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ON THE GAUSS MAP OF GENERALIZED SLANT
CYLINDRICAL SURFACES

Dong-Soo Kim a, ∗ and Booseon Songb

Abstract. In this article, we study the Gauss map of generalized slant cylindrical
surfaces (GSCS’s) in the 3-dimensional Euclidean space E3. Surfaces of revolution,
cylindrical surfaces and tubes along a plane curve are special cases of GSCS’s. Our
main results state that the only GSCS’s with Gauss map G satisfying ∆G = AG
for some 3× 3 matrix A are the planes, the spheres and the circular cylinders.

1. Introduction and Preliminaries

The notion of finite type submanifolds in Euclidean or pseudo-Euclidean space,
introduced by B.-Y. Chen during the late 1970’s, has become a useful tool for inves-
tigating and characterizing many important submanifolds (cf. [3, 4]). In [2, 6] the
notion of finite type was extended to differential maps, in particular, to Gauss map
of submanifolds.

Let M be a surface of the Euclidean 3-space E3. The map G : M → S2 ⊂ E3

which sends each point of M to the unit normal vector to M at the point is called
the Gauss map of the surface M, where S2 is the unit sphere in E3 centered at the
origin.

For the matrix g = (gij) consisting of the components of the metric on M , we
denote by g−1 = (gij) (resp. G ) the inverse matrix (resp. the determinant) of the
matrix (gij). The Laplacian ∆ on M is, in turn, given by

(1.1) ∆ = − 1√G
∑

i,j

∂

∂xi

(√G gij ∂

∂xj

)
.
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If a submanifold M of Euclidean or pseudo-Euclidean space has 1-type Gauss
map G, then G satisfies

(1.2) ∆G = λ(G + C)

for some λ ∈ R and some constant vector C, where ∆ is the Laplace operator
corresponding to the induced metric on M . Generalizing (1.1), many authors studied
various surfaces with Gauss map G satisfying

(1.3) ∆G = f(G + C)

for some constant vector C and some smooth function f ([5, 8, 9, 10, 11, 13]). Gauss
map of a surface satisfying (1.2) is called a pointwise 1-type Gauss map.

On the other hand, Dillen et al. studied surfaces of revolution with Gauss map
satisfying

(1.4) ∆G = AG

for some 3 × 3 matrix A, which was inspired by a theorem of Ruh and Vilms on
surfaces of constant mean curvature ([14]). As a result, they proved ([7]).

Proposition 1. Among the surfaces of revolution in E3, the only ones whose Gauss
map satisfies (1.4) are the planes, the spheres and the circular cylinders.

Baikoussis and Blair also studied ruled surfaces and proved ([1]).

Proposition 2. Among the ruled surfaces in E3, the only ones whose Gauss map
satisfies (1.4) are the planes and the circular cylinders.

In [12], the first author with Y.H. Kim introduced the family of generalized slant
cylinders (GSCS’s). Surfaces of revolution, cylindrical surfaces and tubes along
a plane curve are special cases of GSCS’s. See Section 2 for the definition and
properties of GSCS’s.

Here, we give examples of GSCS’s with Gauss map satisfying (1.4).

Examples. (1) Plane: z = 0. In this case, G = (0, 0, 1) so ∆G = 0 and the plane
satisfies (1.4) with

A =



∗ ∗ 0
∗ ∗ 0
∗ ∗ 0


 .

(2) Cylinder: (x− a)2 + (y − b)2 = r2. In this case, we have G = 1
r (x− a, y − b, 0)
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so the cylinder satisfies (1.4) with

A =




1
r2 0 ∗
0 1

r2 ∗
0 0 ∗


 .

(2) Sphere: (x − a)2 + (y − b)2 + (z − c)2 = r2. In this case, we have G = 1
r (x −

a, y−b, z−c) so the sphere satisfies (1.4) with A = 2
r2 I, where I denotes the identity

matrix.

In this paper, we study the GSCS’s with Gauss map satisfying (1.4). As a result,
we establish

Theorem 3.5. Let M denote a generalized slant cylindrical surface in the 3-
dimensional Euclidean space E3. Suppose that the Gauss map G of M satisfies
∆G = AG for some 3 × 3 matrix A. Then M is part of a plane, a sphere or a
circular cylinder.

Hereafter, all objects are assumed to be connected and smooth, unless mentioned
otherwise.

