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WALLMAN COVERS AND QUASI-F COVERS

Chang Il Kim a and Chang Hyeob Shin b, ∗

Abstract. Observing that for any space X, there is a Wallman sublattice AX and
that QFX is homeomorphic to a subspace Xq of the Wallman cover L (AX) of AX ,
we show that βQFX and L (AX) are homeomorphic.

1. Introduction

All spaces in this paper are assumed to be Tychonoff spaces and (βX, βX) denotes
the Stone-Čech compactification of a space X.

Iliadis constructed the absolute of a Hausdorff, which is the minimal extremally
disconnected cover and they turn out to be the perfect onto projective covers

(
[6]

)
.

To generalize extremally disconnected spaces, basically disconnected spaces, quasi-
F spaces and cloz-spaces have been introduced and their minimal covers have been
studied by various authors

(
[1], [3], [4], [5], [7], [8], [9]

)
.

In particular, Henriksen and Gillman introduced the concept of quasi-F spaces
which is a generalization of F -spaces, in which every cozero-set is C∗-embedded.
Each space X has the minimal quasi-F cover (QFX,ΦX)

(
[3]

)
.

Henriksen, Vermeer and Woods introduced the concept of Wallman covers and
proved that if X is a compact space, then QFX is given by the Wallman cover
L (Z(X)#) of the Wallman sublattice Z(X)# and ΦX(α) = ∩{A| A ∈ α} (

α ∈
L (Z(X)#)

) (
[4]

)
.

In this paper, we introduce a new Wallman sublattice AX for a space X and
show that QFX is homeomorphic to the subspace Xq of a Wallman cover L (AX).
Using this, we will show that βQFX and L (AX) are homeomorphic.

For the terminology, we refer to [2] and [9].
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2. Quasi-F Covers and Wallman Covers

The set R(X) of all regular closed sets in a space X, when partially ordered
by inclusion, becomes a complete Boolean algebra, in which the join, meet, and
complementation operations are defined as follows : for any A ∈ R(X) and any
{Ai | i ∈ I} ⊆ R(X),
∨{Ai | i ∈ I} = clX(∪{Ai | i ∈ I}),
∧{Ai | i ∈ I} = clX

(
intX(∩{Ai | i ∈ I})), and

A′ = clX(X −A)
and a sublattice of R(X) is a subset of R(X) that contains ∅, X and is closed under
finite joins and meets.

Recall that a map f : Y −→ X is called a covering map if it is a continuous,
onto, perfect, and irreducible map.

Lemma 2.1 ([7]). (1) Let f : Y −→ X be a covering map. Then the map ψ :
R(Y ) −→ R(X), defined by ψ(A) = A∩X, is a Boolean isomorphism and the inverse
map ψ−1 of ψ is given by ψ−1(B) = clY

(
f−1(intX(B))

)
= clY

(
intY (f−1(B))

)
.

(2) Let X be a dense subspace of a space K. Then the map φ : R(K) −→ R(X),
defined by φ(A) = A ∩X, is a Boolean isomorphism and the inverse map φ−1 of φ

is given by φ−1(B) = clK(B).

Definition 2.2. A space X is called a quasi-F space if for any zero-sets A,B in
X, clX

(
intX(A ∩ B)

)
= clX

(
intX(A)

) ∩ clX
(
intX(B)

)
, equivalently, every dense

cozero-set in X is C∗-embedded in X.

It is well-known that a space X is a quasi-F space if and only if βX is a quasi-F
space.

Definition 2.3. Let X be a space. Then a pair (Y, f) is called

(1) a cover of X if f : X −→ Y is a covering map,
(2) a quasi-F cover of X if (Y, f) is a cover of X and Y is a quasi-F space, and
(3) a minimal quasi-F cover of X if (Y, f) is a quasi-F cover of X and for any

quasi-F cover (Z, g) of X, there is a covering map h : Z −→ Y such that
f ◦ h = g.

For any space X, there is a minimal quasi-F cover (QFX,ΦX)
(
[4]

)

Definition 2.4 ([4]). Let X be a space and A a sublattice of R(X). Then A is
said to be a Wallman sublattice if
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(1) for any A ∈ A and x ∈ X − A, there is a B ∈ A such that x ∈ intX(B)
and A ∧B = ∅, and

(2) for any A,B ∈ A with A ∧ B = ∅, there are C,D in A such that A ∧ C =
B ∧D = ∅ and C ∨D = X.

