ON ARCWISE CONNECTEDNESS IM KLEINEN IN HYPERSPACES

Bong Shin Baik a,* and Choon Jai Rhee b

ABSTRACT. Let X be a space and $2^X(C(X), \mathcal{K}(X), C_K(X))$ denote the hyperspace of nonempty closed subsets(connected closed subsets, compact subsets, subcontinua) of X with the Vietoris topology. We investigate the relationships between the space X and its hyperspaces concerning the properties of connectedness im kleinen. We obtained the following: Let X be a locally compact Hausdorff space. Let $x \in X$. Then the following statements are equivalent: (1) X is connected im kleinen at X. (2) X is arcwise connected im kleinen at X is arcwise connected im X is arcwise connected im X is arcwise connected in X is arcwise connected i

0. Introduction

Let X be a topological space. Let $2^X = \{E \subset X : E \text{ is nonempty and closed}\}$, $\mathcal{F}_n(X) = \{E \in 2^X : E \text{ has at most n elements}\}$, $\mathcal{F}(X) = \{E \in 2^X : E \text{ is finite}\}$, $\mathcal{K}(X) = \{E \in 2^X : E \text{ is connected}\}$, $C(X) = \{E \in 2^X : E \text{ is connected}\}$, $C(X) = \mathcal{K}(X) \cap C(X)$.

In 1998, Goodykoontz[3] proved that a Hausdorff space X is connected im kleinen at $x \in X$ if and only if $2^X(\mathcal{K}(X), C_K(X))$ is connected im kleinen at $\{x\}$ (Result 2.D) and a locally compact Hausdorff space X is connected im kleinen at $x \in X$ if and only if $2^X(\mathcal{K}(X), C_K(X), C(X))$ is connected im kleinen at $\{x\}$ (Result 2.F). In this paper, we will prove that a Hausdorff space X is connected im kleinen at $x \in X$ if and only if $\mathcal{F}_n(X)(\mathcal{F}(X))$ is connected im kleinen at $\{x\}$ (Theorem 2.1) and a locally compact Hausdorff space X is connected im kleinen at $x \in X$ if and only if $x \in X$ if and only if $x \in X$ if and only is arcwise connected im kleinen at $x \in X$ if and only if $x \in X$ if an analysis is a connected im kleinen at $x \in X$ if an analysis is a connected im kleinen at $x \in X$ if an analysis is a connected im kleinen at $x \in X$ if an analysis is a connected im kleinen at $x \in X$ if an analysis is a connected im kleinen at $x \in X$ if an analysis is a connected im kleinen at $x \in X$ if an analysis is a connected im kleinen at x

For notational purposes, small letters will denote elements of X, capital letters

Received by the editors December 19, 2012. Accepted January 21, 2013.

 $^{2010\} Mathematics\ Subject\ Classification.\ 54B20.$

Key words and phrases. hyperspace, connected im kleinen, arcwise connected im kleinen.

This paper was supported by Woosuk University LINC.

^{*}Corresponding author.

will denote subsets of X and elements of 2^X , and script letters are reserved for subsets of 2^X . If $\mathcal{B} \subset 2^X$, $\cup \mathcal{B} = \{A : A \in \mathcal{B}\}$. If $A \subset X$, \overline{A} , Int(A), Bd(A) will denote the closure, interior, boundary of A in X respectively.

1. Preliminaries

Let $U_1, U_2,..., U_n$ be a collection of subsets of X. Let $\langle U_1, U_2,..., U_n \rangle$ to be the set of all $E \in 2^X$ such that $E \subset \bigcup_{i=1}^{i=n} U_i$ and $E \cap U_i \neq \emptyset$ for each i = 1, 2, ..., n.

If (X, \mathcal{T}) is a topological space, then the Vietoris (finite) topology \mathcal{T}_v on 2^X is the one generated by the collection of the form $\langle U_1, ..., U_n \rangle$ with $U_1, U_2, ..., U_n$ open subsets of X.

