
J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. ISSN(Print) 1226-0657
http://dx.doi.org/10.7468/jksmeb.2013.20.1.59 ISSN(Online) 2287-6081
Volume 20, Number 1 (February 2013), Pages 59–70

THE DEVELOPMENT OF A ZERO-INFLATED RASCH MODEL

Sungyeun Kim a, ∗ and Guemin Lee b

Abstract. The purpose of this study was to develop a zero-inflated Rasch (ZI-
Rasch) model, a combination of the Rasch model and the ZIP model. The ZI-Rasch
model was considered in this study as an appropriate alternative to the Rasch model
for zero-inflated data. To investigate the relative appropriateness of the ZI-Rasch
model, several analyses were conducted using PROC NLMIXED procedures in SAS
under various simulation conditions. Sets of criteria for model evaluations (-2LL,
AIC, AICC, and BIC) and parameter estimations (RMSE, and r) from the ZI-
Rasch model were compared with those from the Rasch model. In the data-model
fit indices, regardless of the simulation conditions, the ZI-Rasch model produced
better fit statistics than did the Rasch model, even when the response data were
generated from the Rasch model. In terms of item parameter λ estimations, the
ZI-Rasch model produced estimates similar to those of the Rasch model.

1. Introduction

The zero-inflated Poisson (ZIP) model has been used in various fields, such as
public health, medicine, and criminology, with many zeros in the data ([4], [8], [10],
[15]). It is also not uncommon to encounter data with many zeros in education fields.
The American Invitational Mathematics Examination (AIME) serves as an example
as an illustration of zero-inflated data. The AIME is a three-hour examination with
15 questions given to those who rank in the top 5% at the high-school mathematics
level. Because each answer is one integer number ranging from 0 to 999, guessing
is not a factor influencing student test scores. One point is given to each correct
answer, and no partial credit is considered. Thus, the AIME scores range from 0
to 15 overall. According to the results from 2002 to 2005, the mean scores ranged
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from 2.195 to 2.741 and the median scores were 2 and 3 ([1], [2]). Many students
failed to gain even a single point, hence the term zero-inflated data. In contrast,
Mansell and Curtis [9] reported that that the ”top private school dumps too easy the
General Certificate of Secondary Education (GCSE)”. In such a case, the number
of incorrect answers at high-ability levels among test takers can be close to zero.
Hence, zero-inflated data can arise if we count the number of incorrect answers.

The family of Rasch measurement models, sharing similar Poisson characteristics,
is used in many fields despite the fact that these models do not provide a good fit
for data with excess numbers of zeros. Ogasawara [11] termed this phenomenon
as overdispersion or extra-Poisson variation. In fact, the equal mean and variance
property in the Poisson model could be violated for data with excessive numbers
of zeros. In the context of applying the Poisson model, overdispersion leads to
underestimation of standard errors. Assuming the Poisson model instead of the ZIP
model for data with excessive numbers of zeros can result in inconsistent parameter
estimates ([13]).

The ZIP model became more commonly used after the publication of Lambert
[7]. The ZIP model combines a distribution degenerating at zero with a baseline
Poisson model. Lambert assumed that a population consisted of two groups. The
first group occurs with probability ω and produces only zeros, while the second group
occurs with 1− ω probability and leads to a Poisson-distributed count with a mean
of λ. The purpose of the present study is to develop zero-inflated Rasch (ZI-Rasch)
model, a combination of the Rasch model and the ZIP model, and to investigate the
relative appropriateness of the ZI-Rasch model for data with excessive numbers of
zeros.

2. ZI-Rasch Model and Parameter Estimation

In this study, we propose a new Rasch-family model termed the zero-inflated
Rasch (ZI-Rasch) model to handle zero-inflated data. We suppose that a score that
includes all of the categories of yijk of the i-th test taker (i = 1, · · · , N) on the j-th
item (j = 1, · · · , J ) composed of k categories (k = 1, · · · , Jk) is a random variable
distributed as the ZIP (τ) model having two distinct underlying states. The first
state occurs with probability ωjk and produces only zeros, whereas the other state
occurs with probability 1 − ωjk and leads to a Poisson model with a mean of λijk.
In general, the zeros from the first state are known as true zeros or structural zeros
(a zero score from test takers with low ability levels) while those from the Poisson
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model are known as false zeros or sampling zeros (a zero score from test takers of
medium or high ability levels). In addition, τ is a shape-scalar parameter related to
the probability producing only zeros, ωjk = (1+λijk

