A NOTE ON THE INTEGRAL POINTS ON SOME HYPERBOLAS

Hansaem Ko $^{\rm a}$ and Yeonok Kim $^{\rm b,\,*}$

ABSTRACT. In this paper, we study the Lie-generalized Fibonacci sequence and the root system of rank 2 symmetric hyperbolic Kac-Moody algebras. We derive several interesting properties of the Lie-Fibonacci sequence and relationship between them. We also give a couple of sufficient conditions for the existence of the integral points on the hyperbola $\mathfrak{h}^a: x^2 - axy + y^2 = 1$ and $\mathfrak{h}_k: x^2 - axy + y^2 = -k$ ($k \in \mathbb{Z}_{>0}$). To list all the integral points on that hyperbola, we find the number of elements of Ω_k .

1. INTRODUCTION

Let A be a symmetric Cartan matrix $A = \begin{pmatrix} 2 & -a \\ -a & 2 \end{pmatrix}$ with $a \ge 3$ and $\mathfrak{g} = \mathfrak{g}(A)$ denote the associated symmetric rank 2 hyperbolic Kac-Moody Lie algebra over the field of complex numbers. Let $\Pi = \{\alpha_0, \alpha_1\}$ denote the set of simple roots with Δ its root system. A root $\alpha \in \Delta$ is called a *real root* if there exists $w \in W$ such that $w(\alpha)$ is a simple root, and a root which is not real is called an *imaginary root*. We denote by Δ^{re} , Δ^{re}_+ , Δ^{im}_+ , and Δ^{im}_+ the set of all real, positive real, imaginary and positive imaginary roots, respectively. We also denote by $\Delta^{im}_{+,k}$ the set of all positive imaginary roots of the algebra $\mathfrak{g}(A)$ with square length -2k. In [2], A.J.Feingold show that the Fibonacci numbers are intimately related to the rank 2 hyperbolic GCM Lie algebras. In [5], S.J.Kang and D.J.Melville show that all the roots of a given length are Weyl conjugate to roots in a small region. These information help in determining the sufficient conditions for the existence of integral points on the hyperbola $\mathfrak{h}_k: x^2 - axy + y^2 = -k$ $(k \in \mathbb{Z}_{>0})$.

In this paper, we give some results on the Lie-Fibonacci sequence and symmetric hyperbolic Kac-Moody algebra of rank 2.

© 2013 Korean Soc. Math. Educ.

Received by the editors Dec. 05, 2012. Revised June 18, 2013. Accepted July 18, 2013.

²⁰¹⁰ Mathematics Subject Classification. 17B10, 17B65, 17B67.

 $Key\ words\ and\ phrases.$ Lie-Fibonacci sequence, Lie-Fibonacci number, Kac-Moody algebra, hyperbolic type.

 $^{^{*}}$ Corresponding author.

In section 2, we derive several interesting properties of the Lie-Fibonacci sequence. And then we give the following results:

1. If n increases, then the ratio of two successive Lie-Fibonacci number approaches

$$\frac{a-2+\sqrt{a^2-4}}{2}$$
, or $\left(\frac{1}{a-2}\right)\left(\frac{a-2+\sqrt{a^2-4}}{2}\right)$

(which is the golden ratio if a = 3).

2. Two successive Lie-Fibonacci numbers $F_n^{(a)}$ and $F_{n+1}^{(a)}$ are relatively prime.

In section 3, we give some definitions and known results on the Kac-Moody algebras and the study of their elementary properties. We derive the relations among the Lie-Fibonacci numbers. We also give some sufficient conditions for the existence of integral points. We find the number of elements of Ω_k for some k. Lastly, we give the following theorem:

Theorem. Let $x^2 - axy + y^2 = -(a-2)\gamma^2$ for $a \ge 3$ and $\gamma \in \mathbb{Z}_{>0}$ be the hyperbola. If $a + 2 = \gamma^2$, and a - 2 is a square free integer, then $|\Omega_{(a-2)\gamma^2}| = 2$.

This procedure finds all the integral points on these hyperbolas far more easily than the traditional number-theoretic algorithm.

2. LIE-FIBONACCI SEQUENCE

In this section, we introduce the Lie generalized Fibonacci sequence $\{F_n^{(a)}\}$, and generalize the several interesting properties of the Fibonacci sequence $\{F_n\}$.

