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A NOTE ON THE INTEGRAL POINTS ON SOME HYPERBOLAS

Hansaem Ko a and Yeonok Kim b, ∗

Abstract. In this paper, we study the Lie-generalized Fibonacci sequence and the
root system of rank 2 symmetric hyperbolic Kac-Moody algebras. We derive several
interesting properties of the Lie-Fibonacci sequence and relationship between them.
We also give a couple of sufficient conditions for the existence of the integral points
on the hyperbola ha : x2 − axy + y2 = 1 and hk : x2 − axy + y2 = −k (k ∈ Z>0).
To list all the integral points on that hyperbola, we find the number of elements of
Ωk.

1. Introduction

Let A be a symmetric Cartan matrix A =
(

2
−a

−a
2

)
with a ≥ 3 and g = g(A)

denote the associated symmetric rank 2 hyperbolic Kac-Moody Lie algebra over the
field of complex numbers. Let Π = {α0, α1} denote the set of simple roots with ∆
its root system. A root α ∈ ∆ is called a real root if there exists w ∈ W such that
w(α) is a simple root, and a root which is not real is called an imaginary root. We
denote by ∆re, ∆re

+ , ∆im, and ∆im
+ the set of all real, positive real, imaginary and

positive imaginary roots, respectively. We also denote by ∆im
+,k the set of all positive

imaginary roots of the algebra g(A) with square length −2k. In [2], A.J.Feingold
show that the Fibonacci numbers are intimately related to the rank 2 hyperbolic
GCM Lie algebras. In [5], S.J.Kang and D.J.Melville show that all the roots of a
given length are Weyl conjugate to roots in a small region. These information help
in determining the sufficient conditions for the existence of integral points on the
hyperbola hk : x2 − axy + y2 = −k (k ∈ Z>0).

In this paper, we give some results on the Lie-Fibonacci sequence and symmetric
hyperbolic Kac-Moody algebra of rank 2.
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In section 2, we derive several interesting properties of the Lie-Fibonacci sequence.
And then we give the following results:
1. If n increases, then the ratio of two successive Lie-Fibonacci number approaches

a− 2 +
√

a2 − 4
2

, or
(

1
a− 2

) (
a− 2 +

√
a2 − 4

2

)

(which is the golden ratio if a = 3).
2. Two successive Lie-Fibonacci numbers F

(a)
n and F

(a)
n+1 are relatively prime.

In section 3, we give some definitions and known results on the Kac-Moody
algebras and the study of their elementary properties. We derive the relations among
the Lie-Fibonacci numbers. We also give some sufficient conditions for the existence
of integral points. We find the number of elements of Ωk for some k. Lastly, we give
the following theorem:

Theorem. Let x2−axy+y2 = −(a−2)γ2 for a ≥ 3 and γ ∈ Z>0 be the hyperbola.
If a + 2 = γ2, and a− 2 is a square free integer, then |Ω(a−2)γ2 | = 2.

This procedure finds all the integral points on these hyperbolas far more easily
than the traditional number-theoretic algorithm.

2. Lie-Fibonacci Sequence

In this section, we introduce the Lie generalized Fibonacci sequence {F (a)
n }, and

generalize the several interesting properties of the Fibonacci sequence {Fn}.
Define a new sequence {F (a)

n } by the recurrence relations

F
(a)
0 = F

(a)
1 = 1,

F
(a)
2n+2 = aF

(a)
2n − F

(a)
2n−2(1)

F
(a)
2n+1 = F

(a)
2n+2 − F

(a)
2n (n > 0).

Clearly {F (3)
n } = {Fn}, the Fibonacci sequence defined by:

(2) F0 = 0, F1 = 1, Fn+2 = Fn + Fn+1.