The topology on each of $\mathcal{F}_n(X)$, $\mathcal{F}(X)$, $\mathcal{K}(X)$, $\mathcal{C}(X)$, $\mathcal{C}_K(X)$ is the subspace topology induced by the Vietoris topology on 2^X .

Result 1.A ([5]). Let (X, \mathcal{T}) be a topological space. then the collection of the form $\langle U_1, ..., U_n \rangle$ with $U_1, U_2, ..., U_n$ open in X, form a basis for the finite topology on 2^X .

Result 1.B ([5]). Let (X, \mathcal{T}) be a toplogical space. Then:

- (a) $\{E \in 2^X : E \subset A\}$ is closed in 2^X if $A \subset X$ is closed.
- (b) $\{E \in 2^X : E \cap A \neq \emptyset\}$ is closed in 2^X if $A \subset X$ is closed.

Proposition 1.1. Let X be a T_1 space. Then the natural map $i: X \to 2^X$ defined by $i(x) = \{x\}$ for each $x \in X$ is continuous. Since X is a T_1 space, each singleton set $\{x\}$ is a member of 2^X . And any neighborhood of $\{x\}$ in 2^X has the form < U >, where U is open in X so that $i(U) \subset < U >$. Hence i is continuous. Furthermore, i is a homeomorphism between X and the subspace $\mathcal{F}_1(X)$.

Result 1.C ([5]). Let X be a T_1 space. Then

- (a) $< U_1, ..., U_n > \subset < V_1, ..., V_m > if and only if <math>\bigcup_{i=1}^n U_i \subset \bigcup_{i=1}^m V_i$, and for each V_i there exists a U_j such that $U_j \subset V_i$.
- (b) $\overline{\langle U_1, ..., U_n \rangle} = \langle \overline{U_1}, ..., \overline{U_n} \rangle$.
- (c) If $\{U_{\alpha}\}_{{\alpha}\in A}$ is a neighborhood basis at $x\in X$, then $\{\langle U_{\alpha}\rangle\}_{{\alpha}\in A}$ is a neighborhood basis at $\{x\}$ in 2^X .
- (d) If \mathcal{O} is an open set in 2^X , then $\cup \mathcal{O}$ is open in X.

On the other hand, if U is open in X, then $2^U = \langle U \rangle$ is open in 2^X .

Proposition 1.2. Let X be a T_1 space. If \mathcal{U} is an open set in the subspace $\mathcal{K}(X)$, then $\cup \mathcal{U}$ is open in X.

Proposition 1.3. Let X be a T_1 space. If \mathcal{U} is an open subset of the subspace $\mathcal{F}(X)$, then $\cup \mathcal{U}$ is open in X.

Proposition 1.4. Let X be a T_1 space. If \mathcal{U} is an open set in $\mathcal{F}_n(X)$, then $\cup \mathcal{U}$ is open in X.

A T_1 space X is call regular if each $x \in X$ and closed set A not containing x have disjoint neighborhoods.

Proposition 1.5. (a) Suppose X is a locally connected regular space. If \mathcal{U} is an open set in the subspace C(X), then $\cup \mathcal{U}$ is open in X.

(b) Suppose X is a locally compact and locally connected Hausdorff space. If \mathcal{O} is an open subset of the subspace $C_K(X)$, then $\cup \mathcal{O}$ is open in X.

Result 1.D ([5]). (a) Let X be a T_1 space. Then $\mathcal{F}(X)$ is dense in 2^X .

- (b) If X is Hausdorff, the $\mathcal{F}_n(X)$ is closed in 2^X for each n.
- (c) Let X be a T_1 space. Then the natural map $f: X^n \to \mathcal{F}_n(X)$, defined by $f((x_1,...,x_n)) = \{x_1,...,x_n\}$, is continuous, surjective, and open.

