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SURFACES WITH POINTWISE 1-TYPE GAUSS MAP
OF THE SECOND KIND

Dong-Soo Kim

Abstract. In this article, we study generalized slant cylindrical surfaces (GSCS’s)
with pointwise 1-type Gauss map of the first and second kinds. Our main results
state that the right circular cones are the only rational kind GSCS’s with pointwise
1-type Gauss map of the second kind.

1. Introduction and Preliminaries

During the late 1970’s, B.-Y. Chen introduced the notion of finite type subman-
ifolds in Euclidean or pseudo-Euclidean space, and then the notion has become a
useful tool for investigating and characterizing a lot of important submanifolds ([3,
4]). The notion of finite type submanifolds in Euclidean or pseudo-Euclidean space
was extended to Gauss maps of submanifolds ([1, 2, 6]).

Suppose that a submanifold M of Euclidean or pseudo-Euclidean space has 1-
type Gauss map G. Then the Gauss map G satisfies ∆G = λ(G + C) for some
λ ∈ R and some constant vector C, where ∆ is the Laplace operator corresponding
to the induced metric on M (cf [1, 2, 10]). But, on the important surfaces such as
helicoids, catenoids and right circular cones, the Laplacian of the Gauss map take a
somewhat different form; namely,

(1.1) ∆G = f(G + C),

where f is a non-constant function and C is a constant vector. For this reason, a
submanifold is said to have pointwise 1-type Gauss map if its Gauss map satisfies
(1.1) for some smooth function f on M and vector C. A submanifold with pointwise
1-type Gauss map is said to be of the first kind if the vector C in (1.1) is the zero
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vector. Otherwise, the pointwise 1-type Gauss map is said to be of the second kind
([5, 8]).

For the induced metric on the submanifold M , we consider the matrix g = (gij)
consisting of the components of the induced metric on M and we denote by g−1 =
(gij) (resp., G ) the inverse matrix (resp., the determinant) of the matrix (gij). The
Laplacian ∆ on M is, in turn, given by

(1.2) ∆ = − 1√G
∑

i,j

∂

∂xi

(√G gij ∂

∂xj

)
.

Now, we show that the right circular cone has pointwise 1-type Gauss map of the
second kind ([5]).

Example 1.1. Let’s consider the right circular cone Ca which is parameterized by

x(u, v) = (v cosu, v sinu, av), a ≥ 0.

Then the Gauss map G and its Laplacian ∆G are given by

G =
1√

1 + a2
(a cosu, a sinu,−1)

and

∆G =
1
v2

(
G +

(
0, 0,

1√
1 + a2

))
,

respectively. This implies that the right circular cone has pointwise 1-type Gauss
map of the second kind.

In [5], B.-Y. Chen, M. Choi and Y. H. Kim studied surfaces of revolution with
pointwise 1-type Gauss map. In [7], U. Dursun studied flat surfaces in Euclidean
3-space with pointwise 1-type Gauss map.

In [9], the author and Y. H. Kim introduced the class of generalized slant cylin-
drical surfaces (GSCS’s). This class includes surfaces of revolution and cylindrical
surfaces as special cases. In [8], the author studied GSCS’s with pointwise 1-type
Gauss map. As a result, he showed that GSCS’s with pointwise 1-type Gauss map
of the first kind coincide with surfaces of revolution with constant mean curvature;
and the right circular cones are the only polynomial kind GSCS’s with pointwise
1-type Gauss map of the second kind.

In this article, we study the GSCS’s with pointwise 1-type Gauss map of the
second kind. As a result, we show that the right circular cones are the only rational
kind GSCS’s with pointwise 1-type Gauss map of the second kind.
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From now on, all objects are assumed to be connected and smooth, unless men-
tioned otherwise.

2. GSCS’s with Pointwise 1-type Gauss Map of the First Kind

Consider a fixed unit speed plane curve X(s) = (x(s), y(s), 0). We let T (s) =
X ′(s) and N(s) = (−y′(s), x′(s), 0) denote the unit tangent and principal normal
vector, respectively. The curvature κ(s) of X(s) is defined by T ′(s) = κ(s)N(s) and
we have T (s)×N(s) = V, where V denotes the unit vector (0, 0, 1). For a constant
θ, we let Yθ(s) = cos θN(s) + sin θV . Then the ruled surface M defined by

(2.1) F (s, t) = X(s) + tYθ(s)

is regular at (s, t) where 1 − cos θκ(s)t does not vanish. This ruled surface M is
called a slant cylindrical surface (SCS) over X(s) ([9]).