We call this sequence {F (a)
n }, the Lie-Fibonacci sequence, and F

(a)
n the Lie-

Fibonacci number.
It is well known that there are many interesting identities for the Fibonacci

sequence. In this section, we derive several similar identities for the Lie-Fibonacci
sequence. Among the several known results concerning Fibonacci numbers, we quote
below some interesting ones:
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Proposition 2.1 ([7]). Let {Fn} be the Fibonacci sequence. Then we have the
followings.
(a) F1 + F3 + F5 + · · ·+ F2n−1 = F2n.

(b) F2 + F4 + · · ·+ F2n = F2n+1 − 1.

(c) F1 + F2 + · · ·+ Fn = Fn+2 − 1.

(d) F1 − F2 + F3 − F4 + · · ·+ (−1)n+1Fn = (−1)n+1Fn−1 + 1.

(e) F 2
1 + F 2

2 + · · ·+ F 2
n = FnFn+1.

To prove several identities for the Lie-Fibonacci sequence , we need the following
Proposition.

Lemma 2.2 ([8]). For any positive integer n, we have
(a) F

(a)
2n+3 = aF

(a)
2n+1 − F

(a)
2n−1.

(b) F
(a)
2n + F

(a)
2n+1 = F

(a)
2n+2.

(c) F
(a)
2n−1 + (a− 2)F (a)

2n = F
(a)
2n+1.

We deduce from Proposition 2.2 the following theorem.

Theorem 2.3. Let {F (a)
n } be the Lie-Fibonacci sequence. Then we have the follow-

ing.
(a) F

(a)
1 + F

(a)
3 + F

(a)
5 + · · ·+ F

(a)
2n−1 = F

(a)
2n .

(b) F
(a)
2 + F

(a)
4 + · · ·+ F

(a)
2n = 1

a−2(F (a)
2n+1 − 1).

(c) F
(a)
1 + F

(a)
2 + · · ·+ F

(a)
2n−1 = 1

a−2(F (a)
2n+1 − 1).

(d) F
(a)
1 + (a− 2)F (a)

2 + F
(a)
3 + (a− 2)F (a)

4 + · · ·+ F
(a)
2n−1 + (a− 2)F (a)

2n = F
(a)
2n+2 − 1.

(e) F
(a)
1 − F

(a)
2 + F

(a)
3 − F

(a)
4 + · · ·+ F

(a)
2n−1 − F

(a)
2n = 1

a−2(1− F
(a)
2n−1).

(f) (F (a)
1 )2 + (a− 2)(F (a)

2 )2 + F
(a)
3 + · · ·+ (a− 2)ln(F (a)

n )2 = F
(a)
2n F

(a)
2n+1, where

ln =

{
1 if n is even

0 if n is odd .

(g) (F (a)
2n )2 = F

(a)
2n F

(a)
2n+2 − F

(a)
2n F

(a)
2n+1.

Proof. Since F
(a)
2n+1 = F

(a)
2n+2 − F

(a)
2n , we have

F
(a)
1 + F

(a)
3 + F5 + · · ·+ F

(a)
2n−1

= F
(a)
1 + (F (a)

4 − F
(a)
2 ) + (F (a)

6 − F
(a)
4 ) · · ·+ (F (a)

2n − F
(a)
2n−2)(3)

= F
(a)
1 − F

(a)
2 + F

(a)
2n

= F
(a)
2n ,
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which proves part (a). For part (b), using Proposition 2.2(e), we have:

F
(a)
2 + F

(a)
4 + F

(a)
6 + · · ·+ F

(a)
2n

=
1

a− 2
{ (F (a)

3 − F
(a)
1 ) + (F (a)

5 − F
(a)
3 ) + · · ·+ (F (a)

2n+1 − F
(a)
2n−1) }(4)

=
1

a− 2
(F (a)

2n+1 − 1),

the desired result. Using parts (a) and (b), we have

F
(a)
1 + F

(a)
2 + · · ·+ F

(a)
2n−1

= (F (a)
1 + F

(a)
3 + F

(a)
5 + · · ·+ F

(a)
2n−1) + (F (a)

2 + F
(a)
4 + · · ·+ F

(a)
2n−2)(5)

= F
(a)
2n + F

(a)
2 + F

(a)
4 + · · ·+ F

(a)
2n−2

=
1

a− 2
(F (a)

2n+1 − 1),

which proves part (c). In a similar manner, we can derive parts (d),(e) and (f). ¤

It is well known that two successive Fibonacci numbers Fn and Fn+1 are dis-
joint. The following Theorem shows that the Lie-Fibonacci numbers have the same
property.