Remark 1.D'. (1) Assertion (c) is false for infinite product.

- (2) There is a Hausdorff space X such that no $\mathcal{F}_n(X)$ is dense in 2^X . Let X be an infinite Hausdorff space. For a fixed n, let $U_1, ..., U_{n+1}$ be pairwise disjoint nonempty open subsets of X. Then $\mathcal{F}_n(X) \cap \langle U_1, ..., U_{n+1} \rangle = \emptyset$. Hence for a Hausdorff space X, X is finite if and only if $\mathcal{F}_n(X)$ is dense in 2^X for some n.
 - (3) A space X is discrete if and only if 2^X is discrete.

Proposition 1.6. Let X be a T_1 space. Then K(X) is dense in 2^X .

Result 1.E ([5]). (a) Let X be a regular space. Then $\cup \mathcal{B} = \cup \{E : E \in \mathcal{B}\} \in 2^X$, for each $\mathcal{B} \in \mathcal{K}(2^X)$.

(b) Let X be a space (no separation axiom is assumed). Then $\cup \mathcal{B} \in \mathcal{K}(X)$, for each $\mathcal{B} \in \mathcal{K}(\mathcal{K}(X))$.

Result 1.F ([5]). Let X be a topological space. If \mathcal{B} is a connected subset of 2^X which also contains at least one connected element, then $\cup \mathcal{B}$ is connected in X.

Proposition 1.7. Let X be a topological space. If \mathcal{B} is a connected subset of $\mathcal{F}_n(X)$ $(\mathcal{F}(X), \mathcal{K}(X))$ which contains a connected element, then $\cup \mathcal{B}$ is connected in X.

In particular, if \mathcal{B} is a connected subset of $C_K(X)$ (or C(X)), then $\cup \mathcal{B}$ is connected.

- **Example 1.7.1.** (1) We give an example of a connected subset \mathcal{B} of 2^X which contains no connected element and $\cup \mathcal{B}$ is not connected.
- Let X be the space of reals. Let U_1 and U_2 be connected open set such that $U_1 \cap U_2 = \emptyset$. Let $\mathcal{B} = \langle U_1, U_2 \rangle$ (or $\mathcal{B} = \langle U_1, U_2 \rangle \cap \mathcal{F}(X)$). Then by Proposition 4.11 in [5], \mathcal{B} is connected and $\cup \mathcal{B} = U_1 \cup U_2$.
- (2) Here is an example of a connected subset \mathcal{B} of $\mathcal{F}_2(X)$ which contains no connected element such that $\cup \mathcal{B}$ is disconnected. Let X be the space of the reals. Let U_1 and U_2 be disjoint connected open sets in X. Let $\mathcal{B} = \langle U_1, U_2 \rangle \cap \mathcal{F}_2(X)$. Then \mathcal{B} is the continuous image of the connected set $U_1 \times U_2$ by Result 1.D.(c). Hence \mathcal{B} is connected. And $\cup \mathcal{B} = U_1 \cup U_2$.
- (3) This is an example of a disconnected subset \mathcal{B} of 2^X which contains no connected element such that $\cup \mathcal{B}$ is connected. Let X be the space of reals. Let $A = [0,1] \cup \{2\}$, $B = [1,2] \cup \{0\}$, and $\mathcal{B} = \{A,B\}$. Then $\cup \mathcal{B} = [0,2]$.
- **Result 1.G** ([2]). Let X be a T_1 space. Let U be a connected open set and U_1, \dots, U_n be nonempty open sets such that $U = \bigcup_{i=1}^n U_i$. Then $\langle U_1, ..., U_n \rangle$ is connected in 2^X .
- **Result 1.H** ([4]). If X is a compact connected Hausdorff space, then 2^X and C(X) are (arcwise) connected.