More generally, instead of a line, we consider another unit speed plane curve
W (t) = (z(t), w(t)). If we let Ys(t) = z(t)N(s) + w(t)V , then the parametrized
surface defined by

(2.2) H(s, t) = X(s) + Ys(t)

is regular at (s, t) where 1− κ(s)z(t) does not vanish. This parametrized surface M

is called a generalized slant cylindrical surface (GSCS) over X(s) ([9]).
In case W (t) is a straight line, the GSCS H(s, t) is nothing but an SCS. If

X(s) is a straight line, then the GSCS H(s, t) is nothing but a cylindrical surface.
Furthermore, we have the following ([8, 9]).

Proposition 2.1. If X(s) is a circle, then a GSCS M over X(s) is a surface of
revolution.

Thus, we see that cylindrical surfaces and surfaces of revolution are special fam-
ilies of GSCS’s.

Proposition 2.2. Let M denote a GSCS given by (2.2). Then we have the following.
(1) If the mean curvature H is constant, then M is a surface of revolution.
(2) If the Gaussian curvature K is constant, then M is either a surface of revolution
or an SCS.

Now, we consider a GSCS M parametrized by (2.2), where W (t) = (z(t), w(t))
is a unit speed plane curve, Ys(t) = z(t)N(s) + w(t)V , and V = (0, 0, 1).

Then, we get the following propositions ([8]).
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Proposition 2.3. Let M be a GSCS given by (2.2). Suppose that M has pointwise
1-type Gauss map G of the first kind. Then M is a surface of revolution.

Proposition 2.4. Let M be a GSCS given by (2.2). Then the following are equiv-
alent.
(1) M has pointwise 1-type Gauss map G of the first kind.
(2) M has constant mean curvature.
(3) M is a surface of revolution with constant mean curvature.

Remark 2.5. Surfaces of revolution with constant mean curvature are also known
as surfaces of Delaunay (cf. [11, p.115]).

3. GSCS’s with Pointwise 1-type Gauss Map of the Second Kind

Consider a GSCS M parametrized by (2.2). If M is not cylindrical, then W (t)
can be parametrized by W (t) = (t, g(t)) for some function g = g(t). Hence M is
given by

(3.1) H(s, t) = X(s) + tN(s) + g(t)V.

If g(t) is a polynomial (resp., rational) in t, then M is said to be of polynomial
(resp., rational) kind ([5]). H(s, t) is regular at (s, t) where Q(s, t) = 1− tκ(s) 6= 0
and we get

(3.2)
Hs = Q(s, t)T (s),Ht = N(s) + g′(t)V,

G(s, t) =
1

P (t)
{−g′(t)N(s) + V }, P (t) =

√
1 + g′(t)2.

The Laplacian ∆ on M is given by

(3.3)
∆f =− P−4Q−3{κ′(s)tP 4fs + P 4Qfss

− (P 2Q2κ(s) + Q3g′g′′)ft + P 2Q3ftt}.
Hence, it follows from (3.2) and (3.3) that

(3.4)

∆G =− κ′(s)g′P−1Q−3T (s)

− P−7Q−2{κ(s)2g′P 6 + κ(s)g′′P 2Q

+ g′(g′′)2Q2 − g′′′P 2Q2 + 3g′(g′′)2Q2}N(s)

− P−7Q−1{(3(g′)2(g′′)2 − (g′′)2 − g′g′′′ − (g′)3g′′′)Q + κ(s)g′g′′P 2}V.

Suppose that the Gauss map G satisfies (1.1) with nonzero constant vector C.
Hereafter, we may assume that f 6= 0, because otherwise, M is a plane. Letting
C = C1(s)T (s) + C2(s)N(s) + C3V , we have the following:
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(3.5) PQ3C1(s)f(s, t) + κ′(s)g′(t) = 0,

(3.6)
P 6Q2f(s, t){−g′(t) + PC2(s)}+ κ(s)2g′P 6

+ κ(s)g′′P 2Q + 4g′(g′′)2Q2 − g′′′P 2Q2 = 0,

and

(3.7)
P 6Qf(s, t){1 + C3P}+ {3(g′)2(g′′)2

− (g′′)2 − g′g′′′ − (g′)3g′′′}Q + κ(s)g′g′′P 2 = 0.

Suppose that M is a GSCS of rational kind, that is, g(t) is a rational function in t.
Then both of g(t) and g′(t) are rational functions in t. Denote by g′(t) = r(t)/q(t),
where r(t) and q(t) are relatively prime polynomials.

Lemma 3.1. Suppose that C1(s) vanishes identically. Then M is a right circular
cone.