Theorem 2.4. Let {F (a)
n } be the Lie-Fibonacci sequence. Then two successive Lie-

Fibonacci numbers F
(a)
2n and F

(a)
2n+1 are relatively prime.

Proof. Clearly, F
(a)
1 and F

(a)
2 are relatively prime. Let d be a gcd of F

(a)
2n and

F
(a)
2n+1 (n ≥ 1). Since F

(a)
2n+2 = F

(a)
2n + F

(a)
2n+1, d divides F

(a)
2n+2. On the other hands,

F
(a)
2n+2 = aF

(a)
2n +F

(a)
2n−2. Thus d also divides F

(a)
2n−2 and F

(a)
2n−1. Continuing this process,

we arrive at d = 1. ¤

Let {Fn} be the Fibonacci sequence. Robert Simson stated that

Fn−1Fn+1 − F 2
n = (−1)n,

for every positive integer n, as it is to see, by induction on n.
To generalize the Simson’s identity concerning the Fibonacci sequence, we need

the following Proposition.

Proposition 2.5 ([7]). (Generalization of Binet formula ) Let {F (a)
n } be the Lie-

Fibonacci sequence, and let α =
a +

√
a2 − 4
2

be a zero of 1− (a2 − 2)x2 + x4. Then
we have the following:
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(a) F
(a)
2n =

1√
a2 − 4




(
(α− 1)2

a− 2

)n

−




(
1
α
− 1)2

a− 2




n


=
1

(a− 2)n
√

a2 − 4




(
a− 2 +

√
a2 − 4

2

)2n

−
(

a− 2−√a2 − 4
2

)2n

 ,

(b) F
(a)
2n+1 =

1√
a2 − 4




(
(α− 1)2

a− 2

)n

−




(
1
α
− 1)2

a− 2




n


=
1

(a− 2)n
√

a2 − 4




(
a− 2 +

√
a2 − 4

2

)2n+1

−
(

a− 2−√a2 − 4
2

)2n+1

 .

Theorem 2.6. Let {F (a)
n } be the Lie-Fibonacci sequence and n ∈ Z>0. Then we

have:
(a) F

(a)
2n−1F

(a)
2n+1 − (a− 2)(F (a)

2n )2 = 1.

(b) (a− 2)F (a)
2n F

(a)
2n+2 − (F (a)

2n+1)
2 = −1.

(c) F
(a)
n F

(a)
n+1 − F

(a)
n−1F

(a)
n+2 = (−1)n+1.

Proof. Let β =
1
α

, α′ = α− 1 and β′ = β − 1. Then we have

F
(a)
2n−1F

(a)
2n+1 − (a− 2)(F (a)

2n )2

=
1

(a− 2)n−1
√

a2 − 4




(
a− 2 +

√
a2 − 4

2

)2n−1

−
(

a− 2−√a2 − 4
2

)2n−1



1
(a− 2)n

√
a2 − 4




(
a− 2 +

√
a2 − 4

2

)2n+1

−
(

a− 2−√a2 − 4
2

)2n+1



− (a− 2)


 1

(a− 2)n
√

a2 − 4




(
a− 2 +

√
a2 − 4

2

)2n

−
(

a− 2−√a2 − 4
2

)2n






2

=
1

(a− 2)2n−1(a2 − 4)
(
α′4n − (α′β′)2n−1

(
β′2 + α′2

)
+ β′4n − α′4n + 2(α′β′)2n − β′4n

)