τ )−1 ([7]). It is natural that the
probability ωjk under true zeros is in inverse proportion to the mean λijk under the
Poisson model. Although the vectors of the covariates may or may not be the same
sets of variables, we use the ZIP (τ) model for two reasons in this study. First, all
covariates such as items are the same. Second, it is possible to halve the number
of parameters needed for the ZIP model, which may accelerate the computations
considerably. From the model, the probability that test taker i has the score, a
count of completing k categories, yijk, on item j is given by

P (Yijk = yijk) =





ωjk + (1− ωjk)e−λ yijk = 0

(1− ωjk)
e−λλijk

y

yijk! yijk = 1, 2, · · · , 0 ≤ ωjk ≤ 1
(2.1)

The link functions are log( ωjk

1−ωjk
) = −τX

′
β and log(λijk) = X

′
β. The parameter

ωjk has a logit-link with covariates denoted as X, and the mean parameter λijk is
log-linked to the same covariates X, where X is an item-indicator dummy variable
to indicate the item number and β is the associated regression parameter. It is also
clear that this model is reduced to the Poisson model when ωjk = 0.

Following Newton’s theory of gravitation (F = MA) from the laws of physics,
we specify a simple multiplicative or additive structure to relate the test taker (T )
to the category for the item (D) ([3], [12]). The relationship of the accelerations to
the masses and the force, after logarithmic transformation, is A1 = F11 + M1 and
A2 = F11 +M2. Then, by subtraction, A1−A2 = M1−M2, where the force F11 has
been deleted. Hence, through a comparison of accelerations independently in which
the force is contained, the masses can be compared.

Beginning with the multiplicative structure, we assume that

(2.2) λijk =
Ti

Djk
, Ti ≥ 0, Djk ≥ 0.

Taking the logarithms on both sides of (2.2) produces the additive structure

(2.3) λijk = log Ti − log Djk = θi − δjk

where θi = log Ti and δjk = log Djk. Regarding achievement testing, the location
of the i-th test taker, Ti or θi, expresses the ability, and the location of the k-th
category in the j-th item, Djk or δjk, expresses the mean category difficulty.
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In this study, we consider the probability function φ, the probability of completing
the k-th category, in a simple dichotomous model by substituting the item difficulty
δj for the mean category difficulty δjk. On a dichotomously scored test, k takes a
value of 1 if item j is answered correctly, and 0 otherwise. The probability of test
taker i succeeding rather than failing on item j takes the following form

(2.4) φij =
P (Yij = 1)

P (Yij = 0) + P (Yij = 1)
=

λij

eλ

1
eλ + λij

eλ

=
λij

1 + λij
.

Of course, when only two responses are possible,

(2.5) P (Yij = 0) + P (Yij = 1) = 1.

At this point, we complete the ZI-Rasch model incorporating more zeros than
those permitted under the Poisson assumption. By substituting (2.4) for (2.1), this
can be formulated as

P (Yij = yij) =





ωj + (1− ωj) 1

eθi−δj
yij = 0

(1− ωj) eθi−δj

1+eθi−δj
yij = 1, 0 ≤ ωjk ≤ 1

(2.6)

where δj is the item j difficulty parameter and θi is the ability of test taker i. One
link function is log( ωj

1−ωj
) = −τX

′
δ, where τ is a shape-scalar parameter, X is the

J × J item indicator matrix, and δ denotes the J × 1 item difficulty parameters. In
addition, the other link function is log( λij

1−λij
) = θ −X

′
δ = θi1 −X

′
δ, where θ is

the vector of the test takers’ abilities and 1 is the J ×1 vector having all J elements
equal to one. In this model, the first state occurs with the probability of ω and
produces only zeros, whereas the other state occurs with the probability of (1− ω)
and proceeds to a Rasch model. It is also clear that this model reduces to the Rasch
model when ω = 0.