Proof. If C1(s) vanishes identically, then (3.5) shows that κ′(s)g′(t) vanishes identi-
cally. If g′(t) = 0, then M is a plane. Otherwise, κ(s) is a constant. First, suppose
that κ(s) is a nonzero constant. Then Proposition 2.1 shows that M is a surface of
rotation. Thus, it follows from [5] that M is a right circular cone.

Now, suppose that κ(s) vanishes identically. Then X(s) is a straight line with
constant vector fields T and N . Hence M is a cylindrical surface over a plane curve
W (t) = (t, g(t)) with constants C2 and C3. Furthermore, (3.6) and (3.7) reduce to,
respectively,

(3.8) P 6f(s, t){−g′(t) + PC2}+ 4g′(g′′)2 − g′′′P 2 = 0,

and

(3.9) P 6f(s, t){1 + C3P}+ {3(g′)2(g′′)2 − (g′′)2 − g′g′′′ − (g′)3g′′′} = 0.

By eliminating f(s, t), we get

(3.10)
√

1 + (g′)2{C2A− C3D − C2B} = {g′A− g′B + D},
where

(3.11)
A = 3(g′)2(g′′)2 − (g′)3g′′′, B = (g′′)2 + g′g′′′,

D = 4g′(g′′)2 − (g′)2g′′′ − g′′′.

From (3.10), we also obtain

(3.12) {1 + (g′)2}{C2A− C3D − C2B}2 = {g′A− g′B + D}2.
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Case 1. First, suppose that g′(t) = r(t)/q(t) satisfies deg r(t) > deg q(t). Then
we put g′(t) = r(t)/q(t) = s(t)+u(t)/q(t), where s(t), q(t) and u(t) are polynomials
given by

(3.13)
q(t) =tm + · · ·+ qm, s(t) = s0t

l + · · ·+ sl, l ≥ 1,

u(t) =u0t
n + · · ·+ un, n < m.

By comparing the leading coefficients of both sides of q(t)14 times of (3.12), we
get C2

2 = 1, and hence again we get C3 = 0. This shows that the leading coefficient
of q(t)14{A2 − 2g′AD} becomes zero, which is a contradiction.

Case 2. Second, suppose that g′(t) = u(t)/q(t) satisfies deg u(t) < deg q(t), where
q(t) and u(t) are relatively prime polynomials given in (3.13).

By comparing the leading coefficients of both sides of q(t)14 times of (3.12), we
get C2

3 = 1, and hence again we get C2 = 0. This shows that the leading coefficient
of q(t)14g′D(g′D + 2B) becomes zero, which is a contradiction.

Case 3. Finally, suppose that g′(t) = r(t)/q(t) satisfies deg r(t) = deg q(t), where
q(t) and r(t) are relatively prime polynomials given in (3.12). Hence we have g′(t) =
r(t)/q(t) = a + u(t)/q(t) for some nonzero constant a and a polynomial u(t) with
deg u < deg q.

In this case, first suppose that C2A − C3D − C2B = 0 in (3.10), then we have
g′A− g′B + D = 0. Hence we get A−B = D = 0. Thus, from D = 0 we get

(3.14) g′′′ =
4g′(g′′)2

1 + (g′)2
,

and hence we obtain

(3.15) A−B = −(g′′)2{1 + (g′)2} = 0.

This shows that g(t) is a linear function, and hence M is nothing but a plane.
Now, suppose that g(t) is not a linear function. Then, the above discussion shows

that P =
√

1 + g′(t)2 is a rational function in t. Hence, there exists a polynomial
p(t) satisfying

(3.16) (1 + a2)q2 + 2auq + u2 = p2.

Thus, we see that q(t), u(t) and p(t) satisfy

(3.17) (p−
√

1 + a2q)(p +
√

1 + a2q) = u(2aq + u).

Since the leading coefficient of p(t) is ±√1 + a2, without loss of generality, we may
assume that the leading term of p(t) is given by

√
1 + a2tm. Then, by considering
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the leading terms of polynomials in (3.17), we get

(3.18) p +
√

1 + a2q =
a√

1 + a2
(2aq + u),

and hence

(3.19) p−
√

1 + a2q =
√

1 + a2

a
u.

From (3.19), we get

(3.20) p =
√

1 + a2q +
√

1 + a2

a
u.

By substituting p in (3.20) into (3.18), we obtain

(3.21) 2aq + u = 0,

which is a contradiction. ¤
Lemma 3.2. Suppose that M is a GSCS of rational kind with pointwise 1-type
Gauss map. Then C1(s) vanishes identically.