=
−(α′β′)2n−1

(a− 2)2n−1(a2 − 4)
(
α′2 + β′2 − 2α′β′

)

=
−(2− a)2n−1

(a− 2)2n−1(a2 − 4)
(
α′ − β′

)2

= 1,
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which proves part (a). In a similar manner, we can derive parts (b) and (c). ¤

It is well known that as n increases the ratio
Fn+1

Fn
approaches

1 +
√

5
2

, the

golden ratio. The following Theorem shows that the Lie-Fibonacci sequence {F (a)
n }

has similar properties.

Theorem 2.7. Let {F (a)
n } be the Lie-Fibonacci sequence, and let α =

a +
√

a2 − 4
2

.

Then we have

(a) limn→∞
F

(a)
2n+1

F
(a)
2n

=
a− 2 +

√
a2 − 4

2
= α− 1.

(b) limn→∞
F

(a)
2n+2

F
(a)
2n+1

=
(

1
a− 2

)(
a− 2 +

√
a−4

2

)
=

1
a− 2

(α− 1).

In particular, limn→∞
F

(3)
2n+1

F
(3)
2n

= 1+
√

5
2 , the golden ratio.

Proof. Let pn =
F

(a)
2n+2

F
(a)
2n

. Then we have

pn =
aF

(a)
2n − F

(a)
2n−2

F
(a)
2n

= a− 1
pn−1

(6)

= a− 1

a− 1
pn−2

· · ·

Therefore,

lim
n→∞Pn is a zero of x = a− 1

x
,

and hence,

lim
n→∞Pn =

a−√a2 − 4
2

.

Let

qn =
F

(a)
2n+1

F
(a)
2n

.

Then we have

qn =
F

(a)
2n+2 − F

(a)
2n

F
(a)
2n

= pn − 1.
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Therefore,

lim
n→∞ qn =

a−√a2 − 4
2

− 1

=
a− 2 +

√
a2 − 4

2
,

which proves for part (a). In a similar manner, we can derive part (b). ¤

3. Existence of Integral Points on the Hyperbolas

In this section, we study the root system of the rank 2 hyperbolic Kac-Moody
algebras g(A) with symmetric generalized Cartan matrix A =

(
2
−a

−a
2

)
with a ≥ 3.

Let W be the Weyl group of g(A), generated by simple reflections r1 and r2.

We identify an element

(7) α = xα1 + yα2 ∈ Q with an ordered pair (x, y) ∈ Z× Z.

We call a root α ∈ Z×Z the positive integral point if x, y ∈ Z≥0. Define a symmetric
bilinear form ( ·|· ) on h∗ by the following equation:

(α1 |α1) = (α2 |α2) = 2, (α1|α2) = −a.(8)

Then for α = xα1 + yα2, we have (α |α) = 2(x2 − axy + y2).
It is well known that there is a one-to-one correspondence between the set of real

roots of g(A) and the set of integral points on the hyperbola x2−axy+y2 = 1. Since
there is no root α such that (α |α) = 0, the imaginary roots of g(A) correspondence
to the set of integral points on the hyperbolas hk : x2− axy + y2 = −k for k ≥ 1. In
other words, for each k ≥ 1, there is a one-to-one correspondence between the set
of all imaginary roots α with square length (α |α) = −2k and the set of all integral
points on the hyperbola hk.

We introduce the sequences of integers {Bn} for n ≥ 0 by the recurrence relations

(9) B0 = 0, B1 = 1, and Bn+2 = aBn+1 −Bn for n ≥ 1.

Clearly, we have

(10) F
(a)
2n = Bn, and F

(a)
2n−2 = Bn −Bn−1.

The following Proposition is well known.