2. Generalized Slant Cylindrical Surfaces

For a fixed unit speed plane curve α(s) = (x(s), y(s), 0), let T (s) = α′(s) and
N(s) = (−y′(s), x′(s), 0) denote the unit tangent and principal normal vector, re-
spectively. The curvature κ(s) of α(s) is defined by T ′(s) = κ(s)N(s) and we have
T (s)×N(s) = V, where V denotes the unit vector (0, 0, 1). For a constant θ, we let
βs(t) = t(cos θN(s) + sin θV ). Then the ruled surface M defined by

(2.1) X(s, t) = α(s) + βs(t)

is regular at (s, t) where 1−cos θκ(s)t does not vanish. This ruled surface M is called
a slant cylindrical surface (SCS) over α(s). The SCS with sin θ = 0 or cos θ = 0 is
nothing but a parametrization of either a plane or a cylindrical surface.

In general, we consider another unit speed plane curve β(t) = (z(t), w(t)). If we
let βs(t) = z(t)N(s) + w(t)V , then the parametrized surface defined by

(2.2) X(s, t) = α(s) + βs(t)

is regular at (s, t) where 1− κ(s)z(t) does not vanish. This parametrized surface M

is called a generalized slant cylindrical surface (GSCS) over α(s).
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If β(t) is a straight line (resp., a circle), then the GSCS X(s, t) is nothing but
an SCS (resp., a tube) along a plane curve α. If α(s) is a straight line, then the
GSCS X(s, t) is a cylindrical surface over a plane curve. Furthermore, we have the
following ([12]).

Proposition 2.1. If α(s) is a circle, then a GSCS M over α(s) is a surface of
revolution.

Therefore we see that cylindrical surfaces, tubes along a plane curve and surfaces
of revolution are special cases of GSCS’s.

We also have the following characterizations ([10]):

Proposition 2.2. Let M denote a GSCS given by (2.2). Then we have the follow-
ing.
(1) If the mean curvature H is constant, then M is a surface of revolution.
(2) If the Gaussian curvature K is constant, then M is either a surface of revolution
or an SCS.

3. Gauss Map of GSCS’s

Let α(s) = (x(s), y(s), 0) be a unit speed plane curve with the Frenet frame T (s)
and N(s) which is defined on an interval I. We consider a GSCS M parametrized
by

(3.1) X(s, t) = α(s) + βs(t), (s, t) ∈ I × J,

where β(t) = (z(t), w(t)) is a unit speed plane curve, βs(t) = z(t)N(s)+w(t)V , and
V = (0, 0, 1). Without loss of generality, we may assume that β(0) = 0, hence we
have X(s, 0) = α(s) for all s ∈ I.

Then X(s, t) is regular at (s, t) where q(s, t) = 1− κ(s)z(t) does not vanish and
we get

(3.2)
Xs = q(s, t)T (s), Xt = z′(t)N(s) + w′(t)V,

G(s, t) = −w′(t)N(s) + z′(t)V.

The Laplacian ∆ on M is given by for f ∈ C∞(M)

(3.3) ∆f = −q−3{κ′(s)z(t)fs + qfss − q2κ(s)z′(t)ft + q3ftt}.
Hence it follows from (3.2) and (3.3) that

(3.4)
−q3∆G = κ′(s)w′(t)T (s) + q{κ(s)2w′(t) + qκ(s)z′(t)w′′(t)

− q2w′′′(t)}N(s) + q2{−κ(s)z′(t)z′′(t) + qz′′′(t)}V.
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First, we show that a slant cylindrical surface with Gauss map G satisfying (1.4) is
an open part of either a plane or a circular cylinder. Since an SCS is a ruled surface,
Proposition 3.1 can be deduced from the results in [1]. But, for conveniences, we
give a proof.

Proposition 3.1. Let M be an SCS given by (3.1) with z(t) = t cos θ and w(t) =
t sin θ. Suppose that the Gauss map G of M satisfies ∆G = AG for some 3 × 3
matrix A. Then M is an open part of either a plane or a circular cylinder.

Proof. Since z(t) = t cos θ and w(t) = t sin θ, it follows from (3.2) and (3.4) that

(3.5) G(s, t) = − sin θN(s) + cos θV = (sin θy′(s),− sin θx′(s), cos θ)

and

(3.6) −q3∆G = κ′(s) sin θT (s) + qκ(s)2 sin θN(s).