Proof. Suppose that C1(s) 6= 0 on an interval I. Then we have κ′(s)g′(t) 6= 0 on I.
It follows from (3.5) and (3.7) that

(3.22)

C3κ
′(s)g′P 6 + κ′(s)g′P 5

= C1(s)Q3{3(g′)2(g′′)2 − (g′)3g′′′}+ C1(s)κ(s)g′g′′P 2Q2

− C1(s)Q3{(g′′)2 + g′g′′′}.
From now on, we proceed on the interval I. Since g′(t) and P 2 are rational

functions, (3.22) shows that P =
√

1 + g′(t)2 is also a rational function in t. Hence,
there exists a polynomial p(t) satisfying q2(t) + r2(t) = p2(t), where q(t), r(t) and
p(t) are relatively prime. We put

(3.23)

R(t) = C3κ
′(s)g′P 6, R1(t) = −κ′(s)g′P 5,

R2(t) = C1(s)Q3{3(g′)2(g′′)2 − (g′)3g′′′},
R3(t) = C1(s)κ(s)g′g′′P 2Q2, R4(t) = −C1(s)Q3{(g′′)2 + g′g′′′}.

Then, for each i = 1, 2, 3, 4, Ri is a rational function, which satisfies

(3.24) R(t) = R1(t) + R2(t) + R3(t) + R4(t).

Since, for each i = 1, 2, 3, 4, q6Ri(t) is a polynomial, it follows from (3.23) and (3.24)
that

(3.25) q6R(t) =
C3κ

′(s)r(t)p(t)6

q(t)
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is a polynomial in t. Since p(t), q(t), r(t) are relatively prime, it follows from κ′(s) 6= 0
that C3 = 0. Thus (3.22) becomes

(3.26)

{
κ′(s)
C1(s)

}2

(g′)2{1 + (g′)2}5

= [Q3{3(g′)2(g′′)2 − (g′)3g′′′ − (g′′)2 − g′g′′′}+ κ(s)g′g′′Q2{1 + (g′)2}]2.
We also get from (3.5) and (3.6) that

(3.27) S1(t) + S2(t) = 0,

where we denote

(3.28)
S1(t) = κ′(s)g′(t)2P 5 − κ′(s)C2(s)g′(t)P 6 + C1(s)κ(s)2g′(t)P 6Q,

S2(t) = κ(s)C1(s)g′′(t)P 2Q2 + 4C1(s)g′(g′′)2Q3 − C1(s)g′′′(t)P 2Q3.

Since q(t)5S2(t) is a polynomial in t, (3.27) shows that

(3.29) q(t)5S1(t) =
q(t)7S1(t)

q(t)2
=

rp5(Ar + Bp)
q(t)2

is a polynomial in t, where we denote

(3.30) A = κ′(s), B = C1(s)κ(s)2Q− κ′(s)C2(s).

Since p(t), q(t), r(t) are relatively prime, we see that

(3.31) Ar + Bp = u(t)q(t)2,

where u(t) is a polynomial in t.
Case 1. Suppose that deg q(t) ≥ deg r(t). Then we have deg p(t) = deg q(t). Since

κ(s) 6= 0, we have deg B(t) = 1. Hence (3.31) shows that deg q(t) = 1, and hence
g′(t) = r(t)/q(t) is a linear fractional function in t. But, in this case, q2(t) + r2(t)
can not be a square of a linear function. This is a contradiction.

Case 2. Suppose that deg q(t) < deg r(t). Then we put g′(t) = r(t)/q(t) =
s(t) + u(t)/q(t), where s(t), q(t) and u(t) are polynomials given in (3.13).

Note that Q is a polynomial in t given by Q = 1−κ(s)t. Then, it is straightforward
to show that the highest degree of left side of q(t)12 times of (3.26) is 12(m + l)
with leading coefficient {κ′(s)/C1(s)}2s12

0 , and the highest degree of right side of
q(t)12 times of (3.26) is 12m + 8l + 2. This shows that κ′(s) = 0 on I, which is a
contradiction. ¤

Summarizing above, we obtain

Theorem 3.3. Suppose that a GSCS M of rational kind has pointwise 1-type Gauss
map G of the second kind. Then M is a right circular cone.
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Hence, combining the results in [5] and [10], we get

Corollary 3.4. Suppose that a GSCS M has pointwise 1-type Gauss map G of the
second kind. Then the following are equivalent.
(1) M is of rational kind.
(2) M is of polynomial kind.
(3) M is a right circular cone.
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