THE CURVATURE OF HALF LIGHTLIKE SUBMANIFOLDS OF A SEMI-RIEMANNIAN MANIFOLD OF QUASI-CONSTANT CURVATURE

DAE HO JIN

ABSTRACT. We study half lightlike submanifolds M of semi-Riemannian manifolds \widetilde{M} of quasi-constant curvatures. The main result is a characterization theorem for screen homothetic Einstein half lightlike submanifolds of a Lorentzian manifold of quasi-constant curvature subject to the conditions; (1) the curvature vector field of \widetilde{M} is tangent to M, and (2) the co-screen distribution is a conformal Killing one.

1. Introduction

Chen and Yano [1] introduced the notion of a Riemannian manifold of quasiconstant curvature as a Riemannian manifold $(\widetilde{M}, \widetilde{g})$ equipped with the curvature tensor \widetilde{R} satisfying the following condition:

(1.1)
$$\widetilde{g}(\widetilde{R}(X,Y)Z,W) = \alpha\{\widetilde{g}(Y,Z)\widetilde{g}(X,W) - \widetilde{g}(X,Z)\widetilde{g}(Y,W)\} + \beta\{\widetilde{g}(X,W)\theta(Y)\theta(Z) - \widetilde{g}(X,Z)\theta(Y)\theta(W) + \widetilde{g}(Y,Z)\theta(X)\theta(W) - \widetilde{g}(Y,W)\theta(X)\theta(Z)\},$$

where α , β are scalar functions and θ is a 1-form defined by

(1.2)
$$\theta(X) = \widetilde{g}(X, \zeta),$$

and ζ is a unit vector field on \widetilde{M} , which called the *curvature vector field* of \widetilde{M} . It is well known that if the curvature tensor \widetilde{R} is of the form (1.1), then \widetilde{M} is conformally flat. If $\beta = 0$, then \widetilde{M} is a space of constant curvature α .

Recently Jin [7] and Jin and Lee [8] studied lightlike submanifolds M in a semi-Riemannian manifold \widetilde{M} of quasi-constant curvature subject to the conditions; (1)

Received by the editors June 7, 2012. Accepted October 25, 2012.

 $^{2010\} Mathematics\ Subject\ Classification.\ 53C25,\ 53C40,\ 53C50.$

Key words and phrases. screen homothetic, conformal Killing distribution, half lightlike submanifold, semi-Riemannian manifold of quasi-constant curvature.

the curvature vector field ζ of \widetilde{M} is tangent to M and (2) the screen distribution is totally geodesic in M. They proved two characterization theorems for such lightlike submanifolds (see [7, 8]).

The classification of Einstein half lightlike submanifolds M was studied by Jin [5]. Its main result focused on the geometry of Einstein half lightlike submanifolds M of a Lorentz space form $\widetilde{M}(c)$ of constant curvature c, whose co-screen distribution is a Killing one and whose shape operator is conformal to the shape operator of its screen distribution by some non-vanishing smooth function φ . The reason for this geometric restrictions on M was due to the fact that such a class admits an integrable screen distribution and a symmetric induced Ricci tensor. After that, Jin [6] generalized the main result of [5] for Einstein screen conformal half lightlike submanifold of Lorentz space forms endow with a conformal Killing co-screen distribution. A careful proof of [6] is even more involved than that of [5]. He proved a characterization theorem for such half lightlike submanifolds as it follow:

Theorem 1.1. Let M be a screen conformal half lightlike submanifold of a Lorentz space form $\widetilde{M}^{m+3}(c)$ (m>2) of constant curvature c equipped with a conformal Killing co-screen distribution of conformal factor δ . If M is Einstein, i.e., $Ric=\kappa g$, then M is locally a product manifold $\mathcal{C}\times M_1\times M_2$, where \mathcal{C} is a null curve and M_1 and M_2 are totally umbilical leaves of some distributions of M:

- (1) If $\kappa \neq (m-1)(c+\delta^2)$, then either M_1 or M_2 is an m-dimensional Einstein Riemannian space form which is isometric to a sphere $(\kappa > 0)$ or a hyperbolic space $(\kappa < 0)$ and the other is a point on M.
- (2) If $\kappa = (m-1)(c+\delta^2)$, then M_1 is an (m-1) or m-dimensional Einstein Riemannian space form which is isometric to a sphere $(\kappa > 0)$ or a hyperbolic space $(\kappa < 0)$ or a Euclidean space $(\kappa = 0)$ and M_2 is a spacelike curve or a point on M.