By the assumption, we obtain

(3.7) sin θ{x′κ′ − y′κ2q} = −q3{(a11y
′ − a12x

′) sin θ + a13 cos θ},

(3.8) sin θ{y′κ′ + x′κ2q} = −q3{(a21y
′ − a22x

′) sin θ + a23 cos θ}

and

(3.9) a31 sin θy′(s)− a32 sin θx′(s) + a33 cos θ = 0.

It follows from x′(s)× (3.7) + y′(s)× (3.8) and x′(s)× (3.8)− y′(s)× (3.7) that

(3.10)
sin θκ′(s) = q3f(s) = (1− t cos θκ(s))3f(s),

sin θκ(s)2 = q2g(s) = (1− t cos θκ(s))2g(s),

where f(s) and g(s) are given by

(3.11)
f(s) = sin θ{a12(x′)2 + (a22 − a11)x′y′ − a21(y′)2} − cos θ{a13x

′ + a23y
′},

g(s) = sin θ{a22(x′)2 − (a12 + a21)x′y′ + a11(y′)2} − cos θ{a23x
′ − a13y

′}.
We divide by two cases as follows.

Case 1. cos θ 6= 0.
If sin θ = 0 or κ(s) vanishes identically, then M is a part of a plane. Hence

we may suppose that sin θ 6= 0 and κ(s) 6= 0 on an interval I0. Then, the second
equation in (3.10) shows that t is a function of s ∈ I0, which is a contradiction.
Case 2. cos θ = 0.
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In this case, M is a cylindrical surface over α(s). We may assume that sin θ = 1.
Hence, from (3.10) and (3.11) we get

(3.12) κ′(s) = a12x
′(s)2 + (a22 − a11)x′(s)y′(s)− a21y

′(s)2

and

(3.13) κ(s)2 = a22x
′(s)2 − (a12 + a21)x′(s)y′(s) + a11y

′(s)2.

By differentiating (3.13) and using y′y′′ = −x′x′′, we obtain

(3.14) 2κ′κ = 2(a22 − a11)x′x′′ − (a12 + a21){x′′y′ + x′y′′}.
Since κ(s)y′(s) = −x′′(s), multiplying the both sides of (3.14) by y′(s) and then
using (3.12), we get

(3.15) x′′(s){4κ′(s) + (a21 − a12)} = 0.

Suppose that I0 = {s ∈ I|x′′(s) 6= 0} is nonempty. Then on I0, κ′(s) is constant.
Hence, by differentiating (3.12) and then multiplying y′, on I0 we obtain

(3.16) (a22 − a11){y′(s)2 − x′(s)2}+ 2(a12 + a21)x′(s)y′(s) = 0.

Hence, it follows from (3.13) that on I0

(3.17) 2κ(s)2 = a11 + a22,

which is a nonzero constant because κ(s)y′(s) = −x′′(s) 6= 0 on the interval I0.
If the complement Ic

0 of I0 has nonempty interior, then κ(s) = 0 there. Thus,
by the continuity of κ(s) we see that κ(s) is constant on the whole domain I of α.
Therefore, M is an open portion of either a plane or a circular cylinder.

Combining Cases 1 and 2 completes the proof of Proposition 3.1. ¤

Now, suppose that the Gauss map G of a GSCS M defined by (3.1) satisfies (1.4)
for some 3× 3 matrix A. Then, from (3.2) and (3.4) we get

(3.18) x′κ′w′ − pqy′ = −q3{a11y
′w′ − a12x

′w′ + a13z
′},

(3.19) y′κ′w′ + pqx′ = −q3{a21y
′w′ − a22x

′w′ + a23z
′},

and

(3.20) −κz′z′′ + qz′′′ = −q{(a31y
′ − a32x

′)w′ + a33z
′},

where

(3.21) p(s, t) = κ(s)2w′(t) + qκ(s)z′(t)w′′(t)− q2w′′′(t).
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It follows from x′(s) × (3.18) + y′(s) × (3.19) and x′(s) × (3.19) − y′(s) × (3.18)
that

(3.22) κ′w′ = −q3[{(a11 − a22)x′y′ − a12(x′)2 − a21(y′)2}w′ + (a13x
′ + a23y

′)z′]

and

(3.23) p = q2[{(a11(y′)2 − (a12 + a21)x′y′ + a22(x′)2}w′ + (a13y
′ − a23x

′)z′].

