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A NOTE ON SCALAR CURVATURE FUNCTIONS
OF ALMOST-KÄHLER METRICS

Jongsu Kim

Abstract. We present a 4-dimensional nil-manifold as the first example of a closed
non-Kählerian symplectic manifold with the following property: a function is the
scalar curvature of some almost Kähler metric iff it is negative somewhere. This
is motivated by the Kazdan-Warner’s work on classifying smooth closed manifolds
according to the possible scalar curvature functions.

1. Introduction

Kazdan and Warner classified closed smooth manifolds of dimension> 2 into three
classes according to what the scalar curvature functions can be on a manifold [3,
Th. 4.35]:

(a) Any smooth function is the scalar curvature of some Riemannian metric.
(b) A smooth function is the scalar curvature of some Riemannian metric iff it

is either identically zero or somewhere negative.
(c) A function is the scalar curvature of some Riemannian metric iff it is negative

somewhere.

This interesting theorem was proved based on the existence of many Riemann-
ian metrics of constant scalar curvature, which is due to the resolution of Yamabe
problem [2, 11].

Recently, there has been much interest on symplectic manifolds [5, 6, 10]. So we
would like to study an analogous question on the scalar curvature functions of almost
Kähler metrics on symplectic manifolds. An almost Kähler metric is a Riemannian
metric compatible with a symplectic structure, see Subsection 2.1. We ask if any
closed symplectic manifold of dimension> 2 falls into one of the three classes:

Received by the editors May 02, 2013. Revised July 22, 2013. Accepted July 24, 2013.
2010 Mathematics Subject Classification. 53D05, 53C15, 53C21.
Key words and phrases. almost Kähler metric, scalar curvature, symplectic manifold.
This work was supported by the National Research Foundation of Korea(NRF) grant funded by

the Korea government(MOE) (No.NRF-2010-0011704).

c© 2013 Korean Soc. Math. Educ.

199



200 Jongsu Kim

(a′) Any smooth function is the scalar curvature of some almost Kähler metric.
(b′) A smooth function is the scalar curvature of some almost Kähler metric iff

it is either identically zero or somewhere negative.
(c′) A function is the scalar curvature of some almost Kähler metric iff it is

negative somewhere.

This classification may be difficult to resolve at this time, since we do not have
a general existence theory of almost Kähler metrics of constant scalar curvature. In
fact, we do not even have a Yamabe type problem defined. As little is known about
this problem, we first try to get examples.

Many of the manifolds admitting Kähler metrics with zero scalar curvature may
be examples in class (a′). According to the section 5 in [9], some symplectic tori
are examples in the class (b′). For class (c′), we just suspect that many manifolds
admitting Kähler metrics with negative constant scalar curvature may belong to this
class. Usually, Kähler examples are easy to deal with. But the focus of the above
classification problem is on non-Kählerian symplectic manifolds.

The main result in this article is to present the so-called Kodaira-Thurston sym-
plectic manifold as the first non-Kählerian example in the class (c′);

Theorem 1.1. On a symplectic compact quotient M of the 4-dimensional Kodaira-
Thurston nil-manifold, a smooth function is the scalar curvature of some almost-
Kähler metrics if and only if it is somewhere negative.

2. Preliminaries

2.1. Almost-Kähler metric For this subsection a good reference is [4]. An
almost-Kähler metric on a smooth manifold M2n of real dimension 2n is a Riemann-
ian metric g compatible with a symplectic structure ω, i.e. ω(X,Y ) = g(X, JY ) for
an almost complex structure J , where X,Y are tangent vectors at a point of the
manifold. Note that given ω, g determines J and vice versa. We call a Riemannian
metric g ω-almost Kähler if g is compatible with ω and denote by Ωω := Ωω(M) the
set of all C∞ ω-almost Kähler metrics on M . An almost-Kähler metric (g, ω, J) is
Kähler if and only if J is integrable.

An almost complex structure J gives rise to a type decomposition of symmetric
(2,0)-tensors. For any symmetric (2,0)-tensor field h, we have the splitting h =
h+ + h−, where

h+(X,Y ) =
1
2
{h(X, Y ) + h(JX, JY )}
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and

h−(X, Y ) =
1
2
{h(X,Y )− h(JX, JY )}.

A symmetric (2,0)-tensor field h is called J-invariant [or J-anti-invariant] if h− = 0
[or h+ = 0, respectively].

The space Ωω is a smooth Fréchet manifold, and the tangent space TgΩω at g ∈ Ω
is exactly the set of J-anti-invariant symmetric (2,0)-tensor fields, where J is the
almost complex structure corresponding to (g, ω). The space Ωω admits a natural
parametrization by the exponential map; for g ∈ Ωω, define Eg : TgΩω → Ωω by
Eg(h) = g · exph, with g · exph(X, Y ) = g(X, expĥ(Y )), where X, Y are tangent
vectors at a point of M and ĥ is the (1, 1)-tensor field lifted from h with respect to
g so that expĥ(Y ) = Y +

∑∞
k=1

1
k! ĥ

k(Y ). Clearly we have;

(2.1)
d{g · expth}

dt
|t=0 = h.

