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WALLMAN COVERS AND QUASI-F COVERS

CHANG I, KiM2 AND CHANG HYEOB SHIN P *

ABSTRACT. Observing that for any space X, there is a Wallman sublattice @/x and
that QF X is homeomorphic to a subspace X of the Wallman cover .Z(#7x ) of @/x,
we show that SQF X and .Z(#/x) are homeomorphic.

1. INTRODUCTION

All spaces in this paper are assumed to be Tychonoff spaces and (5X, fx) denotes
the Stone-Cech compactification of a space X.

Iliadis constructed the absolute of a Hausdorff, which is the minimal extremally
disconnected cover and they turn out to be the perfect onto projective covers ([6])
To generalize extremally disconnected spaces, basically disconnected spaces, quasi-
F' spaces and cloz-spaces have been introduced and their minimal covers have been
studied by various authors ([1], [3], [4], [5], [7], [8], [9]).

In particular, Henriksen and Gillman introduced the concept of quasi-F' spaces
which is a generalization of F-spaces, in which every cozero-set is C*-embedded.
Each space X has the minimal quasi-F cover (QFX, ®x) ([3]).

Henriksen, Vermeer and Woods introduced the concept of Wallman covers and
proved that if X is a compact space, then QF X is given by the Wallman cover
ZL(Z(X)#) of the Wallman sublattice Z(X)# and ®x(a) = N{A| A € a} (a €
L(Z(X)) ().

In this paper, we introduce a new Wallman sublattice &/x for a space X and
show that QF X is homeomorphic to the subspace X, of a Wallman cover .Z (7).
Using this, we will show that SQFX and .Z(/x) are homeomorphic.

For the terminology, we refer to [2] and [9].

Received by the editors February 7, 2013. Revised May 7, 2013. Accepted May 11, 2013
2010 Mathematics Subject Classification. 54G10, 54C10.

Key words and phrases. quasi-F' space, covering map.

*Corresponding Author.

(© 2013 Korean Soc. Math. Educ.
103



104 CHANG IL Kim & CHANG HYEOB SHIN

2. QuAsi-F' CoOVERS AND WALLMAN COVERS

The set R(X) of all regular closed sets in a space X, when partially ordered
by inclusion, becomes a complete Boolean algebra, in which the join, meet, and
complementation operations are defined as follows : for any A € R(X) and any

[Ai i€} CR(X),

V{A; |iel}=clx(U{A;|iel}),

/\{AZ | 1€ I} = Clx(intx(ﬂ{Ai | 1€ [})), and

A =clx(X —A)
and a sublattice of R(X) is a subset of R(X) that contains (), X and is closed under
finite joins and meets.

Recall that a map f : Y — X is called a covering map if it is a continuous,

onto, perfect, and irreducible map.

Lemma 2.1 ([7]). (1) Let f : Y — X be a covering map. Then the map 1) :
R(Y) — R(X), defined by (A) = ANX, is a Boolean isomorphism and the inverse
map ™1 of ¥ is given by Y~ H(B) = cly (f_l(intX(B))) =cly (inty(f_l(B))).

(2) Let X be a dense subspace of a space K. Then the map ¢ : R(K) — R(X),
defined by ¢(A) = AN X, is a Boolean isomorphism and the inverse map ¢~ of ¢
is given by ¢~ 1(B) = clk(B).

Definition 2.2. A space X is called a quasi-F space if for any zero-sets A, B in
X, dx(intx(AN B)) = cx/(intx(A)) N clx (intx(B)), equivalently, every dense

cozero-set in X is C*-embedded in X.

It is well-known that a space X is a quasi-F space if and only if 5X is a quasi-F

space.
Definition 2.3. Let X be a space. Then a pair (Y, f) is called

(1) a cover of X if f: X — Y is a covering map,

(2) a quasi-F cover of X if (Y, f) is a cover of X and Y is a quasi-F space, and

(3) a minimal quasi-F cover of X if (Y, f) is a quasi-F cover of X and for any
quasi-F' cover (Z,g) of X, there is a covering map h : Z — Y such that
foh=g.