Parameter estimation for the family of Rasch measurement models and ZIP mod-
els typically involves maximum likelihood. In this study, we deal with the marginal
maximum likelihood estimation (MMLE) of this model. The MMLE requires the
maximization of the likelihood which requires integrating the joint probability func-
tion of the responses with respect to the test taker distributions. The log-likelihood
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function (LL(ω, δ, θ)) is

LL =
I∑

i=1

J∑

j=1

[I(yij=0) log{ 1
1 + e−τXijδj

+
e−τXijδj

1 + e−τXijδj
(

1
1 + e(θi−Xijδj)

)}](2.7)

+
I∑

i=1

J∑

j=1

[I(yij=1) log{ e−τXijδj

1 + e−τXijδj
(

e(θi−Xijδj)

1 + e(θi−Xijδj)
)]

and the marginal likelihood is

I∏

i=1

[
∫

θ

J∏

j=1

{( e−τXijδj

1 + e−τXijδj
)(

e(θi−Xijδj)

1 + e(θi−Xijδj)
)}yij(2.8)

×{ 1
e−τXijδj

(1 +
e(θi−Xijδj)

1 + e−τXijδj
)}1−yijf(θ)dθ]

where θ denotes the random effects sampled from a normal distribution, denoted
by the probability density function f(θ). With an expectation-maximization (EM)
algorithm, it would be much simpler to maximize the log likelihood of (2.7) if the
values of the test taker parameters τ , δ and θ were observed. However, they are not
observed. Thus, an iterative EM algorithm is used, where the unobserved values of
τ , δ, and θ are replaced by their conditional expectations and temporary estimates
of (τ, δ, θ), for instance (τ0, δ0, θ0), in the E-step. The M-step maximizes (2.8) and
provides new estimates of (τ, δ, θ), in this case (τ1, δ1, θ1), for the next E-step ([6]).

3. Methods

3.1. Simulation Procedures This study used the factors listed in the Table 1,
types of which are also used in parameter recovery studies. Although these param-
eters were more precisely estimated for long tests and many test takers, this study
used a few (500), a moderate number (1000), and a sufficient number of test takers
(2000). In addition, when the ZI-Rasch model is used, zero-inflated data are needed.
To obtain these data, this study assumed a very high level of difficulty relative to
the ability level.

Table 1. Factors and Conditions in the Simulation Study

Factors Conditions
Number of Test Takers 500, 1000, 2000

Number of Items 30, 50
Difficulty of Items N(5, 1), N(5.5, 1), N(6, 1)
Estimation Model Rasch Model, ZI-Rasch Model
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Each condition in this study was replicated 4 times following a previous study in
[10]. The relatively small number of replications may be due to the computing time
in fitting the simulated dataset. Because the number of replications was small, all
standard errors of estimates were reported.

3.2. Data In this study, we need zero-inflated data, which can be obtained by ad-
ministering very difficult tests. We considered the beta and normal distributions as
underlying distributions for the ability and item difficulty parameters, respectively.
By manipulating the difference between the ability and item difficulty parameter
distributions, we tried to obtain various data sets with varying proportions of ze-
ros. For each condition, test takers’ dichotomous responses were generated using
the following procedures.

Step1. Test takers’ ability parameters (θB) were sampled randomly from a beta
distribution with alpha 10 and beta 2. The beta distribution is supported in the
range from 0 to 1, and it is possible to alter the range. Then, the test takers’ ability
parameters (θZ) have a range of (-3, 3), as a standard normal distribution, when the
function θZ = θB× (3− (−3))−3, is used. Hence, the mean and the standard devia-
tion of the θZ distributions are approximately 2.06 and 0.62, respectively. When the
beta distribution is used, researchers can control the shape and scale parameters and
thus obtain various distributions, such as a strictly increasing, a strictly decreasing,
a normal-shaped or a U-shaped distribution.

Step 2. Item difficulty parameters were assumed to follow a normal distribution
with means of 5.0, 5.5, and 6.0 and a standard deviation of 1, as we had to consider
large differences such as three standard deviations from the mean of the test takers’
ability in order to obtain zero-inflated data.

Step 3. Using the given test taker ability and item difficulty parameters, the
probability of a correct response of each test taker to each item was calculated using
the Rasch model. Although we have much interest in zero-inflated data, the Rasch
model was used to generate data responses rather than the ZI-Rasch model in order
to evaluate the appropriateness of the ZI-Rasch model relative to the Rasch model
from a more conservative perspective.

Step 4. A random number was generated from a uniform (0, 1) distribution. If
the random number was less than or equal to the probability of a correct response,
an item score of one was recorded. Otherwise, an item score of zero was recorded.