Proposition 3.1 ([3]). ∆re
+ = {(Bn, Bn+1), (Bn+1, Bn) | n ≥ 0}. Furthermore,

∆re
+ = {(F2j , F2j+2), (F2j+2, F2j) | j ∈ Z≥0}

for a = 3.
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For a positive integer k, let ∆im
+,k be the set of all positive imaginary roots α of

g(A) with square length (α |α) = −2k. That is, ∆im
+,k is the set of all positive integral

points on the hyperbola hk. The following Proposition gives a nice description of
the set of positive imaginary roots of length −2k.

Proposition 3.2 ([5]).

∆im
+,k ={(m,n), (n,m), (mBj+1 − nBj ,mBj+2 − nBj+1),

(mBj+2 − nBj+1,mBj+1 − nBj), (nBj+1 −mBj , nBj+2 −mBj+1),

(nBj+2 −mBj+1, nBj+1 −mBj) | (m,n) ∈ Ωk},
where

Ωk =

{
(m,n) ∈ Z≥0 × Z≥0

∣∣ 2
√

k√
a2 − 4

≤ m ≤
√

k

a− 2
, n=

am−
√

(a2 − 4)m2 − 4k

2

}
.

Since F
(a)
2n = Bn, and F

(a)
2n−2 = Bn − Bn−1. Proposition 3.1 and Proposition 3.2

can be rewritten as follows:

Proposition 3.3. Let {F (a)
n } be the Lie-Fibonacci sequence. Then

(a) The set of all nonnegative integral points on the hyperbola

x2 − axy + y2 = 1

is {(F (a)
2n , F

(a)
2n+2), (F

(a)
2n+2, F

(a)
2n ) |n ∈ Z≥0}.

(b) The set of all nonnegative integral points on the hyperbola

x2 − axy + y2 = −(a− 2)

is {(1, 1), (F (a)
2n−1, F

(a)
2n+1), (F

(a)
2n+1, F

(a)
2n−1) |n ∈ Z≥0}.

Proof. (a) is immediate consequence of Proposition 3.1 and definition of the Lie-
Fibonacci sequence. For (b), after simple calculation, we have Ωk = {(1, 1)} and
hence

∆im
+ = {(1, 1), (F (a)

2n−1, F
(a)
2n+1), (F

(a)
2n+1, F

(a)
2n−1) |n ∈ Z≥0}.

¤

To list all the integral points on those hyperbolas, we also find the number of
elements of Ωk.

Proposition 3.4. ([7]) Let x2 − axy + ay2 = −k be the hyperbola and let k = tγ2

be any positive integer where t is a square free integer and γ ∈ Z>0. If (γ, δ) ∈ Ωk

for some positive integer δ, then
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a− 2 ≤ t ≤ a2 − 4
4

for a ≥ 3,

where

Ωk =

{
(m,n) ∈ ∆im

+,k

∣∣ 2
√

k√
a2 − 4

≤ m ≤
√

k

a− 2
, n =

am−
√

(a2 − 4)m2 − 4k

2

}
.

Since W is infinite, Ωk 6= ∅ implies that there are infinitely many integral points
on the hyperbola x2 − axy + y2 = −k. Proposition 3.3 tells us that Ωk have crucial
information for the set of integral points on the hyperbola x2 − axy + y2 = −k. We
have the following Lemma.

Lemma 3.5. Let x2 − axy + ay2 = −k be the hyperbola. If k < a− 2, then there is
no integral point on that hyperbola.

Proof. Since there is no integer m with
2
√

k√
a2 − 4

≤ m ≤
√

k

a− 2
, we have Ωk = ∅,

and hence we get the desired result. ¤

The following Proposition is obtained by the definition of Ωk.

Proposition 3.6. Let x2−axy+y2 = −(a−2)γ2 be the hyperbola for a ≥ 3 and γ ∈
Z>0. If γ <

n
√

a + 2√
a + 2− 2

, then 1 ≤ |Ω(a−2)γ2 | ≤ n. Furthermore, γ <

√
a + 2√

a + 2− 2
,

then |Ω(a−2)γ2 | = 1.