For any space X, there is a minimal quasi-F' cover (QF X, ®x) ([4])

Definition 2.4 ([4]). Let X be a space and </ a sublattice of R(X). Then < is

said to be a Wallman sublattice if
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(1) for any A € o/ and x € X — A, there is a B € & such that x € intx(B)
and AN B =0, and

(2) for any A, B € & with AA B = (), there are C, D in & such that AN C =
BAD=0and CVD=X.

Let X be a compact space and &/ a Wallman sublattice of R(X) such that .o
is a base for closed sets in X. Let £ (&) = {a | a is an &7-ultrafilter } and for
any A € o, 22 ={a e Z() | Aca}. Let Z() be the space, equipped with
the topology for which {Z;‘{ | A € o/} is a base for closed sets and define a map
b, L(F)— X by Py(a) =N{A| A € a}. Then the pair (£ (), D) is called
a Wallman cover of X with respect to <7 ([4]).

For any space X, Z(X)# is a Wallman sublattice of R(X) ([4]).

Lemma 2.5 ([4]). Let X be a compact space. Then we have the following :
(1) forany A, Be o/, YAy =000,
(2) oy : L(F) — X is a covering map, and
(3) (L(Z2(X)#), @Z(X)#) is a minimal quasi-F cover of X.

Let X be a space and &/ a Wallman sublattice of R(X). Let £ (&) ={a | a
is a «/-ultrafilter} be the space which is equipped with the topology for which
{Zf{ | A€ o/} is a base for closed sets. By Lemma 2.1, Z(X)# and Z(3X)* are
isomorphic, .Z(Z(8X)*) is homeomorphic to the space .Z(Z(X)%).

For any space X, let @/x = {clx (intx(®x(A))) | A € Z(QFX)#}. By Lemma
2.1, o/x is a Wallman sublattice of R(X).

For any space X, let (QF(5X), ®3) be the minimal quasi-F' cover of 5X.

Recall that a «7-filter « is called fixed if N{A | A € a} # 0.

Proposition 2.6. Let X be a space. Then we have the following :
(1) @x is a Wallman sublattice of R(X) with Z(X)# C </x, and
(2) for any fized o/x-ultrafilter o, oy = {A € Z(QFX)# | ®x(A) € a} is a
fized Z(QF X)# -ultrafilter and | N {B | B € a,}| = 1.

Proof. (1) Since Z(QF X)# is a Wallman sublattice of R(QFX) and ®x : QF X —
X is a covering map, #x is a Wallman sublattice of R(X). Let A € Z(X)#. By
Lemma 2.1, ®x (clorx (@' (intx(A)))) = Aand clorx (¥ (intx(A))) € Z(QFX)¥.
Hence A € #/x and so Z(X)# C .

(2) Clearly, a, is a Z(QFX)#-filter. Suppose that A € Z(QFX)# — a,. By
the definition of a,;, ®x(A) & a. Since «a is a Z(X)#-ultrafilter, there is a B € «
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such that B A ®x(A) = (. By Lemma 2.1, clgpx (@' (intx(B))) A A = § and
clorx (95 (intx(B))) € Z(QFX)#. Since ®x (czQFX (@5 (intx(B)) ) ~Bea,
corx (P (intx(B))) € aq. Hence ay is a Z(QF X)#-ultrafilter.

Let v € N{A| A € a}. Since a, is a Z(QF X)#-ultrafilter, {BN®*(z) | B € a,}
has the finite intersection property. Since ®3!(z) is compact, "({B N & (x) | B €
ag} # 0 and N{B | B € a;} # 0. This implies that «, is fixed. Since Z(QFX)¥ is
a base for closed sets in QFX, |N{B | B € a4} =1. O

Let X be a space and X, = {a € Z(#x) | a is fixed} the subspace of £ ().
Define a map gx : Xq — QFX by gx(a) =nN{B | B € ay}.
In the following, for any A € @/x, let >, = Zéx and Sq =) 4, NX,.

Theorem 2.7. Let X be a space. Then gx : Xq — QF X is a homeomorphism.