First, we prove

Lemma 3.2. Let M be a GSCS given by (3.1). Suppose that the Gauss map G of
M satisfies ∆G = AG for some 3×3 matrix A with a13 = a23 = 0. Then M is open
part of either an SCS or a surface of revolution.

Proof. It follows from (3.22) that

(3.24) w′(t){κ′(s)− q3f(s)} = 0,

where f(s) is a function of s.
Let’s denote by J0 = {t ∈ J |w′(t) 6= 0}. If J0 is empty, then M is part of a plane

parallel to the xy-plane. Otherwise, we have κ′(s) = q3f(s) for all s ∈ I. Recall
that q = 1− κ(s)z(t).

Suppose that I0 = {s ∈ I|κ′(s) 6= 0} is nonempty. Then, it follows from (3.24)
that on I0 × J0 we obtain

(3.25) κ(s)z(t) = 1−
(

κ′(s)
f(s)

)1/3

,

which shows that z(t) is constant on J0. This shows that J0 is the whole domain J

of β and hence β is a straight line perpendicular to the xy-plane. Thus on I0 × J ,
M is a cylindrical surface over α. Due to Proposition 3.1, we see that on I0, α has
constant curvature κ, which is a contradiction. Therefore κ(s) is constant on the
whole domain I.

The above discussion implies that when w′(t) 6= 0 for some t, α is either a straight
line or a circle. If α is a straight line, then M is a cylindrical surface over a plane
curve. That is, M is an SCS. If α is a circle, then M is a surface of revolution.

This completes the proof of Lemma 3.2. ¤
Next, we show

Lemma 3.3. Let M be a GSCS given by (3.1). Suppose that the Gauss map G of
M satisfies ∆G = AG for some 3× 3 matrix A with a31 = a32 = 0. Then M is an
open part of an SCS or a surface of revolution.
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Proof. It follows from (3.20) that

(3.26) κ(s){z(t)(z′′′(t) + a33z
′(t)) + z′(t)z′′(t)} = z′′′(t) + a33z

′(t).

If z′′′(t) + a33z
′(t) is nonzero for some t, then κ(s) is a nonzero constant. Hence

M is a surface of revolution.
Otherwise, that is, z′′′(t) + a33z

′(t) vanishes identically, then (3.26) implies that

(3.27) κ(s)z′(t)z′′(t) = 0.

This shows that κ(s) = 0 or z′(t) is constant, that is, α or β is a straight line. Hence
M is a slant cylindrical surface.

This completes the proof of Lemma 3.3. ¤
Finally, we prove the following.

Lemma 3.4. Let M be a GSCS given by (3.1). Suppose that the Gauss map G of
M satisfies ∆G = AG for some arbitrary 3× 3 matrix A. Then M is an open part
of either an SCS or a surface of revolution.

Proof. From (3.20), we get

(3.28) κ(s)z′(t)z′′(t)− qz′′′(t) = q{f(s)w′(t) + a33z
′(t)},

where

(3.29) f(s) = a31y
′(s)− a32x

′(s).

Note that β(0) = (z(0), w(0)) = 0. We divide by two cases.
Case 1. Suppose that w′(0) 6= 0. In this case, since q(0) = 1, putting t = 0 in (3.28),
we obtain

(3.30) f(s)w′(0) = κ(s)z′(0)z′′(0)− (z′′′(0) + a33z
′(0)).

This shows that

(3.31) f(s) = aκ(s) + b

for some constants a and b given by

(3.32) a = z′(0)z′′(0)/w′(0), b = −(z′′′(0) + a33z
′(0))/w′(0).

If a = 0, then as in the proof of Lemma 3.3, we may prove that M is an open
part of either an SCS or a surface of revolution. Hence we may assume that a is
nonzero.
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Since q = 1 − κ(s)z(t), substituting f(s) in (3.31) into (3.28), we see that the
curvature function κ(s) of α satisfies the following quadratic polynomial:

(3.33) g(t)κ(s)2 + h(t)κ(s) + k(t) = 0,

where

(3.34)
g(t) = az(t)w′(t), k(t) = −z′′′(t)− a33z

′(t),

h(t) = bz(t)w′(t) + z′(t)z′′(t)− aw′(t)− z(t)k(t).