Proof. Clearly, we have (γ, γ) ∈ Ω(a−2)γ2 , and hence,

|Ω(a−2)γ2 | ≥ 1.

Consider the set

Ω(a−2)γ2 =

{
(m, n) ∈ ∆im

+,k

∣∣ 2γ√
a + 2

≤m ≤ γ, n=
am−

√
(a2 − 4)m2 − 4(a− 2)γ2

2

}
.

Since

γ − 2γ√
a + 2

< n implies γ <
n
√

a + 2√
a + 2− 2

,

at most n positive integers exist between
2γ√
a + 2

and γ, we get the desired result.

¤

Example 3.7. Let x2−7xy+y2 = −5 be the hyperbola. Then we have Ω5 = {(1, 1)}.
Therefore,

∆im
+ = {(1, 1), (F (7)

2n−1, F
(7)
2n+1), (F (7)

2n+1, F
(7)
2n−1) |n ≥ 1}

= {(1, 1), (1, 6), (6, 1)(6, 41), (41, 6), · · · · · · }.
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Example 3.8. Let x2 − 3xy + y2 = −γ2 be the hyperbola. Since a = 3,

γ <

√
5√

5− 2
implies |Ω(a−2)γ2 | = 1, thus we have |Ω(a−2)γ2 | = 1 for 1 ≤ γ ≤ 9.

Therefore,
Ω(a−2)γ2 = {(γ, γ)} for 1 ≤ γ ≤ 9,

and hence
∆re = {σ(γ, γ) |σ ∈ W}.

For the case of a = 4, similarly we have, |Ω(a−2)γ2 | = 1 for 1 ≤ γ ≤ 5.

Lemma 3.9. Let x2 − axy + y2 = −(a − 2)γ2 for a ≥ 3 and γ ∈ Z>0 be the
hyperbola. If a + 2 = γ2, then |Ω(a−2)γ2 | ≥ 2.

Proof. Clearly, (γ, γ) ∈ Ω(a−2)γ2 . If we substitute γ2 for a + 2, then we have γ ≥ 3
and

Ωa2−4 =

{
(m,n) ∈ ∆im

+,k

∣∣ 2 ≤ m ≤ γ, n =
am−

√
(a− 2)(m2 − 4)γ

2

}
.

Thus we have {(2, a), (γ, γ)} ⊆ Ωa2−4, and hence we get the desired result. ¤

Theorem 3.10. Let x2 − axy + y2 = −(a − 2)γ2 for a ≥ 3 and γ ∈ Z>0 be the
hyperbola. If a + 2 = γ2, and a− 2 is a square free integer, then |Ω(a−2)γ2 | = 2.

Proof. If (m,n) ∈ Ω(a−2)γ2 for some n ∈ Z>0, then we have m2− 4 = (a− 2)l2 for
some l ∈ Z≥. Since a−2 = γ2−4, and m ≤ γ, we have γ2−4 ≥ m2−4 = (γ2−4)l2,
and hence either l = 0 or l = 1. This implies that either m = 2 or m = γ, and hence
Ωa2−4 = {(2, a), (γ, γ)}. ¤

Example 3.11. Let x2 − 7xy + y2 = −5 · 32 be the hyperbola. Then we have

Ω7·32 = {(2, 7), (3, 3)},
and hence

∆im
+ = {3(F (7)

2n−1, F
(7)
2n+1), 3(F (7)

2n+1, F
(7)
2n−1), (2F (7)

2n+2 − 7F
(7)
2n , 2F

(7)
2n+4 − 7F

(7)
2n+2),

(2F (7)
2n+4 − 7F

(7)
2n+2, 2F

(7)
2n+2 − 7F

(7)
2n )(7F

(7)
2n+2 − 2F

(7)
2n , 7F

(7)
2n+4 − 2F

(7)
2n+2),

(7F (7)
2n+4 − 2F

(7)
2n+2, 7F

(7)
2n+2 − 2F

(7)
2n ) |n ≥ 1 }.