In particular, if the co-screen distribution is a Killing one, then $c = \delta = 0$ in the conditional paragraph of above two cases (1) and (2).

The objective of this paper is to generalize the above characterization theorem for screen homothetic Einstein half lightlike submanifolds of a Lorentzian manifold of quasi-constant curvature. We prove a characterization theorem for screen homothetic half lightlike submanifolds M of a Lorentzian manifold \widetilde{M} of quasi-constant curvature subject to the condition; (1) the curvature vector field of \widetilde{M} is tangent to M, and (2) the co-screen distribution is a conformal Killing one.

2. Half Lightlike Submanifolds

It is well known that the radical distribution $Rad(TM) = TM \cap TM^{\perp}$ of half lightlike submanifolds M of a semi-Rimannian manifold $(\widetilde{M}, \widetilde{g})$ of codimension 2 is a vector subbundle of the tangent bundle TM and the normal bundle TM^{\perp} , of rank 1. Therefore there exist complementary non-degenerate distributions S(TM) and $S(TM^{\perp})$ of Rad(TM) in TM and TM^{\perp} respectively, which called the *screen distribution* and *co-screen distribution* on M, such that

(2.1)
$$TM = Rad(TM) \oplus_{orth} S(TM), \quad TM^{\perp} = Rad(TM) \oplus_{orth} S(TM^{\perp}),$$

where \oplus_{orth} denotes the orthogonal direct sum. We denote such a half lightlike submanifold by $M = (M, g, S(TM), S(TM^{\perp}))$. Denote by F(M) the algebra of smooth functions on M and by $\Gamma(E)$ the F(M) module of smooth sections of any vector bundle E over M. Consider the orthogonal complementary distribution $S(TM)^{\perp}$ to S(TM) in $T\widetilde{M}$. Certainly TM^{\perp} is a subbundle of $S(TM)^{\perp}$. As $S(TM^{\perp})$ is a non-degenerate subbundle of $S(TM)^{\perp}$, the orthogonal complementary distribution $S(TM)^{\perp}$ of $S(TM)^{\perp}$ in $S(TM)^{\perp}$ is also a non-degenerate distribution such that

$$S(TM)^{\perp} = S(TM^{\perp}) \oplus_{orth} S(TM^{\perp})^{\perp}.$$

Clearly Rad(TM) is a vector subbundle of $S(TM^{\perp})^{\perp}$. Choose $L \in \Gamma(S(TM^{\perp}))$ as a unit vector field with $\widetilde{g}(L,L) = \epsilon = \pm 1$. For any null section ξ of Rad(TM), there exists a uniquely defined null vector field $N \in \Gamma(S(TM^{\perp})^{\perp})$ satisfying

$$\widetilde{g}(\xi, N) = 1, \ \widetilde{g}(N, N) = \widetilde{g}(N, X) = \widetilde{g}(N, L) = 0, \ \forall X \in \Gamma(S(TM)).$$

Denote by ltr(TM) the subbundle of $S(TM^{\perp})^{\perp}$ locally spanned by N. Then we show that $S(TM^{\perp})^{\perp} = Rad(TM) \oplus ltr(TM)$. Let $tr(TM) = S(TM^{\perp}) \oplus_{orth} ltr(TM)$. We call N, ltr(TM) and tr(TM) the lightlike transversal vector field, lightlike transversal vector bundle and transversal vector bundle of M with respect to the screen distribution S(TM) respectively [3]. Then $T\widetilde{M}$ is decomposed as follow:

(2.2)
$$T\widetilde{M} = TM \oplus tr(TM) = \{Rad(TM) \oplus tr(TM)\} \oplus_{orth} S(TM)$$
$$= \{Rad(TM) \oplus ltr(TM)\} \oplus_{orth} S(TM) \oplus_{orth} S(TM^{\perp}).$$

Let $\widetilde{\nabla}$ be the Levi-Civita connection of \widetilde{M} and P the projection morphism of TM on S(TM) with respect to the decomposition (2.1). Then the local Gauss and

Weingarten formulas of M and S(TM) are given by

$$\widetilde{\nabla}_X Y = \nabla_X Y + B(X, Y)N + D(X, Y)L,$$

(2.4)
$$\widetilde{\nabla}_X N = -A_N X + \tau(X) N + \rho(X) L,$$

$$(2.5) \widetilde{\nabla}_X L = -A_I X + \phi(X) N;$$

$$(2.6) \nabla_X PY = \nabla_X^* PY + C(X, PY)\xi,$$

(2.7)
$$\nabla_X \xi = -A_{\varepsilon}^* X - \tau(X) \xi, \quad \forall X, Y \in \Gamma(TM),$$

where ∇ and ∇^* are induced connections on TM and S(TM) respectively, B and D are called the local second fundamental forms of M, C is called the local second fundamental form on S(TM). A_N , A_{ξ}^* and A_L are linear operators on TM and τ , ρ and ϕ are 1-forms on TM. Since ∇ is torsion-free, the induced connection ∇ of M is also torsion-free and both B and D are symmetric. From the facts $B(X,Y) = \widetilde{g}(\widetilde{\nabla}_X Y, \xi)$ and $D(X,Y) = \epsilon \widetilde{g}(\widetilde{\nabla}_X Y, L)$, we know that B and D are independent of the choice of a screen distribution and

(2.8)
$$B(X,\xi) = 0, \quad D(X,\xi) = -\epsilon \phi(X).$$

The induced connection ∇ on M is not metric and satisfies

(2.9)
$$(\nabla_X g)(Y, Z) = B(X, Y) \, \eta(Z) + B(X, Z) \, \eta(Y),$$

where η is a 1-form on TM such that $\eta(X) = \widetilde{g}(X,N)$. But the connection ∇^* on M^* is metric. The above three local second fundamental forms of M and M^* are related to their shape operators by

$$(2.10) B(X,Y) = g(A_{\varepsilon}^*X,Y), \widetilde{g}(A_{\varepsilon}^*X,N) = 0,$$

(2.10)
$$B(X,Y) = g(A_{\xi}^*X,Y),$$
 $\widetilde{g}(A_{\xi}^*X,N) = 0,$ (2.11) $C(X,PY) = g(A_NX,PY),$ $\widetilde{g}(A_NX,N) = 0,$

(2.12)
$$\epsilon D(X,Y) = g(A_L X, Y) - \phi(X)\eta(Y), \ \widetilde{g}(A_L X, N) = \epsilon \rho(X).$$

By (2.10) and (2.11), we show that A_{ξ}^* and A_N are $\Gamma(S(TM))$ -valued shape operators related to B and C respectively and A_{ξ}^{*} is self-adjoint on TM and

(2.13)
$$A_{\xi}^* \xi = 0.$$

Denote by \widetilde{R} , R and R^* the curvature tensors of the Levi-Civita connection $\widetilde{\nabla}$ on \widetilde{M} , the induced connection ∇ on M and the induced connection ∇^* on S(TM)respectively. Using the Gauss-Weingarten equations for M and S(TM), for any $X, Y, Z \in \Gamma(TM)$, we obtain the following Codazzi equations for M and S(TM):

(2.14)
$$\widetilde{g}(\widetilde{R}(X,Y)Z,\xi) = (\nabla_X B)(Y,Z) - (\nabla_Y B)(X,Z) + B(Y,Z)\tau(X) - B(X,Z)\tau(Y) + D(Y,Z)\phi(X) - D(X,Z)\phi(Y),$$