2. Connectedness im Kleinen and Arcwise Connectedness im Kleinen

Definition 2.1. The space X is locally connected at $x \in X$ provided that for each neighborhood U of x there is a connected neighborhood V of x such that $V \subset U$. The space X is connected im kleinen at x provided for each neighborhood U of x there is a component of U which contains x in its interior. The space X is locally connected provided that X is locally connected at each of its points. If a space X is connected im kleinen at each of its points, then X is locally connected.

Definition 2.2. The space X is locally arcwise connected at x provided that for each neighborhood U of x there is an arcwise connected neighborhood V of x such that $V \subset U$. The space X is locally arcwise connected provided that X is locally arcwise connected at each of its points. The space X is arcwise connected im kleinen at x provided for each neighborhood U of x there is an arcwise connected, component of U which contains x in its interior. If a space X is arcwise connected im kleinen at each of its points, then X is locally arcwise connected.

Result 2.A ([6]). Let X be a locally compact Hausdorff space. Let $A_1, A_2 \in \mathcal{U} = \langle U_1, \dots, U_n \rangle \cap K(X), U_i$ open. Then there exists an arc in \mathcal{U} between A_1 and A_2 if and only if there exists an element $B \in \mathcal{U}$ such that $A_i \subset B, i = 1, 2$ and each component of B intersects $A_i, i = 1, 2$.

Proposition 2.1. X is connected im kleinen at x if and only if for each open set U containing x, there exists an open set V containing x such that for each $y \in V$, there exists a connected subset C_y of U containing x and y.

Proof. Suppose that X is connected im kleinen at x. Let U be an open set containing x. Then there exists a component M of U containing x in its interior and so V = Int(M).

Conversely, let U be an open set containing x. Then there exists an open neighborhood V of x such that for each $y \in V$, there exists a connected subset C_y of U containing x and y. Then $M = \bigcup_{y \in V} C_y$, $x \in Int(M) \subset U$ and M is connected. \square

Result 2.B ([3]). Let X be a Hausdorff space. Then the following are equivalent:

- (1) X is connected;
- (2) $\mathcal{F}_n(X)$ is connected;
- (3) $\mathcal{F}(X)$ is connected:
- (4) $C_K(X)$ is connected;
- (5) $\mathcal{K}(X)$ is connected;
- (6) 2^X is connected.

Result 2.C ([3]). Let X be a Hausdorff space. Let $x \in X$. Then X is connected im kleinen at x if and only if $C_K(X)$ is connected im kleinen at $\{x\}$.

Result 2.D ([3]). Let X be a Hausdorff space. Let $x \in X$. Then the following statements are equivalent:

- (1) X is connected im kleinen at x
- (2) 2^X is connected im kleinen at $\{x\}$
- (3) $\mathcal{K}(X)$ is connected im kleinen at $\{x\}$
- (4) $C_K(X)$ is connected im kleinen at $\{x\}$.

Remark 2.D'. The equivalence of (1), (2), and (3) above when "connected im kleinen" is replaced by "locally connected" is given in [1].

Theorem 2.1. Let X be a Hausdorff space. Let $x \in X$. Then the following statements are equivalent:

- (1) X is connected im kleinen at x
- (2) $\mathcal{F}_n(X)$ is connected im kleinen at $\{x\}$
- (3) $\mathcal{F}(X)$ is connected im kleinen at $\{x\}$.