Define a new sequence $\{F_n^{(a)}\}$ by the recurrence relations

(1)

$$F_{0}^{(a)} = F_{1}^{(a)} = 1,$$

$$F_{2n+2}^{(a)} = aF_{2n}^{(a)} - F_{2n-2}^{(a)}$$

$$F_{2n+1}^{(a)} = F_{2n+2}^{(a)} - F_{2n}^{(a)} \quad (n > 0).$$

Clearly $\{F_n^{(3)}\} = \{F_n\}$, the Fibonacci sequence defined by:

(2)
$$F_0 = 0, \ F_1 = 1, \ F_{n+2} = F_n + F_{n+1}.$$

We call this sequence $\{F_n^{(a)}\}$, the Lie-Fibonacci sequence, and $F_n^{(a)}$ the Lie-Fibonacci number.

It is well known that there are many interesting identities for the Fibonacci sequence. In this section, we derive several similar identities for the Lie-Fibonacci sequence. Among the several known results concerning Fibonacci numbers, we quote below some interesting ones:

Proposition 2.1 ([7]). Let $\{F_n\}$ be the Fibonacci sequence. Then we have the followings.

(a)
$$F_1 + F_3 + F_5 + \dots + F_{2n-1} = F_{2n}$$
.
(b) $F_2 + F_4 + \dots + F_{2n} = F_{2n+1} - 1$.
(c) $F_1 + F_2 + \dots + F_n = F_{n+2} - 1$.
(d) $F_1 - F_2 + F_3 - F_4 + \dots + (-1)^{n+1}F_n = (-1)^{n+1}F_{n-1} + 1$.
(e) $F_1^2 + F_2^2 + \dots + F_n^2 = F_n F_{n+1}$.

To prove several identities for the Lie-Fibonacci sequence , we need the following Proposition.

Lemma 2.2 ([8]). For any positive integer n, we have (a) $F_{2n+3}^{(a)} = aF_{2n+1}^{(a)} - F_{2n-1}^{(a)}$. (b) $F_{2n}^{(a)} + F_{2n+1}^{(a)} = F_{2n+2}^{(a)}$.

(c)
$$F_{2n-1}^{(a)} + (a-2)F_{2n}^{(a)} = F_{2n+1}^{(a)}$$
.

We deduce from Proposition 2.2 the following theorem.

Theorem 2.3. Let $\{F_n^{(a)}\}$ be the Lie-Fibonacci sequence. Then we have the following.

$$\begin{array}{l} (a) \ F_1^{(a)} + F_3^{(a)} + F_5^{(a)} + \dots + F_{2n-1}^{(a)} = F_{2n}^{(a)}. \\ (b) \ F_2^{(a)} + F_4^{(a)} + \dots + F_{2n}^{(a)} = \frac{1}{a-2}(F_{2n+1}^{(a)} - 1). \\ (c) \ F_1^{(a)} + F_2^{(a)} + \dots + F_{2n-1}^{(a)} = \frac{1}{a-2}(F_{2n+1}^{(a)} - 1). \\ (d) \ F_1^{(a)} + (a-2)F_2^{(a)} + F_3^{(a)} + (a-2)F_4^{(a)} + \dots + F_{2n-1}^{(a)} + (a-2)F_{2n}^{(a)} = F_{2n+2}^{(a)} - 1 \\ (e) \ F_1^{(a)} - F_2^{(a)} + F_3^{(a)} - F_4^{(a)} + \dots + F_{2n-1}^{(a)} - F_{2n}^{(a)} = \frac{1}{a-2}(1 - F_{2n-1}^{(a)}). \\ (f) \ (F_1^{(a)})^2 + (a-2)(F_2^{(a)})^2 + F_3^{(a)} + \dots + (a-2)^{l_n}(F_n^{(a)})^2 = F_{2n}^{(a)}F_{2n+1}^{(a)}, \ where \\ \ l_n = \begin{cases} 1 \quad if \ n \ is \ even \\ 0 \quad if \ n \ is \ odd \ . \end{cases}$$

(g) $(F_{2n}^{(a)})^2 = F_{2n}^{(a)}F_{2n+2}^{(a)} - F_{2n}^{(a)}F_{2n+1}^{(a)}$.