(2.15)
$$\widetilde{g}(\widetilde{R}(X,Y)Z,N) = \widetilde{g}(R(X,Y)Z,N) + \epsilon \{D(X,Z)\rho(Y) - D(Y,Z)\rho(X)\},$$

(2.16)
$$\widetilde{g}(\widetilde{R}(X,Y)\xi, N) = g(A_{\xi}^*X, A_NY) - g(A_{\xi}^*Y, A_NX) - 2d\tau(X,Y) + \rho(X)\phi(Y) - \rho(Y)\phi(X),$$

(2.17)
$$\widetilde{g}(R(X,Y)PZ, N) = (\nabla_X C)(Y, PZ) - (\nabla_Y C)(X, PZ) + C(X, PZ)\tau(Y) - C(Y, PZ)\tau(X).$$

The *Ricci curvature tensor*, denoted by \widetilde{Ric} , of \widetilde{M} is defined by

$$\widetilde{Ric}(X,Y) = trace\{Z \to \widetilde{R}(Z,X)Y\},$$

for any $X, Y \in \Gamma(T\widetilde{M})$. Let $\dim \widetilde{M} = m + 3$. Locally, \widetilde{Ric} is given by

(2.18)
$$\widetilde{Ric}(X,Y) = \sum_{i=1}^{m+3} \epsilon_i \, \widetilde{g}(\widetilde{R}(E_i,X)Y, E_i),$$

where $\{E_1, \ldots, E_{m+3}\}$ is an orthonormal frame field of $T\widetilde{M}$ and ϵ_i (= ± 1) denotes the causal character of respective vector field E_i . Consider a quasi-orthonormal frame field $\{\xi; W_a\}$ on M such that $Rad(TM) = Span\{\xi\}$ and $S(TM) = Span\{W_a\}$, and let $E = \{\xi, W_a, N, L\}$ be the corresponding frame field on \widetilde{M} . Using this frame field, for all $X, Y \in \Gamma(TM)$, the equation (2.18) reduce to

$$(2.19) \qquad \widetilde{Ric}(X,Y) = \sum_{a=1}^{m} \epsilon_a \, \widetilde{g}(\widetilde{R}(W_a,X)Y, W_a) + \widetilde{g}(\widetilde{R}(\xi,X)Y, N) + \epsilon \, \widetilde{g}(\widetilde{R}(L,X)Y, L) + \widetilde{g}(\widetilde{R}(N,X)Y, \xi).$$

Definition. A vector field X on a semi-Riemannian manifold (\bar{M}, \bar{g}) is said to be a conformal Killing vector field [5, 6] if $\bar{\mathcal{L}}_X \bar{g} = -2\delta \bar{g}$ for any non-vanishing smooth function δ , where $\bar{\mathcal{L}}_X$ denotes the Lie derivative with respect to X, that is,

$$(\bar{\mathcal{L}}_{\boldsymbol{X}}\bar{\boldsymbol{g}})(\boldsymbol{Y},\boldsymbol{Z}) = \boldsymbol{X}(\bar{\boldsymbol{g}}(\boldsymbol{Y},\boldsymbol{Z})) - \bar{\boldsymbol{g}}([\boldsymbol{X},\boldsymbol{Y}],\boldsymbol{Z}) - \bar{\boldsymbol{g}}(\boldsymbol{Y},[\boldsymbol{X},\boldsymbol{Z}]), \ \forall \, \boldsymbol{Y}, \, \boldsymbol{Z} \in \Gamma(T\bar{M}).$$

In particular, if $\delta = 0$, then X is called a Killing vector field [5]. A distribution \mathcal{G} on \overline{M} is called a conformal Killing (resp. Killing) distribution on \overline{M} if each vector field belonging to \mathcal{G} is a conformal Killing (resp. Killing) vector field on \overline{M} .