Proof. (1) \Rightarrow (2). Suppose that X is connected im kleinen at x. Let $< U > \cap \mathcal{F}_n(X)$ be a basic open set containing $\{x\}$. Since X is connected im kleinen at x and $x \in U$, U has the component C containing x in its interior. Let V be an open set containing x such that $x \in V$ and $V \subset Int(C)$. Then $\{x\} \in < V > \cap \mathcal{F}_n(X) \subset < C > \cap \mathcal{F}_n(C) \subset \mathcal{F}_n(C) \subset < U > \cap \mathcal{F}_n(X)$ and $\mathcal{F}_n(C)$ is connected by Result 2.B. Hence $< U > \cap \mathcal{F}_n(X)$ has a component containing $\{x\}$ in its interior. (2) \Rightarrow (1). Suppose that $\mathcal{F}_n(X)$ is connected im kleinen at $\{x\}$. Let U be an open set such that $x \in U$. Since $\mathcal{F}_n(X)$ is connected im kleinen at $\{x\}$, there is a component \mathcal{L} of $< U > \cap \mathcal{F}_n(X)$ containing $\{x\}$ in its interior. Let V be an open set such that $\{x\} \in < V > \cap \mathcal{F}_n(X) \subset \mathcal{L} \subset < U > \cap \mathcal{F}_n(X)$. Then $x \in V \subset \cup \mathcal{L} \subset U$. Since $\cup \mathcal{L}$ is connected by Proposition 1.7, U contains a component containing x in its interior. Hence X is connected im kleinen at x. Proof for (1) \Leftrightarrow (3) is very much similar to above.

Result 2.E ([2]). Let X be a locally compact Hausdorff space. Let $x \in X$. Then X is connected im kleinen at x if and only if C(X) is connected im kleinen at $\{x\}$.

Proof. Suppose that X is connected im kleinen at x. Let $V > \cap C(X)$ be a basic open set in C(X) containing $\{x\}$. Let V be a neighborhood of x with compact closure such that $\overline{V} \subset U$. Then there exists a component M of V which contains x in its interior. Let W = Int(M). Then $\{x\} \in V > \cap C(X) \subset V > \cap C(X)$ of $V = V > \cap C(X)$. If $V = V > \cap C(X)$ is a connected subset of $V = V > \cap C(X)$ by Result 1.H. Since $V = V > \cap C(X)$ is connected and is contained in $V = V > \cap C(X)$. It follows that there is a connected subset of $V = V > \cap C(X)$ which contains $V = V > \cap C(X)$ in its interior.

The proof of the converse is the same as the corresponding proof in Corollary 4 of [2].

Result 2.F ([3]). Let X be a locally compact Hausdorff space. Let $x \in X$. Then the following statements are equivalent:

- (1) X is connected im kleinen at x
- (2) 2^X is connected im kleinen at $\{x\}$
- (3) $\mathcal{K}(X)$ is connected im kleinen at $\{x\}$

- (4) $C_K(X)$ is connected im kleinen at $\{x\}$
- (5) C(X) is connected im kleinen at $\{x\}$.

Theorem 2.2. Let X be a locally compact Hausdorff space. Let $x \in X$. Then the following statements are equivalent:

- (1) X is connected im kleinen at x.
- (2) 2^X is arcwise connected im kleinen at $\{x\}$.
- (3) K(X) is arcwise connected im kleinen at $\{x\}$.
- (4) $C_K(X)$ is arcwise connected im kleinen at $\{x\}$.
- (5) C(X) is arcwise connected im kleinen at $\{x\}$.

Proof. (1) \Rightarrow (2). Suppose that X is connected im kleinen at x. Let < U > be a basic open in 2^X containing $\{x\}$. Since X is connected im kleinen at x and $x \in U$, U has a component M containing x in its interior. Let V be an open set containing x such that $x \in V$, \overline{V} compact, and $V \subset Int(M)$. Let W = Int(M) and $E \in < W > \cap K(\overline{V})$. Then $\{x\} \subset \overline{M}, \overline{M} \in K(\overline{V})$. So by Result 2.A, there exists an arc in $< U > \cap K(\overline{V}) \subset < U >$ between $\{x\}$ and E. Hence 2^X is arcwise connected im kleinen at $\{x\}$.