Proof. Since $F_{2n+1}^{(a)} = F_{2n+2}^{(a)} - F_{2n}^{(a)}$, we have

(3)

$$F_{1}^{(a)} + F_{3}^{(a)} + F_{5} + \dots + F_{2n-1}^{(a)}$$

$$= F_{1}^{(a)} + (F_{4}^{(a)} - F_{2}^{(a)}) + (F_{6}^{(a)} - F_{4}^{(a)}) \dots + (F_{2n}^{(a)} - F_{2n-2}^{(a)})$$

$$= F_{1}^{(a)} - F_{2}^{(a)} + F_{2n}^{(a)}$$

$$= F_{2n}^{(a)},$$

which proves part (a). For part (b), using Proposition 2.2(e), we have:

(4)
$$F_{2}^{(a)} + F_{4}^{(a)} + F_{6}^{(a)} + \dots + F_{2n}^{(a)}$$
$$= \frac{1}{a-2} \{ (F_{3}^{(a)} - F_{1}^{(a)}) + (F_{5}^{(a)} - F_{3}^{(a)}) + \dots + (F_{2n+1}^{(a)} - F_{2n-1}^{(a)}) \}$$
$$= \frac{1}{a-2} (F_{2n+1}^{(a)} - 1),$$

the desired result. Using parts (a) and (b), we have

(5)
$$F_{1}^{(a)} + F_{2}^{(a)} + \dots + F_{2n-1}^{(a)}$$
$$= (F_{1}^{(a)} + F_{3}^{(a)} + F_{5}^{(a)} + \dots + F_{2n-1}^{(a)}) + (F_{2}^{(a)} + F_{4}^{(a)} + \dots + F_{2n-2}^{(a)})$$
$$= F_{2n}^{(a)} + F_{2}^{(a)} + F_{4}^{(a)} + \dots + F_{2n-2}^{(a)}$$
$$= \frac{1}{a-2}(F_{2n+1}^{(a)} - 1),$$

which proves part (c). In a similar manner, we can derive parts (d),(e) and (f). \Box

It is well known that two successive Fibonacci numbers F_n and F_{n+1} are disjoint. The following Theorem shows that the Lie-Fibonacci numbers have the same property.

Theorem 2.4. Let $\{F_n^{(a)}\}$ be the Lie-Fibonacci sequence. Then two successive Lie-Fibonacci numbers $F_{2n}^{(a)}$ and $F_{2n+1}^{(a)}$ are relatively prime.

Proof. Clearly, $F_1^{(a)}$ and $F_2^{(a)}$ are relatively prime. Let d be a gcd of $F_{2n}^{(a)}$ and $F_{2n+1}^{(a)}$ $(n \ge 1)$. Since $F_{2n+2}^{(a)} = F_{2n}^{(a)} + F_{2n+1}^{(a)}$, d divides $F_{2n+2}^{(a)}$. On the other hands, $F_{2n+2}^{(a)} = aF_{2n}^{(a)} + F_{2n-2}^{(a)}$. Thus d also divides $F_{2n-2}^{(a)}$ and $F_{2n-1}^{(a)}$. Continuing this process, we arrive at d = 1.

Let $\{F_n\}$ be the Fibonacci sequence. Robert Simson stated that

$$F_{n-1}F_{n+1} - F_n^2 = (-1)^n,$$

for every positive integer n, as it is to see, by induction on n.

To generalize the Simson's identity concerning the Fibonacci sequence, we need the following Proposition.

Proposition 2.5 ([7]). (Generalization of Binet formula) Let $\{F_n^{(a)}\}$ be the Lie-Fibonacci sequence, and let $\alpha = \frac{a + \sqrt{a^2 - 4}}{2}$ be a zero of $1 - (a^2 - 2)x^2 + x^4$. Then we have the following:

(a)
$$F_{2n}^{(a)} = \frac{1}{\sqrt{a^2 - 4}} \left(\left(\frac{(\alpha - 1)^2}{a - 2} \right)^n - \left(\frac{(\frac{1}{\alpha} - 1)^2}{a - 2} \right)^n \right)$$

 $= \frac{1}{(a - 2)^n \sqrt{a^2 - 4}} \left(\left(\frac{a - 2 + \sqrt{a^2 - 4}}{2} \right)^{2n} - \left(\frac{a - 2 - \sqrt{a^2 - 4}}{2} \right)^{2n} \right),$
(b) $F_{2n+1}^{(a)} = \frac{1}{\sqrt{a^2 - 4}} \left(\left(\frac{(\alpha - 1)^2}{a - 2} \right)^n - \left(\frac{(\frac{1}{\alpha} - 1)^2}{a - 2} \right)^n \right)$
 $= \frac{1}{(a - 2)^n \sqrt{a^2 - 4}} \left(\left(\frac{a - 2 + \sqrt{a^2 - 4}}{2} \right)^{2n+1} - \left(\frac{a - 2 - \sqrt{a^2 - 4}}{2} \right)^{2n+1} \right).$