3.3. Evaluation Criteria This study determined how well the estimated model
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fitted the observed data, where the fit was the degree of the difference between ob-
served and predicted values based on log-likelihood approaches such as the likelihood
ratio statistic (−2LL), Akaike’s information criterion (AIC), the Consistent Akaike
Information Criterion (AICC), and Schwarz’s Bayesian information criterion (BIC).
These indices penalize for model complexity and permit comparisons of non-nested
models; however, they can only be used descriptively. In addition, these indices in-
dicate better fits when they are small. To evaluate the extent to which the ZI-Rasch
model could recover the item parameters precisely, concurrent parameter recovery
studies were conducted. The precision of parameter estimation was evaluated in
terms of the root mean square error (RMSE) and the correlations (r) between the
estimated parameters and the actual value of the parameters. The proposed method
provided better item recovery when these values produced small RMSE and high r

results for the estimated and simulated parameters. Before computing these indices,
the estimated parameters were transformed to the same scale as the true parameter
using standardized values. The RMSE was the square root of the average squared
difference between the estimated and true values of an item parameter across J

items and the test taker parameter across I test takers. The RMSE was determined
as follows:

RMSE =

√∑R
r=1

∑J
j=1(δ̂j − δj)2

J ×R
(3.1)

Here, δ̂j is the estimated value of the given item parameter from item j, δj denotes

the true value of the given item parameter from item j, and R represents the number
of iterations.

3.4. Analyses Using all of the procedures, simulated test data were generated
using WinGen3 in [5], a computer program designed to generate item responses based
on various item response models using simulated test taker ability and item difficulty
parameters in [16]. To obtain data-model fit indices and parameter estimates, we
used the PROC NLMIXED procedure in SAS software [14].

4. Results

4.1. Data-Model Fit The data-model fit was evaluated by computing the −2LL,

AIC, AICC and BIC values. As shown in Table 2, all data-model fit indices of the
ZI-Rasch model were smaller than were those of the Rasch model.
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For example, the −2LL values from the Rasch model with difficulty levels of N(5,
1) to N(6.0, 1) with 30 items and 500 test takers were 7439, 6733, and 4137. On
the other hand, the values of -2LL from the ZI-Rasch model with the difficulty level
ranging from N(5, 1) to N(6.0, 1) were 7339, 6656 and 4121.

Depending on the difficulty levels of N(5.0, 1), N(5.5, 1), and N(6.0, 1) with 30
and 50 items, the corresponding proportions of zeros were approximately 0.13 and
0.19, 0.42 and 0.08, and 0.14 and 0.30 for the sets. It was natural for the proportion
of zeros to increase when the mean value of the normal distribution also increased, as
the mean values denote the item difficulty levels. In addition, high difficulty levels,
many items, and many test takers were generally associated with small fit values.
Based on overall data-model fit indices, regardless of all simulation conditions, the
ZI-Rasch model explained the data better than the Rasch model. Regarding all
of the data-model fit indices, smaller was better. These results therefore confirm
that the ZI-Rasch model is superior to the Rasch model in terms of the data-model
indices, even when the response data came from the Rasch model.

4.2. Parameter Recovery To evaluate how well the item difficulty parameters
recovered under varying simulation conditions, comparisons between the Rasch and
the ZI-Rasch models were carried out using RMSE and r as the evaluation criteria.
Table 3 summarizes the RMSE of the item difficulty parameter estimates.

Table 3: The RMSE between the Simulated and Estimated Item Difficulty
Parameters and Estimated Item Difficulty Parameters

Item No. of No. of Item=30 No. of Item=50
Difficulty Test Takers Rasch ZI-Rasch Rasch ZI-Rasch

500 0.165 0.165 0.170 0.170
N(5.0, 1) 1000 0.132 0.135 0.139 0.139

2000 0.087 0.091 0.106 0.105
500 0.246 0.244 0.267 0.267

N(5.5, 1) 1000 0.208 0.206 0.180 0.176
2000 0.167 0.174 0.153 0.150
500 0.370 0.371 0.286 0.284

N(6.0, 1) 1000 0.245 0.245 0.212 0.211
2000 0.188 0.187 0.198 0.192

Note: N(µ, σ) indicates that the difficulty parameters were selected from a normal
distribution with a mean of µ and a standard deviation of σ.