- $(1)\Rightarrow(3)$. We can see easily $(1)\Rightarrow(3)$ in similar way of $(1)\Rightarrow(2)$.
- $(1)\Rightarrow (4)$. Suppose that X is connected im kleinen at x. Let $< U > \cap C_K(X)$ be a basic open set containing $\{x\}$. Then $x \in U$ and there exists an open set V containing x such that \overline{V} compact and $\overline{V} \subset U$. Since X is connected im kleinen at x, there is a component M of V which contains x in its interior. Let W = Int(M). Then $x \in W \subset M \subset V$, $\{x\} \in < W > \cap C_K(X) \subset < V > \cap C_K(X) \subset < U > \cap C_K(X)$. Let $E \in < W > \cap C_K(X)$. Then $\{x\} \subset \overline{M}$, and $\overline{M} \in C_K(X)$. So $\overline{M} \in < V > \cap C_K(X)$. Hence by Result 2.A, there exists an arc in $< V > \cap C_K(X)$ between $\{x\}$ and E. So $C_K(X)$ is arcwise connected im kleinen at $\{x\}$.
- $(1)\Rightarrow (5)$. Suppose that X is connected im kleinen at x. Let $< U > \cap C(X)$ be a basic open set in C(X) containing $\{x\}$. Then $x \in U$ and there exists an open set V containing x such that \overline{V} compact and $\overline{V} \subset U$. Since X is connected im kleinen at x, there is a component M of V which contains x in its interior. Let W = Int(M). Then $\{x\} \in < W > \cap C(X) \subset < V > \cap C(X) \subset < U > \cap C(X)$. If $E \in < W > \cap C(X)$, then $E \in C_K(X)$. And $E \in C_K(X)$ is a connected subset of $E \in C_K(X)$ by Result 1.H. Since $E \in C(\overline{M})$ and $E \in C_K(X)$ between $E \in C(X)$ is connected im kleinen at $E \in C(X)$ between $E \in C(X)$ is connected im kleinen at $E \in C(X)$ between $E \in C(X)$ is connected im kleinen at $E \in C(X)$.

 $(2)\Rightarrow(1)$. If X is arcwise connected im kleinen at $x\in X$, then X is connected im kleinen at x. So if 2^X is arcwise connected im kleinen at $\{x\}$, then 2^X is connected im kleinen at $\{x\}$. Hence by above Result, X is connected im kleinen at x.

We can obtain $(3)\Rightarrow(1)$, $(4)\Rightarrow(1)$, $(5)\Rightarrow(1)$ in the same way of $(2)\Rightarrow(1)$.

References

- 1. Charles Dorsett: Local connectedness, connectedness im Kleinen and other properties of hyperspaces of R_0 Spaces. Math. Vesnik 3 (1979), 113-123.
- 2. Jack T. Goodykoontz Jr.: Connectedness im Kleinen and local connectedness in 2^X and C(X). Pacific J. of Math. **53** (1974), 387-397.
- 3. Jack T. Goodykoontz Jr. & C.J. Rhee: Local properties of hyperspaces. *Proceedings* **23** (1998), 183-200.
- 4. M.M. McWater: Arcs, Semigroups, and Hyperspaces. Canadian J. Math. 20 (1968), 1207-1210.
- 5. E. Michael: Topology on spaces of subsets. Trans. Amer. Math. Soc. 71 (1951), 152-182.
- 6. A.K. Misra: C-supersets, piecewise order-arcs and local arcwise connectedness in hyperspaces. Q & A in General Topology 8 (1990), 467-485.
- 7. L. Vietoris: Bereiche Zweiter Ordung. Monatshefte fur Mathematik und Physik 32 (1922), 253-280.
- 8. _____: Kontinua Zeiter Ordung. Monatshefte fur Mathematik und Physik **33** (1923), 49-62.

Email address: baik@ws.ac.kr

 $^{\rm b}$ Department of Mathematics, Wayne State University, Detroit, MI, 48202, USA $\it Email~address: {\tt rhee@math.wayne.edu}$

 $^{^{\}rm a}{\rm Department}$ of Mathematics Education, Woosuk University, Wanju, Jeonbuk 565-701, Korea