Theorem 2.6. Let $\{F_n^{(a)}\}$ be the Lie-Fibonacci sequence and $n \in \mathbb{Z}_{>0}$. Then we have:

(a)
$$F_{2n-1}^{(a)}F_{2n+1}^{(a)} - (a-2)(F_{2n}^{(a)})^2 = 1.$$

(b) $(a-2)F_{2n}^{(a)}F_{2n+2}^{(a)} - (F_{2n+1}^{(a)})^2 = -1.$
(c) $F_n^{(a)}F_{n+1}^{(a)} - F_{n-1}^{(a)}F_{n+2}^{(a)} = (-1)^{n+1}.$

Proof. Let $\beta = \frac{1}{\alpha}$, $\alpha' = \alpha - 1$ and $\beta' = \beta - 1$. Then we have $F_{\alpha}^{(a)} + F_{\alpha}^{(a)} + -(\alpha - 2)(F_{\alpha}^{(a)})^2$

$$\begin{split} F_{2n-1}^{(\alpha)} F_{2n+1}^{(\alpha)} &- (a-2)(F_{2n}^{(\alpha)})^2 \\ &= \frac{1}{(a-2)^{n-1}\sqrt{a^2 - 4}} \left(\left(\frac{a-2+\sqrt{a^2 - 4}}{2}\right)^{2n-1} - \left(\frac{a-2-\sqrt{a^2 - 4}}{2}\right)^{2n-1} \right) \\ &\quad \frac{1}{(a-2)^n\sqrt{a^2 - 4}} \left(\left(\frac{a-2+\sqrt{a^2 - 4}}{2}\right)^{2n+1} - \left(\frac{a-2-\sqrt{a^2 - 4}}{2}\right)^{2n+1} \right) \\ &\quad - (a-2) \left(\frac{1}{(a-2)^n\sqrt{a^2 - 4}} \left(\left(\frac{a-2+\sqrt{a^2 - 4}}{2}\right)^{2n} - \left(\frac{a-2-\sqrt{a^2 - 4}}{2}\right)^{2n} \right) \right)^2 \\ &= \frac{1}{(a-2)^{2n-1}(a^2 - 4)} \left(\alpha'^{4n} - (\alpha'\beta')^{2n-1} \left(\beta'^2 + \alpha'^2 \right) + \beta'^{4n} - \alpha'^{4n} + 2(\alpha'\beta')^{2n} - \beta'^{4n} \right) \\ &= \frac{-(\alpha'\beta')^{2n-1}}{(a-2)^{2n-1}(a^2 - 4)} \left(\alpha'^2 + \beta'^2 - 2\alpha'\beta' \right) \\ &= \frac{-(2-a)^{2n-1}(a^2 - 4)}{(a-2)^{2n-1}(a^2 - 4)} \left(\alpha' - \beta' \right)^2 \\ &= 1, \end{split}$$

which proves part (a). In a similar manner, we can derive parts (b) and (c). \Box

It is well known that as n increases the ratio $\frac{F_{n+1}}{F_n}$ approaches $\frac{1+\sqrt{5}}{2}$, the golden ratio. The following Theorem shows that the Lie-Fibonacci sequence $\{F_n^{(a)}\}$ has similar properties.

Theorem 2.7. Let $\{F_n^{(a)}\}$ be the Lie-Fibonacci sequence, and let $\alpha = \frac{a + \sqrt{a^2 - 4}}{2}$. Then we have (a) $\lim_{n \to \infty} \frac{F_{2n+1}^{(a)}}{F_{2n+1}^{(a)}} = \frac{a - 2 + \sqrt{a^2 - 4}}{2} = \alpha - 1$. (b) $\lim_{n \to \infty} \frac{F_{2n+2}^{(a)}}{F_{2n+1}^{(a)}} = \left(\frac{1}{a - 2}\right) \left(\frac{a - 2 + \sqrt{a^2 4}}{2}\right) = \frac{1}{a - 2}(\alpha - 1)$. In particular, $\lim_{n \to \infty} \frac{F_{2n+1}^{(3)}}{F_{2n}^{(3)}} = \frac{1 + \sqrt{5}}{2}$, the golden ratio. Proof. Let $p_n = \frac{F_{2n+2}^{(a)}}{F_{2n}^{(a)}}$. Then we have $p_n = \frac{aF_{2n}^{(a)} - F_{2n-2}^{(a)}}{F_{2n}^{(a)}}$ (6) $= a - \frac{1}{p_{n-1}}$ $= a - \frac{1}{a - \frac{1}{p_{n-2}} \cdots}$