Let X be a compact space and A a Wallman sublattice of R(X) such that A

is a base for closed sets in X. Let L (A ) = {α | α is an A -ultrafilter } and for
any A ∈ A ,

∑A
A = {α ∈ L (A ) | A ∈ α}. Let L (A ) be the space, equipped with

the topology for which {∑A
A | A ∈ A } is a base for closed sets and define a map

ΦA : L (A ) −→ X by ΦA (α) = ∩{A | A ∈ α}. Then the pair (L (A ), ΦA ) is called
a Wallman cover of X with respect to A

(
[4]

)
.

For any space X, Z(X)# is a Wallman sublattice of R(X)
(
[4]

)
.

Lemma 2.5 ([4]). Let X be a compact space. Then we have the following :

(1) for any A,B ∈ A ,
∑A

A ∧∑B
A =

∑A
A ∩∑B

A ,
(2) ΦA : L (A ) −→ X is a covering map, and
(3)

(
L (Z(X)#),ΦZ(X)#

)
is a minimal quasi-F cover of X.

Let X be a space and A a Wallman sublattice of R(X). Let L (A ) = {α | α

is a A -ultrafilter} be the space which is equipped with the topology for which
{∑A

A | A ∈ A } is a base for closed sets. By Lemma 2.1, Z(X)# and Z(βX)# are
isomorphic, L (Z(βX)#) is homeomorphic to the space L (Z(X)#).

For any space X, let AX = {clX
(
intX(ΦX(A))

) | A ∈ Z(QFX)#}. By Lemma
2.1, AX is a Wallman sublattice of R(X).

For any space X, let (QF (βX),Φβ) be the minimal quasi-F cover of βX.
Recall that a A -filter α is called fixed if ∩{A | A ∈ α} 6= ∅.

Proposition 2.6. Let X be a space. Then we have the following :

(1) AX is a Wallman sublattice of R(X) with Z(X)# ⊆ AX , and
(2) for any fixed AX-ultrafilter α, αq = {A ∈ Z(QFX)# | ΦX(A) ∈ α} is a

fixed Z(QFX)#-ultrafilter and | ∩ {B | B ∈ αq}| = 1.

Proof. (1) Since Z(QFX)# is a Wallman sublattice ofR(QFX) and ΦX : QFX −→
X is a covering map, AX is a Wallman sublattice of R(X). Let A ∈ Z(X)#. By
Lemma 2.1, ΦX

(
clQFX(Φ−1

X (intX(A)))
)

= A and clQFX

(
Φ−1

X (intX(A))
) ∈ Z(QFX)#.

Hence A ∈ AX and so Z(X)# ⊆ AX .
(2) Clearly, αq is a Z(QFX)#-filter. Suppose that A ∈ Z(QFX)# − αq. By

the definition of αq, ΦX(A) 6∈ α. Since α is a Z(X)#-ultrafilter, there is a B ∈ α
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such that B ∧ ΦX(A) = ∅. By Lemma 2.1, clQFX

(
Φ−1

X (intX(B))
) ∧ A = ∅ and

clQFX

(
Φ−1

X (intX(B))
) ∈ Z(QFX)#. Since ΦX

(
clQFX

(
Φ−1

X (intX(B))
))

= B ∈ α,

clQFX

(
Φ−1

X (intX(B))
) ∈ αq. Hence αq is a Z(QFX)#-ultrafilter.

Let x ∈ ∩{A | A ∈ α}. Since αq is a Z(QFX)#-ultrafilter, {B∩Φ−1
X (x) | B ∈ αq}

has the finite intersection property. Since Φ−1
X (x) is compact, ∩{B ∩ Φ−1

X (x) | B ∈
αq} 6= ∅ and ∩{B | B ∈ αq} 6= ∅. This implies that αq is fixed. Since Z(QFX)# is
a base for closed sets in QFX, | ∩ {B | B ∈ αq}| = 1. ¤

Let X be a space and Xq = {α ∈ L (AX) | α is fixed} the subspace of L (AX).
Define a map gX : Xq −→ QFX by gX(α) = ∩{B | B ∈ αq}.

In the following, for any A ∈ AX , let
∑

A =
∑A

AX
and SA =

∑
A ∩Xq.

Theorem 2.7. Let X be a space. Then gX : Xq −→ QFX is a homeomorphism.

Proof. First, we will show that gX is one-to-one and onto. Let α 6= δ in Xq. Then
there are C,D ∈ AX such that C ∈ α, D ∈ δ and C ∧ D = ∅. Since C, D ∈
AX , there are A,B ∈ Z(QFX)# such that ΦX(A) = C and ΦX(B) = D. Then
ΦX(A) ∧ΦX(B) = ΦX(A ∧B) = ∅ and by Lemma 2.1, A ∧B = ∅. Since QFX is a
quasi-F space, A∩B = ∅. Since ΦX(A) = C ∈ α, A ∈ αq and gX(α) ∈ A. Similarly,
gX(δ) ∈ B and gX(α) 6= gX(δ). Thus gX is one-to-one.