Proof. First, we will show that gx is one-to-one and onto. Let o # § in X,;. Then
there are C,D € «/x such that C € a, D € 6 and C A D = (0. Since C,D €
ax, there are A, B € Z(QFX)# such that ®x(A) = C and ®x(B) = D. Then
Ox(A)ANDPx(B) =Px(AAB) =0 and by Lemma 2.1, AA B ={). Since QFX is a
quasi-F space, ANB = (). Since ®x(A) =C € a, A € a4 and gx (o) € A. Similarly,
gx(6) € B and gx(a) # gx(0). Thus gx is one-to-one.

Let y € QFX and v = {®x(C) | y € C € Z(QFX)#}. Then clearly, v is a
x-filter. Let D € &/x — . Then there is an E € @/x such that ®x(F) = D and
y & E. Since Z(QFX)# is a Wallman sublattice, there is an F € Z(QFX)# such
that y € intgpr(F) and FAE = (. By Lemma 2.1, ®x (F)A®x (E) = ®x(F)AD =)
and since ®x (F) € v, v is an &/x-ultrafilter. Since hx(yq) =y, hx is onto.

Let E € Z(QFX)* and pu € X, — 95" (E). Then gx(u) = N{H | H € g} ¢ E
and E ¢ yig. Hence ®x(E) & pand so & 3 g (5 NXq = Sy (r). Thus Spy(m) €
g)_(l(E). Suppose that £ € g;(l(E). Then gx(§) € E and for any K € §;, K ANE # ().
Since &, is a Z(QF X)#-ultrafilter, E € ¢, and ®x(E) € &. Hence ¢ € So (k) and
9% (E) € So(p)- Thus gy (E) = Sp(p).-

Since Z(QF X)* is a base for closed sets and gy is one-to-one and onto, gy is a

homeomorphism. ]
For any space X, let gx = ®x 0 gx.

Corollary 2.8. Let X be a space. Then (QFX,®x) and (X4, qx) are equiviaent

cover of X, that is, there is a homeomorphism gx : X, — QFX such that qx =

<I>X 0gx.
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Let X be a space. It is well-known that QF (8X) = Z(Z(3X)"). Since Z(X)#
and Z(BX)# are Boolean isomorphic and Z(X)# C o/, there is a covering map
Ix : L(ox) — QFBX such that ®goly = @y ([3]). In fact, Ix(c) is the
Z(X)#-ultrafilter such that a N Z(X)* C Ix(a).

Theorem 2.9. Let X be a space. Then there is a homeomorphism hx : BQFX —
Z(alx) such that hx o forx = og)}l, where j : Xqg — ZL(x) is the inclusion

map.

Proof. By Theorem 2.7, 3X, and BQF X are homeomorphic. Since jog)_(1 QFX —
Z(a/x) is a dense embedding, there is a continuous map hy : fQFX — Z(x)
such that hy o Bgrx = j o gx'. Since BQFX and - (/x) are compact spaces and
Borx and j are dense embeddings, hx is a covering map.

Let A, B be disjoint zero-sets in X,. Then there are C, D in Z(X,)* such C'N
D =0, ACC and B C D. Since gx : X, — QFX is a homeomorphism,
gx(C) and gx (D) belong to Z(QFX)#. Hence ®x(gx(C)) = qx(C) € «/x and
Px(9x(D)) = qx(D) € x.

In the proof of Theorem 2.7, gx (S<I>x(gx(0))) = ¢x(C) and gx (S<I>x(gx(D))) =
qx (D). Note that Sg (4, (0)) = Sgx(C) = qu(c) NXq and Sg (g (D)) = Sqx(D) =
2 ax(p) NXg. Since CND =0, 3 oy N>y (p) NXq =0 and since ¢x(C) € Zx
and gx (D) € #x, qu(c) N ZqX(D) = 0. Since ® (qu(c)) = qx(C) = @, (C),
C C 3y and similarly, D C 37 = ). Hence clg(uy)(C) Nelg(ay) (D) = 0 and

by the Urysohn’s extension theorem, hx is a homeomorphism. O
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