Therefore,

$$\lim_{n \to \infty} P_n \text{ is a zero of } x = a - \frac{1}{x},$$

and hence,

$$\lim_{n \to \infty} P_n = \frac{a - \sqrt{a^2 - 4}}{2}.$$

Let

$$q_n = \frac{F_{2n+1}^{(a)}}{F_{2n}^{(a)}}.$$

 $\langle \rangle$

Then we have

$$q_n = \frac{F_{2n+2}^{(a)} - F_{2n}^{(a)}}{F_{2n}^{(a)}}$$

= $p_n - 1.$

Therefore,

$$\lim_{n \to \infty} q_n = \frac{a - \sqrt{a^2 - 4}}{2} - 1$$
$$= \frac{a - 2 + \sqrt{a^2 - 4}}{2},$$

which proves for part (a). In a similar manner, we can derive part (b).

3. EXISTENCE OF INTEGRAL POINTS ON THE HYPERBOLAS

In this section, we study the root system of the rank 2 hyperbolic Kac-Moody algebras $\mathfrak{g}(A)$ with symmetric generalized Cartan matrix $A = \begin{pmatrix} 2 & -a \\ -a & 2 \end{pmatrix}$ with $a \ge 3$. Let W be the Weyl group of g(A), generated by simple reflections r_1 and r_2 .

We identify an element

(7)
$$\alpha = x\alpha_1 + y\alpha_2 \in Q$$
 with an ordered pair $(x, y) \in \mathbb{Z} \times \mathbb{Z}$.

We call a root $\alpha \in \mathbb{Z} \times \mathbb{Z}$ the positive integral point if $x, y \in \mathbb{Z}_{\geq 0}$. Define a symmetric bilinear form $(\cdot | \cdot)$ on \mathfrak{h}^* by the following equation:

(8)
$$(\alpha_1 | \alpha_1) = (\alpha_2 | \alpha_2) = 2, \quad (\alpha_1 | \alpha_2) = -a.$$

Then for $\alpha = x\alpha_1 + y\alpha_2$, we have $(\alpha \mid \alpha) = 2(x^2 - axy + y^2)$.

It is well known that there is a one-to-one correspondence between the set of real roots of $\mathfrak{g}(A)$ and the set of integral points on the hyperbola $x^2 - axy + y^2 = 1$. Since there is no root α such that $(\alpha \mid \alpha) = 0$, the imaginary roots of $\mathfrak{g}(A)$ correspondence to the set of integral points on the hyperbolas $\mathfrak{h}_k : x^2 - axy + y^2 = -k$ for $k \ge 1$. In other words, for each $k \ge 1$, there is a one-to-one correspondence between the set of all imaginary roots α with square length $(\alpha \mid \alpha) = -2k$ and the set of all integral points on the hyperbola \mathfrak{h}_k .

We introduce the sequences of integers $\{B_n\}$ for $n \ge 0$ by the recurrence relations

(9)
$$B_0 = 0, \quad B_1 = 1, \text{ and } B_{n+2} = aB_{n+1} - B_n \text{ for } n \ge 1$$

Clearly, we have

(10)
$$F_{2n}^{(a)} = B_n$$
, and $F_{2n-2}^{(a)} = B_n - B_{n-1}$.

The following Proposition is well known.

Proposition 3.1 ([3]). $\Delta_{+}^{re} = \{(B_n, B_{n+1}), (B_{n+1}, B_n) \mid n \ge 0\}$. Furthermore, $\Delta_{+}^{re} = \{(F_{2j}, F_{2j+2}), (F_{2j+2}, F_{2j}) \mid j \in \mathbb{Z}_{\ge 0}\}$

for a = 3.

For a positive integer k, let $\Delta_{+,k}^{im}$ be the set of all positive imaginary roots α of $\mathfrak{g}(A)$ with square length $(\alpha \mid \alpha) = -2k$. That is, $\Delta_{+,k}^{im}$ is the set of all positive integral points on the hyperbola \mathfrak{h}_k . The following Proposition gives a nice description of the set of positive imaginary roots of length -2k.