Theorem 2.1 ([5, 6]). Let M be a half lightlike submanifold of a semi-Riemannian manifold $(\widetilde{M}, \widetilde{g})$. Then $S(TM^{\perp})$ is a conformal Killing distribution if and only if there exists a smooth function δ such that

(2.20)
$$D(X,Y) = \epsilon \delta g(X,Y), \quad \forall X, Y \in \Gamma(TM).$$

Proof. By using (2.5) and (2.12), for any $X, Y \in \Gamma(TM)$, we have

$$\begin{split} (\widetilde{\mathcal{L}}_L \widetilde{g})(X,Y) &= \widetilde{g}(\widetilde{\nabla}_X L, Y) + \widetilde{g}(X, \widetilde{\nabla}_Y L), \\ \widetilde{g}(\widetilde{\nabla}_X L, Y) &= -g(A_L X, Y) + \phi(X) \eta(Y) = -\epsilon D(X, Y). \end{split}$$

From $(\widetilde{\mathcal{L}}_L \widetilde{g})(X, Y) = -2\epsilon D(X, Y)$ we deduce our assertion.

3. Main Theorem

Let M be a half lightlike submanifold of a semi-Riemannian manifold \widetilde{M} of quasiconstant curvature. Assume that the curvature vector field ζ of \widetilde{M} is a unit spacelike vector field of M. If ζ belongs to Rad(TM), then $\zeta = e\xi$, where $e = \theta(N) \neq 0$. From this fact, we have $1 = \widetilde{g}(\zeta, \zeta) = e^2 g(\xi, \xi) = 0$. It is a contradiction. This enables one to choose a screen distribution S(TM) which contains ζ . This implies that if ζ is tangent to M, then it belongs to S(TM) which we assume in this paper.

Definition. A half lightlike submanifold M of a semi-Riemannian manifold M is screen conformal [4, 5, 6] if the shape operators A_N and A_ξ^* of M and S(TM) respectively are related by $A_N = \varphi A_\xi^*$, or equivalently, the second fundamental forms B and C of M and S(TM) respectively satisfy

$$(3.1) C(X, PY) = \varphi B(X, Y),$$

where φ is a non-vanishing smooth function on a coordinate neighborhood \mathcal{U} in M. If φ is a non-zero constant, then we say that M is screen homothetic.

Theorem 3.1. Let M be a screen conformal half lightlike submanifold of a semi-Riemannian manifold $(\widetilde{M}, \widetilde{g})$ of quasi-constant curvature. If ζ is tangent to M and $\phi = 0$, then the 1-form τ is closed, i.e., $d\tau = 0$, on TM.

Proof. Replacing W by N to (1.1) and using the fact $\theta(N) = 0$, we have

(3.2)
$$\widetilde{g}(\widetilde{R}(X,Y)Z,N) = \alpha \{\eta(X)g(Y,Z) - \eta(Y)g(X,Z)\} + \beta \{\theta(Y)\eta(X) - \theta(X)\eta(Y)\}\theta(Z).$$

Replacing Z by ξ to (3.2) and using $\theta(\xi) = 0$, we have $\widetilde{g}(\widetilde{R}(X,Y)\xi, N) = 0$.

Comparing this result with (2.16) and using the facts $A_N = \varphi A_{\xi}^*$ and $\phi = 0$, we show that the 1-form τ is closed, i.e., $d\tau = 0$, on TM.

Note 1. In case $d\tau=0$, by the cohomology theory there exist a smooth function l such that $\tau=dl$. Thus we get $\tau(X)=X(l)$. If we take $\tilde{\xi}=\gamma\xi$, then we have $\tau(X)=\tilde{\tau}(X)+X(\ln\gamma)$. Setting $\gamma=\exp(l)$ in this equation, we get $\tilde{\tau}(X)=0$. We call the pair $\{\xi,\,N\}$ such that the corresponding 1-form τ vanishes the canonical null pair of M. Although S(TM) is not unique but it is canonically isomorphic to the factor vector bundle $S(TM)^\sharp=TM/Rad(TM)$ due to Kupeli [9]. Thus all S(TM) are mutually isomorphic. In the sequel, we deal with only half lightlike submanifolds M equipped with the canonical null pair.

Theorem 3.2. Let M be a screen homothetic half lightlike submanifold of a semi-Riemannian manifold \widetilde{M} of quasi-constant curvature such that the curvature vector field ζ of \widetilde{M} is tangent to M.