Let y ∈ QFX and γ = {ΦX(C) | y ∈ C ∈ Z(QFX)#}. Then clearly, γ is a
AX -filter. Let D ∈ AX − γ. Then there is an E ∈ AX such that ΦX(E) = D and
y 6∈ E. Since Z(QFX)# is a Wallman sublattice, there is an F ∈ Z(QFX)# such
that y ∈ intQF (F ) and F∧E = ∅. By Lemma 2.1, ΦX(F )∧ΦX(E) = ΦX(F )∧D = ∅
and since ΦX(F ) ∈ γ, γ is an AX -ultrafilter. Since hX(γq) = y, hX is onto.

Let E ∈ Z(QFX)# and µ ∈ Xq − g−1
X (E). Then gX(µ) = ∩{H | H ∈ µq} 6∈ E

and E 6∈ µq. Hence ΦX(E) 6∈ µ and so µ 6∈ ∑
ΦX(E) ∩Xq = SΦX(E). Thus SΦX(E) ⊆

g−1
X (E). Suppose that ξ ∈ g−1

X (E). Then gX(ξ) ∈ E and for any K ∈ ξq, K ∧E 6= ∅.
Since ξq is a Z(QFX)#-ultrafilter, E ∈ ξq and ΦX(E) ∈ ξ. Hence ξ ∈ SΦX(E) and
g−1
X (E) ⊆ SΦX(E). Thus g−1

X (E) = SΦX(E).
Since Z(QFX)# is a base for closed sets and gX is one-to-one and onto, gX is a

homeomorphism. ¤
For any space X, let qX = ΦX ◦ gX .

Corollary 2.8. Let X be a space. Then (QFX,ΦX) and (Xq, qX) are equivlaent
cover of X, that is, there is a homeomorphism gX : Xq −→ QFX such that qX =
ΦX ◦ gX .
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Let X be a space. It is well-known that QF (βX) = L (Z(βX)#). Since Z(X)#

and Z(βX)# are Boolean isomorphic and Z(X)# ⊆ AX , there is a covering map
lX : L (AX) −→ QFβX such that Φβ ◦ lX = ΦAX

(
[3]

)
. In fact, lX(α) is the

Z(X)#-ultrafilter such that α ∩ Z(X)# ⊆ lX(α).

Theorem 2.9. Let X be a space. Then there is a homeomorphism hX : βQFX −→
L (AX) such that hX ◦ βQFX = j ◦ g−1

X , where j : Xq −→ L (AX) is the inclusion
map.

Proof. By Theorem 2.7, βXq and βQFX are homeomorphic. Since j◦g−1
X : QFX −→

L (AX) is a dense embedding, there is a continuous map hX : βQFX −→ L (AX)
such that hX ◦ βQFX = j ◦ g−1

X . Since βQFX and L (AX) are compact spaces and
βQFX and j are dense embeddings, hX is a covering map.

Let A, B be disjoint zero-sets in Xq. Then there are C,D in Z(Xq)# such C ∩
D = ∅, A ⊆ C and B ⊆ D. Since gX : Xq −→ QFX is a homeomorphism,
gX(C) and gX(D) belong to Z(QFX)#. Hence ΦX(gX(C)) = qX(C) ∈ AX and
ΦX(gX(D)) = qX(D) ∈ AX .

In the proof of Theorem 2.7, gX

(
SΦX(gX(C))

)
= qX(C) and gX

(
SΦX(gX(D))

)
=

qX(D). Note that SΦX(gX(C)) = SqX(C) =
∑

qX(C) ∧Xq and SΦX(gX(D)) = SqX(D) =∑
qX(D) ∧Xq. Since C ∩D = ∅, ∑

qX(C) ∧
∑

qX(D) ∧Xq = ∅ and since qX(C) ∈ AX

and qX(D) ∈ AX ,
∑

qX(C) ∩
∑

qX(D) = ∅. Since ΦAX
(
∑

qX(C)) = qX(C) = ΦAX
(C),

C ⊆ ∑
qX(C) and similarly, D ⊆ ∑

qX(D). Hence clL (AX)(C) ∩ clL (AX)(D) = ∅ and
by the Urysohn’s extension theorem, hX is a homeomorphism. ¤
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