Proposition 3.2 ([5]).

$$\begin{aligned} \Delta_{+,k}^{im} = & \{ (m,n), \ (n,m), \ (mB_{j+1} - nB_j, mB_{j+2} - nB_{j+1}), \\ & (mB_{j+2} - nB_{j+1}, mB_{j+1} - nB_j), \ (nB_{j+1} - mB_j, nB_{j+2} - mB_{j+1}), \\ & (nB_{j+2} - mB_{j+1}, nB_{j+1} - mB_j) \mid (m,n) \in \Omega_k \}, \end{aligned}$$

where

$$\Omega_k = \left\{ (m, n) \in \mathbb{Z}_{\ge 0} \times \mathbb{Z}_{\ge 0} \middle| \frac{2\sqrt{k}}{\sqrt{a^2 - 4}} \le m \le \sqrt{\frac{k}{a - 2}}, n = \frac{am - \sqrt{(a^2 - 4)m^2 - 4k}}{2} \right\}.$$

Since $F_{2n}^{(a)} = B_n$, and $F_{2n-2}^{(a)} = B_n - B_{n-1}$. Proposition 3.1 and Proposition 3.2 can be rewritten as follows:

Proposition 3.3. Let $\{F_n^{(a)}\}$ be the Lie-Fibonacci sequence. Then (a) The set of all nonnegative integral points on the hyperbola

$$x^2 - axy + y^2 = 1$$

 $is \; \{(F_{2n}^{(a)},F_{2n+2}^{(a)}),(F_{2n+2}^{(a)},F_{2n}^{(a)}) \, | \, n \in \mathbb{Z}_{\geq 0}\}.$

(b) The set of all nonnegative integral points on the hyperbola

$$\begin{aligned} x^2 - axy + y^2 &= -(a-2) \\ is \; \{(1,1), (F_{2n-1}^{(a)}, F_{2n+1}^{(a)}), (F_{2n+1}^{(a)}, F_{2n-1}^{(a)}) \, | \, n \in \mathbb{Z}_{\geq 0} \}. \end{aligned}$$

Proof. (a) is immediate consequence of Proposition 3.1 and definition of the Lie-Fibonacci sequence. For (b), after simple calculation, we have $\Omega_k = \{(1,1)\}$ and hence

$$\Delta_{+}^{im} = \{(1,1), (F_{2n-1}^{(a)}, F_{2n+1}^{(a)}), (F_{2n+1}^{(a)}, F_{2n-1}^{(a)}) \mid n \in \mathbb{Z}_{\geq 0}\}.$$

To list all the integral points on those hyperbolas, we also find the number of elements of Ω_k .

Proposition 3.4. ([7]) Let $x^2 - axy + ay^2 = -k$ be the hyperbola and let $k = t\gamma^2$ be any positive integer where t is a square free integer and $\gamma \in \mathbb{Z}_{>0}$. If $(\gamma, \delta) \in \Omega_k$ for some positive integer δ , then

$$a-2 \le t \le \frac{a^2-4}{4} \ for \ a \ge 3,$$

where

$$\Omega_k = \left\{ (m,n) \in \Delta_{+,k}^{im} \Big| \frac{2\sqrt{k}}{\sqrt{a^2 - 4}} \le m \le \sqrt{\frac{k}{a-2}}, n = \frac{am - \sqrt{(a^2 - 4)m^2 - 4k}}{2} \right\}.$$

Since W is infinite, $\Omega_k \neq \emptyset$ implies that there are infinitely many integral points on the hyperbola $x^2 - axy + y^2 = -k$. Proposition 3.3 tells us that Ω_k have crucial information for the set of integral points on the hyperbola $x^2 - axy + y^2 = -k$. We have the following Lemma.

Lemma 3.5. Let $x^2 - axy + ay^2 = -k$ be the hyperbola. If k < a - 2, then there is no integral point on that hyperbola.

Proof. Since there is no integer m with $\frac{2\sqrt{k}}{\sqrt{a^2-4}} \le m \le \sqrt{\frac{k}{a-2}}$, we have $\Omega_k = \emptyset$, and hence we get the desired result.

The following Proposition is obtained by the definition of Ω_k .

Proposition 3.6. Let $x^2 - axy + y^2 = -(a-2)\gamma^2$ be the hyperbola for $a \ge 3$ and $\gamma \in$ $\mathbb{Z}_{>0}. \text{ If } \gamma < \frac{n\sqrt{a+2}}{\sqrt{a+2}-2}, \text{ then } 1 \le |\Omega_{(a-2)\gamma^2}| \le n. \text{ Furthermore, } \gamma < \frac{\sqrt{a+2}}{\sqrt{a+2}-2},$ then $|\Omega_{(a-2)\gamma^2}| = 1.$

Proof. Clearly, we have $(\gamma, \gamma) \in \Omega_{(a-2)\gamma^2}$, and hence,

$$|\Omega_{(a-2)\gamma^2}| \ge 1.$$

Consider the set

$$\Omega_{(a-2)\gamma^2} = \left\{ (m,n) \in \Delta_{+,k}^{im} \left| \frac{2\gamma}{\sqrt{a+2}} \le m \le \gamma, n = \frac{am - \sqrt{(a^2 - 4)m^2 - 4(a-2)\gamma^2}}{2} \right\}.$$
 Since