- (1) If $S(TM^{\perp})$ is Killing, then the functions α and β , given by (1.1), vanish identically, and \widetilde{M} is a flat manifold.
- (2) If $S(TM^{\perp})$ is conformal Killing, then the functions β , given by (1.1), vanishes identically, and \widetilde{M} is a space of constant curvature α .

Proof. Using (1.1), (2.18) and the facts $\theta(\xi) = \theta(N) = \theta(L) = 0$, we have

$$(3.3) \qquad \widetilde{Ric}(X,Y) = \{(m+2)\alpha + \beta\}g(X,Y) + (m+1)\beta\,\theta(X)\theta(Y),$$

(3.4)
$$\widetilde{g}(\widetilde{R}(\xi, Y)X, N) = \alpha g(X, Y) + \beta \theta(X)\theta(Y),$$

(3.5)
$$\epsilon \widetilde{g}(\widetilde{R}(L,Y)X, L) = \alpha g(X,Y) + \beta \theta(X)\theta(Y), \quad \forall X, Y \in \Gamma(TM).$$

As $S(TM^{\perp})$ is conformal Killing, from (2.8), (2.12) and (2.20) we have

(3.6)
$$D(X,Y) = \epsilon \delta g(X,Y), \quad \phi = 0, \quad A_L X = \delta P X + \epsilon \rho(X) \xi.$$

As $d\tau = 0$ by Theorem 3.1, we can take a canonical null pair such that $\tau = 0$ by Note 1. Replacing W by ξ to (1.1) and using (2.14) and the fact $\theta(\xi) = 0$, we have

$$(3.7) \qquad (\nabla_X B)(Y, Z) - (\nabla_Y B)(X, Z) = 0, \quad \forall X, Y, Z \in \Gamma(TM).$$

As M is screen homothetic, substituting (3.1) into (2.17) and using (3.7), we get $\widetilde{g}(R(X,Y)PZ,N)=0$. From this, (2.15) and the fact $\widetilde{g}(\widetilde{R}(X,Y)\xi,N)=0$, we have

$$\widetilde{g}(\widetilde{R}(X,Y)Z,N) = \delta\{g(X,Z)\rho(Y) - g(Y,Z)\rho(X)\}.$$

Replacing X by ξ and Z by X to this and comparing with (3.4), we have

(3.8)
$$\beta\theta(X)\theta(Y) = -\{\alpha + \delta\rho(\xi)\}g(X,Y), \quad \forall X, Y \in \Gamma(TM).$$

Taking $X = Y = \zeta$ to (3.8), we get $\beta = -\{\alpha + \delta \rho(\xi)\}$. Substituting (3.8) into (3.3) and using the fact $\beta = -\{\alpha + \delta \rho(\xi)\}$, we obtain

(3.9)
$$\widetilde{Ric}(X,Y) = -(m+2)\delta\rho(\xi)g(X,Y) \quad \forall X, Y \in \Gamma(TM).$$

Substituting (3.8) into (1.1) and using the fact $\beta = -\{\alpha + \delta \rho(\xi)\}\$, we have

$$(3.10) \bar{g}(\widetilde{R}(X,Y)Z,W) = (\alpha + 2\delta\rho(\xi))\{g(X,Z)g(Y,W) - g(Y,Z)g(X,W)\},\$$

for all $X, Y, Z, W \in \Gamma(TM)$. Substituting (3.4), (3.5), (3.10) into (2.19), we have

(3.11)
$$\widetilde{Ric}(X,Y) = -\{(m-1)\alpha + (2m+1)\delta\rho(\xi)\}g(X,Y).$$

Comparing (3.9) and (3.11), we have $\alpha + \delta \rho(\xi) = 0$ as m > 1. Thus we have $\beta = 0$.

Case (1). If $S(TM^{\perp})$ is Killing distribution, then $\delta = 0$. In this case, we get $\alpha = \beta$. As $\beta = 0$, we obtain $\alpha = \beta = 0$. Therefore \widetilde{M} is a flat manifold.

