of M satisfies R = 0.
(2) The local lightlike second fundamental form h`

i of M satisfies h`
i = 0.

(3) The induced connection ∇ of M is a semi-symmetric non-metric connection.

Proof. First, using (3.1)∼(3.4), (4.7) and the fact c = hs
α = 0, we show that

R(X, Y )Z =
r∑

i=1

{h`
i(Y, Z)ANi

X − h`
i(X, Z)ANi

Y }

=
r∑

i=1

{h`
i(X,Z)ηi(Y )− h`

i(Y, Z)ηi(X)}ζ

+
r∑

i=1

{h`
i(Y,Z)ηk(ANi

X)− h`
i(X,Z)ηk(ANi

Y )}ξk.

(1) ⇔ (2). If h`
i = 0 for all i, then we have R = 0. Conversely, if R = 0, then,

taking the scalar product with ζ to the last equation and using λi = 0, we have
r∑

i=1

{h`
i(X, Z)ηi(Y )− h`

i(Y, Z)ηi(X)} = 0.

Replacing Y by ξk to this, we obtain

(4.10) h`
k(X, Y ) =

r∑

i=1

h`
i(Y, ξk)ηi(X).
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Taking the skew-symmetric part of this equation, we have
r∑

k=1

{h`
k(X, ξi) ηk(Y )− h`

k(Y, ξi) ηk(X)} = 0.

Replacing Y by ξj to this and using (2.14)2, we have h`
j(X, ξi) = 0 for all X ∈

Γ(TM), i and j. Substituting this into (4.10), we have h`
i = 0 for all i.

(2) ⇔ (3). The equivalence of (2) and (3) follows from Theorem 2.1. ¤
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