Since

$$\gamma - \frac{2\gamma}{\sqrt{a+2}} < n \text{ implies } \gamma < \frac{n\sqrt{a+2}}{\sqrt{a+2}-2}$$

at most n positive integers exist between $\frac{2\gamma}{\sqrt{a+2}}$ and γ , we get the desired result. \Box

Example 3.7. Let $x^2 - 7xy + y^2 = -5$ be the hyperbola. Then we have $\Omega_5 = \{(1,1)\}$. Therefore,

$$\begin{split} \Delta^{im}_{+} &= \{(1,1), \, (F^{(7)}_{2n-1}, \, F^{(7)}_{2n+1}), \, (F^{(7)}_{2n+1}, F^{(7)}_{2n-1}) \, | \, n \geq 1 \} \\ &= \{(1,1), \, (1,6), \, (6,1)(6,41), \, (41,6), \cdots \} . \end{split}$$

Example 3.8. Let $x^2 - 3xy + y^2 = -\gamma^2$ be the hyperbola. Since a = 3, $\gamma < \frac{\sqrt{5}}{\sqrt{5}-2}$ implies $|\Omega_{(a-2)\gamma^2}| = 1$, thus we have $|\Omega_{(a-2)\gamma^2}| = 1$ for $1 \le \gamma \le 9$. Therefore,

$$\Omega_{(a-2)\gamma^2} = \{(\gamma, \gamma)\}$$
 for $1 \le \gamma \le 9$

and hence

$$\Delta^{re} = \{ \sigma(\gamma, \gamma) \, | \, \sigma \in W \}$$

For the case of a = 4, similarly we have, $|\Omega_{(a-2)\gamma^2}| = 1$ for $1 \le \gamma \le 5$.

Lemma 3.9. Let $x^2 - axy + y^2 = -(a-2)\gamma^2$ for $a \ge 3$ and $\gamma \in \mathbb{Z}_{>0}$ be the hyperbola. If $a + 2 = \gamma^2$, then $|\Omega_{(a-2)\gamma^2}| \ge 2$.

Proof. Clearly, $(\gamma, \gamma) \in \Omega_{(a-2)\gamma^2}$. If we substitute γ^2 for a+2, then we have $\gamma \geq 3$ and

$$\Omega_{a^2-4} = \left\{ (m,n) \in \Delta_{+,k}^{im} \, \big| \, 2 \le m \le \gamma, n = \frac{am - \sqrt{(a-2)(m^2-4)}\gamma}{2} \right\}.$$

Thus we have $\{(2, a), (\gamma, \gamma)\} \subseteq \Omega_{a^2-4}$, and hence we get the desired result. \Box

Theorem 3.10. Let $x^2 - axy + y^2 = -(a-2)\gamma^2$ for $a \ge 3$ and $\gamma \in \mathbb{Z}_{>0}$ be the hyperbola. If $a + 2 = \gamma^2$, and a - 2 is a square free integer, then $|\Omega_{(a-2)\gamma^2}| = 2$.

Proof. If $(m,n) \in \Omega_{(a-2)\gamma^2}$ for some $n \in \mathbb{Z}_{>0}$, then we have $m^2 - 4 = (a-2)l^2$ for some $l \in \mathbb{Z}_{\geq}$. Since $a-2 = \gamma^2 - 4$, and $m \leq \gamma$, we have $\gamma^2 - 4 \geq m^2 - 4 = (\gamma^2 - 4)l^2$, and hence either l = 0 or l = 1. This implies that either m = 2 or $m = \gamma$, and hence $\Omega_{a^2-4} = \{(2,a), (\gamma, \gamma)\}$.