Corollary 3.12. There are many integral solutions x2−axy+y2 = 4−a2 for a ≥ 2.

Theorem 3.13. If a 6= 2 (mod 4), then there is a one-to-one correspondence between
the set of integral points on the hyperbolas x2−axy+y2 = 1 and (a+2)x2−(a−2)y2 =
4.
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Proof. (a+2)x′2− (a−2)y′2 = 4 is obtained from x2−axy + y2 = 1 by substituting
(x, y) = 1

2(x′ + y′, −x′ + y′), that is (x′, y′) = (x− y, x + y).
If x, y are integers, then clearly x′ and y′ are also integers. On the other hand,

we need to show that (x′, y′) ∈ Z × Z implies that (x, y) ∈ 2Z × 2Z or (x, y) ∈
(2n + 1)Z × (2n + 1)Z. If a = 4k, then (4k + 2)x′2 − (4k − 2)y′2 = 4. That is
(2k + 1)x′2 = (2k − 1)y′2 + 2. This implies x′ and y′ are both even or both odd.

Similarly, we can show in the other cases: a ≡ 1 (mod 4) and a ≡ 3 (mod 4). ¤

Example 3.14. Since the set of all nonnegative integral points on the hyperbola

x2 − 5xy + y2 = 1

is {(0, 1), (1, 0), (1, 5), (5, 1), (5, 24), (24, 5), (24, 115), (115, 24), · · · · · · }, and
{(−1, 1), (1, 1), (−4, 6), (4, 6), (−19, 29), (19, 29), (−91, 139), (91, 139), · · · · · · }
is the set of integral points on the hyperbola

7x2 − 3y2 = 4.

Corollary 3.15. There are infinitely many integral points on the hyperbola

(a + 2)x2 − (a− 2)y2 = 4 (a ≥ 3, a 6≡ 2 (mod 4)).

References

1. R.A. Dunlap: The golden ratio and Fibonacci numbers. World Science (1997).
2. A.J. Feingold: A hyperbolic GCM and the Fibonacci numbers. Proc. Amer. Math. Soc.

80 (1980), 379-385.
3. A.F. Horadam: A Generalized the Fibonacci Sequence. Proc. Amer. Math. Monthly. 68

(1961), 455-459.
4. V.G. Kac: Infinite-Dimensional Lie Algebras. Cambridge University Press, 1990.
5. S.-J, Kang & D.J. Melville: Rank 2 Symmetric Hyperbolic Kac-Moody Algebras.

Nagoya. Math. J. 140 (1995), 41-75.
6. Y. Kim, K.C. Misra & S.J. Stizinger: On the degree of nilpotency of certain subalgebras

of Kac-Moody Lie algebras. J. Lie Theory. 14 (2004), 11-23
7. Y. Kim: A note on the rank 2 symmetric Hyperbolic Kac-Moody Lie algebras. J. KSME.

SerB. 17 (2010), 107-113
8. : On some behavior of integral points on a hyperbola. submitted.
9. R.V. Moody: Root System of Hyperbolic Type. Adv. in Math. 33 (1979) 144-160.

10. : A new class of Lie algebras. J. Algebra 10 (1968), 210-230.
11. J. Moragado: Some remark on an identy of Catalan concerning the Fibonachi numbers.

Portugale Math. Soc. 39 (1980), 341-348.



148 Hansaem Ko & Yeonok Kim

12. K.S. Rao: Some Properties of Fibonacci numbers. Amer. Math. Monthly. 60 (1953),
680-684.

aDepartment of Mathematics, SoongSil University, Seoul 151, Korea
Email address: hsaem713@gmail.com

bDepartment of Mathematics, SoongSil University, Seoul 151, Korea
Email address: yokim@ssu.ac.kr