Case (2). If $S(TM^{\perp})$ is conformal Killing distribution, then $\delta \neq 0$. In this case, we get $\alpha = -\delta \rho(\xi)$ and $\beta = 0$. Therefore \widetilde{M} is a space of constant curvature α . \square

By Theorem 1.1, we have the following characterization theorem:

Theorem 3.3. Let M be a screen homothetic half lightlike submanifold of a Lorentz manifold $\widetilde{M}^{m+3}(m>2)$ of quasi-constant curvature. If the curvature vector field ζ of \widetilde{M} is tangent to M, the co-screen distribution $S(TM^{\perp})$ is conformal Killing of conformal factor δ and M is Einstein, i.e., $Ric = \kappa g$, then M is locally a product manifold $\mathcal{C} \times M_1 \times M_2$, where \mathcal{C} is a null curve tangent to the radical distribution, and M_1 and M_2 are totally umbilical leaves of some distributions of M:

- (1) If $\kappa \neq (m-1)(\alpha+\delta^2)$, then either M_1 or M_2 is an m-dimensional Einstein Riemannian space form which is isometric to a sphere $(\kappa > 0)$ or a hyperbolic space $(\kappa < 0)$ and the other is a point on M.
- (2) If $\kappa = (m-1)(\alpha + \delta^2)$, then M_1 is an (m-1) or m-dimensional Einstein Riemannian space form which is isometric to a sphere $(\kappa > 0)$ or a hyperbolic space $(\kappa < 0)$ or a Euclidean space $(\kappa = 0)$ and M_2 is a spacelike curve or a point on M.

Corollary 1. Let M be a screen homothetic Einstein half lightlike submanifold of a Lorentzian manifold \widetilde{M} , m>2, of quasi-constant curvature equipped with a Killing co-screen distribution. Then \widetilde{M} is a flat manifold, and M is a locally product manifold $\mathcal{C} \times M_1 \times M_2$, where \mathcal{C} is a null curve, and M_1 and M_2 are leaves of some distributions of M such that

- (1) If $\kappa \neq 0$, then either M_1 or M_2 is an m-dimensional Einstein Riemannian space form which is isometric to a sphere $(\kappa > 0)$ or a hyperbolic space $(\kappa < 0)$ and the other is a point on M.
- (2) If $\kappa = 0$, M_1 is an (m-1) or an m-dimensional Euclidean space and M_2 is a spacelike curve or a point in \bar{M} .

References

- 1. B.Y. Chen & K. Yano: Hypersurfaces of a conformally flat space. *Tensor (N. S.)* **26** (1972), 318-322.
- 2. K.L. Duggal & A. Bejancu: Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications. Kluwer Acad. Publishers, Dordrecht, 1996.
- 3. K.L. Duggal & D.H. Jin: Half-lightlike submanifolds of codimension 2. *Math. J. Toyama Univ.* **22** (1999), 121-161.
- 4. _____: Null curves and Hypersurfaces of Semi-Riemannian Manifolds. World Scientific, 2007.
- 5. D.H. Jin: Einstein half lightlike submanifolds with a Killing co-screen distribution. *Honam Math. J.* **30** (2008), no. 3, 487-504.
- 6. _____: Einstein half lightlike submanifolds with special conformalities. accepted in Bull. Korean Math. Soc., 2012.
- 7. _____: Lightlike hypersurfaces of a semi-Riemannian manifold of quasi-constant curvature. accepted in Commun. Korean Math. Soc., 2011.
- 8. D.H. Jin & J.W. Lee: Lightlike submanifolds of a semi-Riemannian manifold of quasi-constant curvature. accepted in J. of Appl. Math., 2012.
- 9. D.N. Kupeli: Singular Semi-Riemannian Geometry. Mathematics and Its Applications, vol. 366, Kluwer Acad. Publishers, Dordrecht, 1996.

DEPARTMENT OF MATHEMATICS, DONGGUK UNIVERSITY, GYEONGJU 780-714, REPUBLIC OF KODEA

Email address: jindh@dongguk.ac.kr