Example 3.11. Let $x^2 - 7xy + y^2 = -5 \cdot 3^2$ be the hyperbola. Then we have $\Omega_{7,3^2} = \{(2,7), (3,3)\},\$

and hence

$$\Delta_{+}^{im} = \{3(F_{2n-1}^{(7)}, F_{2n+1}^{(7)}), 3(F_{2n+1}^{(7)}, F_{2n-1}^{(7)}), (2F_{2n+2}^{(7)} - 7F_{2n}^{(7)}, 2F_{2n+4}^{(7)} - 7F_{2n+2}^{(7)}), \\ (2F_{2n+4}^{(7)} - 7F_{2n+2}^{(7)}, 2F_{2n+2}^{(7)} - 7F_{2n}^{(7)})(7F_{2n+2}^{(7)} - 2F_{2n}^{(7)}, 7F_{2n+4}^{(7)} - 2F_{2n+2}^{(7)}), \\ (7F_{2n+4}^{(7)} - 2F_{2n+2}^{(7)}, 7F_{2n+2}^{(7)} - 2F_{2n}^{(7)}) \mid n \ge 1 \}.$$

Corollary 3.12. There are many integral solutions $x^2 - axy + y^2 = 4 - a^2$ for $a \ge 2$. **Theorem 3.13.** If $a \ne 2 \pmod{4}$, then there is a one-to-one correspondence between the set of integral points on the hyperbolas $x^2 - axy + y^2 = 1$ and $(a+2)x^2 - (a-2)y^2 = 4$.

Proof. $(a+2)x'^2 - (a-2)y'^2 = 4$ is obtained from $x^2 - axy + y^2 = 1$ by substituting $(x,y) = \frac{1}{2}(x'+y', -x'+y')$, that is (x', y') = (x-y, x+y).

If x, y are integers, then clearly x' and y' are also integers. On the other hand, we need to show that $(x', y') \in \mathbb{Z} \times \mathbb{Z}$ implies that $(x, y) \in 2\mathbb{Z} \times 2\mathbb{Z}$ or $(x, y) \in (2n+1)\mathbb{Z} \times (2n+1)\mathbb{Z}$. If a = 4k, then $(4k+2)x'^2 - (4k-2)y'^2 = 4$. That is $(2k+1)x'^2 = (2k-1)y'^2 + 2$. This implies x' and y' are both even or both odd.

Similarly, we can show in the other cases: $a \equiv 1 \pmod{4}$ and $a \equiv 3 \pmod{4}$. \Box

Example 3.14. Since the set of all nonnegative integral points on the hyperbola

$$x^2 - 5xy + y^2 = 1$$

is $\{(0,1), (1,0), (1,5), (5,1), (5,24), (24,5), (24,115), (115,24), \dots\}$, and $\{(-1,1), (1,1), (-4,6), (4,6), (-19,29), (19,29), (-91,139), (91,139), \dots\}$ is the set of integral points on the hyperbola

$$7x^2 - 3y^2 = 4$$

Corollary 3.15. There are infinitely many integral points on the hyperbola

 $(a+2)x^2 - (a-2)y^2 = 4 \ (a \ge 3, \ a \not\equiv 2 \pmod{4}).$

References

- 1. R.A. Dunlap: The golden ratio and Fibonacci numbers. World Science (1997).
- A.J. Feingold: A hyperbolic GCM and the Fibonacci numbers. Proc. Amer. Math. Soc. 80 (1980), 379-385.
- A.F. Horadam: A Generalized the Fibonacci Sequence. Proc. Amer. Math. Monthly. 68 (1961), 455-459.
- 4. V.G. Kac: Infinite-Dimensional Lie Algebras. Cambridge University Press, 1990.
- S.-J, Kang & D.J. Melville: Rank 2 Symmetric Hyperbolic Kac-Moody Algebras. Nagoya. Math. J. 140 (1995), 41-75.
- Y. Kim, K.C. Misra & S.J. Stizinger: On the degree of nilpotency of certain subalgebras of Kac-Moody Lie algebras. J. Lie Theory. 14 (2004), 11-23
- Y. Kim: A note on the rank 2 symmetric Hyperbolic Kac-Moody Lie algebras. J. KSME. SerB. 17 (2010), 107-113
- 8. ____: On some behavior of integral points on a hyperbola. *submitted*.
- 9. R.V. Moody: Root System of Hyperbolic Type. Adv. in Math. 33 (1979) 144-160.
- 10. _____: A new class of Lie algebras. J. Algebra 10 (1968), 210-230.
- J. Moragado: Some remark on an identy of Catalan concerning the Fibonachi numbers. Portugale Math. Soc. 39 (1980), 341-348.

HANSAEM KO & YEONOK KIM

 K.S. Rao: Some Properties of Fibonacci numbers. Amer. Math. Monthly. 60 (1953), 680-684.

^aDepartment of Mathematics, SoongSil University, Seoul 151, Korea $\mathit{Email}\ address: \texttt{hsaem7130gmail.com}$

 $^{\rm b}{\rm Department}$ of Mathematics, SoongSil University, Seoul 151, Korea Email address: <code>yokim@ssu.ac.kr</code>