Therefore, it follows from (3.33) that κ(s) is constant, unless the coefficients
g(t), h(t) and k(t) identically vanish. In this case, M is either a surface of revolution
or a cylindrical surface.

If the coefficients g(t), h(t) and k(t) identically vanish, then it follows from (3.34)
that z(t)z′(t)z′′(t) vanishes identically. This shows that β(t) is a straight line. Hence,
we see that M is an SCS.
Case 2. Suppose that w′(0) = 0. In this case, we may assume that β is not a straight
line because otherwise, M is an SCS. Then, for some t0, we have w′(t0) 6= 0.

Putting z̄(t) = z(t)− c with c = z(t0), we consider the parametrization X̄ of M

given by

(3.35) X̄(s, t) = ᾱ(s) + z̄(t)N(s) + w(t)V,

where the base curve ᾱ is a parallel curve of α defined by ᾱ(s) = α(s) + cN(s).
For an arc length parameter u of ᾱ, M has the reparametrization X̄(u, t) =

ᾱ(u) + z̄(t)N(u) + w(t)V of X(s, t) with z̄(t0) = 0 and w′(t0) 6= 0. Hence, we can
proceed as in the proof of Case 1 to show that M is an open part of either a surface
of revolution or an SCS. This completes the proof of Case 2.

Combining Cases 1 and 2 completes the proof of Lemma 3.4. ¤
Now, we combine Lemma 3.4, Proposition 3.1 and Proposition 1 in Section 1.

Then, we get the following theorem.

Theorem 3.5. Let M denote a generalized slant cylindrical surface in the 3-
dimensional Euclidean space E3. Suppose that the Gauss map G of M satisfies
∆G = AG for some 3 × 3 matrix A. Then M is an open part of a plane, a sphere
or a circular cylinder.



158 Dong-Soo Kim & Booseon Song

References

1. C. Baikoussis & D.E. Blair: On the Gauss map of ruled surfaces. Glasgow Math. J. 34
(1992), 355-359.

2. C. Baikoussis, B.-Y. Chen & L. Verstraelen: Ruled surfaces and tubes with finite type
Gauss map. Tokyo J. Math. 16 (1993), 341-348.

3. B.-Y. Chen: Total mean curvature and submanifolds of finite type. World Scientific
Publ., New Jersey, 1984.

4. B.-Y. Chen: Finite type submanifolds and generalizations. University of Rome, 1985.
5. B.-Y. Chen, M. Choi & Y.H. Kim: Surfaces of revolution with pointwise 1-type Gauss

map. J. Korean Math. Soc. 42 (2005), 447-455.
6. B.-Y. Chen & P. Piccinni: Submanifolds with finite type Gauss map. Bull. Austral.

Math. Soc. 35 (1987), 161-186.
7. F. Dillen, J. Pas & L. Verstraelen: On the Gauss map of surfaces of revolution. Bull.

Inst. Math. Acad. Sinica 18 (1990), no. 3, 239-246.
8. U. Dursun: Hypersurfaces with pointwise 1-type Gauss map. Taiwanese J. Math. 11

(2007), no. 5, 1407-1416.
9. : Flat surfaces in the Euclidean space E3 with pointwise 1-type Gauss map.

Bull. Malays. Math. Sci. Soc.(2) 33 (2010), no. 3, 469-478.
10. D.-S. Kim: Surfaces with pointwise 1-type Gauss map. J. Korean Soc. Math. Educ. Ser.

B Pure Appl. Math. 18 (2011), no. 4, 369-377.
11. : Surfaces with pointwise 1-type Gauss map of the second kind. J. Korea Soc.

Math. Educ. Ser. B: Pure Appl. Math. 19 (2012), no. 3, 229-237.
12. D.-S. Kim & Y.H. Kim: Surfaces with planar lines of curvature. Honam Math. J. 32

(2010), 777-790.
13. Y.H. Kim & D.W. Yoon: On the Gauss map of ruled surfaces in Minkowski space.

Rocky Mountain J. Math. 35 (2005), no. 5, 1555-1581.
14. E.A. Ruh & J. Vilms: The tension field of the Gauss map. Trans. Amer. Math. Soc.

149 (1970), 569-573.

aDepartment of Mathematics, Chonnam National University, Kwangju 500-757, Korea
Email address: dosokim@chonnam.ac.kr

bDepartment of Mathematics, Chonnam National University, Kwangju 500-757, Korea
Email address: booseons@gmail.com