In Table 3, the RMSE values are generally lower in the ZI-Rasch model than they
are in the Rasch model. In contrast, RMSE values are generally lower in the Rasch
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Table 4: Correlations between Simulated and Estimated Item Difficulty Parameters
Item No. of No. of Item=30 No. of Item=50

Difficulty Test Takers Rasch ZI-Rasch Rasch ZI-Rasch
500 0.981 0.981 0.975 0.975

N(5.0, 1) 1000 0.988 0.987 0.983 0.983
2000 0.995 0.994 0.990 0.990
500 0.968 0.968 0.965 0.965

N(5.5, 1) 1000 0.977 0.977 0.984 0.985
2000 0.985 0.984 0.988 0.989
500 0.939 0.940 0.940 0.941

N(6.0, 1) 1000 0.973 0.973 0.967 0.967
2000 0.984 0.985 0.971 0.973

Note: N(µ, σ) indicates that the difficulty parameters were selected from a normal
distribution with a mean of µ and a standard deviation of σ.

model than they are in the ZI-Rasch model with 30 items, except at a difficulty
level of N(5.5, 1) with 500 and 1000 test takers and N(6.0, 1) with 2000 test takers.
However, there was little difference in most cases. In addition, the RMSE values
increased for both models when the difficulty level increased from N(5.0, 1) to N(6.0,
1) and decreased when the number of test takers increased from 500 to 2000. The
number of items did not appear to affect the item difficulty parameter estimation for
both the Rasch and the ZI-Rasch models. Moreover, large proportions of zeros in
the data were associated with large RMSE values because the difficulty parameters
of the ZI-Rasch model were generated from using the item distributions selected
from the Rasch model. Considering small RMSE values, the ZI-Rasch model would
likely yield more accurate estimates compared to the Rasch model when there are
many test takers with zero-inflated data.

Table 4 above summarizes the average correlations between the true simulated
and estimated item parameters. The correlation values are generally higher in the
ZI-Rasch model than they are in the Rasch model. In contrast, the correlation values
are usually higher in the Rasch model than in the ZI-Rasch model with 30 items,
except at a difficulty level of N(6.0, 1) with 500 and 2000 test takers. However, the
differences are insignificant in most cases. In addition, the correlation values showed
a tendency to decrease in both models when the difficulty level increased from N(5.0,
1) to N(6.0, 1), and to increase when the number of test takers increased from 500
to 2000.

5. Conclusion

The goal of this study was to develop a ZI-Rasch model based on the Rasch and
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ZIP models as an alternative when zero-inflated data exists. Hence, this study
compared the Rasch model to the ZI-Rasch model using data-model fit indices and
parameter estimates as evaluation criteria. Specifically, this study investigated ef-
fects of the number of items, the number of test takers, and the difficulty level of the
items between these models. In the data-model fit indices, regardless of the simula-
tion condition, the ZI-Rasch model produced better fitting values compared to the
Rasch model, even when response data were generated from the Rasch model. In
addition, the ZI-Rasch model generally produced item difficulty parameter estimates
similar to those of the Rasch model.

The ZI-Rasch model tended to produce better fitting statistics compared to the
Rasch model. The results of −2LL , AIC, AICC and BIC analyses showed that the
ZI-Rasch model yielded smaller values than the Rasch model. This implies that the
ZI-Rasch model is a viable alternative to the popular Rasch model with zero-inflated
data.

The ZI-Rasch model tended to produce difficulty estimates similar to those of the
Rasch model, even after the response data were generated from the Rasch model.
In the item difficulty parameter estimations, the number of test takers and the
difficulty level of items had an influence on the RMSE and the correlations in the
Rasch and the ZI-Rasch models. Both the ZI-Rasch model and the Rasch model
tended to produce better item difficulty estimates as the number of test takers
increased and the difficulty level of the items decreased. In conclusion, the ZI-Rasch
model developed in this study appears to be a better model for data with excessive
numbers of zeros than popular Rasch model.

References

1. American Invitational Mathematics Examination: In Wikipedia, The Free Encyclope-
dia. Retrieved from http://en.wikipedia.org/w/index.php?title=American Invitational
Mathematics Examination& oldid = 418555225, 2011.

2. T. Andreesscu & R. Gelca: Mathematical Olympiad Challenges. Birkhäuser Boston.
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