We denote by ∇, R and s the Levi-Civita connection, the Riemannian curvature
tensor and the scalar curvature of a Riemannian manifold (M, g). For tangent vector
fields X, Y, Z, W , the Riemannian curvature tensor R is defined by R(X, Y )Z =
∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

3. Scalar Curvature Functions of Almost Kähler metrics

The purpose of this section is mainly to recall the argument in [9, Section 5]
which is relevant to our Kazdan-Warner type result, but we also modify the proof
of Lemma 5 in [9] into a little more understandable argument.

3.1. Derivative of the scalar curvature functional We consider the scalar
curvature map defined on the space M of Riemannian metrics on a manifold;

S(g) := the scalar curvature of g.

Recall that the differential at g, in the direction of a symmetric (2,0)-tensor h, of S

is given by

(3.1) ∆g(trgh) + δg(δgh)− g(r, h),

where r is the Ricci curvature tensor of g, ∆g is the Laplacian, trg(h) is the trace
of h with respect to g, δgh is the divergence of h which can be written in local
coordinates as (δgh)λ = −∇νhνλ and finally δg(·) for 1-forms is the formal adjoint
of the exterior differential on functions, [3].
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Now we restrict the scalar curvature map to the space Ωω;

Sω := S|Ωω

As a J-anti-invariant symmetric (2,0)-tensor is of trace zero, from (3.1), we have;

DgSω(h) = δg(δgh)− g(r, h).

So DgSω is an under-determined elliptic operator for any g ∈ Ωω. The formal
adjoint operator (DgSω)∗ : C∞(M) → TgΩ of DgSω with respect to the L2 inner
product induced from g is then as follows:

(3.2) (DgSω)∗(ψ) = ∇−dψ − r−ψ.

where ∇−dψ and r− are the J-anti-invariant part of ∇dψ and r, respectively, and
J is the corresponding almost complex structure to (g, ω).

3.2. Scalar Curvature Map in Lp Setting We shall now consider the scalar
curvature map in Lp setting and discuss the surjectivity of its derivative map as a
sufficient condition for the local surjectivity of the scalar curvature map [3, Chap.4,
Section E].

By standard argument, the scalar curvature map Sω : Ωω −→ C∞(M) can be
extended to a smooth map from the space of Lp

2 ω-almost-Kähler metrics, Lp
2(Ωω),

to the space of Lp functions, Lp(M), if p > dimR(M), which will be assumed in this
section. Note that Lp

2(Ωω) is a Banach algebra.
Now at g ∈ Ωω with J , consider the linearized map of Sω, DSω|g : Lp

2(TgΩω) −→
Lp(M). The space Lp

2(TgΩω) consists of Lp
2 J-anti invariant symmetric 2-tensor

fields h. As DSω|g is an under-determined elliptic operator at any g ∈ Ωω, by the
elliptic regularity theory [3, page 464], we have a decomposition:

Lp(M) = DSω|g(Lp
2(TgΩω))⊕ ker (DSω|g)∗.

and the kernel ker (DSω|g)∗ of the formal adjoint map (DSω|g)∗ is finite dimensional
and consists of C∞ functions on M . Therefore in order to prove that DSω|g is
surjective, we need to show that ker (DSω|g)∗ is zero.

Lemma 1 and Lemma 2 below are the keys to a Kazdan-Warner type result; refer
to [8]. We adapt them to our map Sω.

Lemma 1. If DSω|g is surjective at an almost-Kähler metric g, then the scalar
curvature map Sω is locally surjective at g, i.e. there exists ε > 0 such that, if f is
in Lp(M) and ||f − Sω(g)||Lp < ε, there is an Lp

2 almost-Kähler metric g̃ such that
f = Sω(g̃). Furthermore if f is C∞, so is g̃.
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Proof. The argument is a simple modification of the general Riemannian case. Define
a map A : Lp

4(M) −→ Lp(M), by A(ψ) = Sω(g · exp(DSω |g)∗(ψ)). By standard
argument one can see that A is a smooth differential operator and is elliptic (at
least for ψ near 0). Using (2.1), one check that the derivative of A at 0, DA0, is
equal to DSω|g ◦ (DSω|g)∗ and so is an isomorphism from the surjectivity of DSω|g.
We apply the Inverse Function Theorem to conclude that Sω is locally surjective at
g. Elliptic regularity applied to A implies that for a C∞ function f near 0 in Lp

norm, one can choose a C∞ almost Kähler metric g̃ = g · exp(DSω |g)∗(ψ̃) compatible
with ω such that f = Sω(g̃). ¤

The following approximation lemma handles arbitrary smooth functions on M .
Let D be the diffeomorphism group of M .

Lemma 2 ([8]). If dimR(M) ≥ 2 and if f ∈ C0(M), then an Lp function f1 belongs
to the Lp closure of the set {f ◦φ, φ ∈ D} if and only if inf f ≤ f1(x) ≤ sup f almost
everywhere.

Now we can state [9];

Proposition 1. Suppose that there exists an almost-Kähler metric (g, ω) with con-
stant scalar curvature sg and that DSω|g is surjective at g, then any smooth function
f with inf f ≤ sg ≤ sup f is the scalar curvature of an almost-Kähler metric g̃ for
some symplectic form ω̃ which has the same volume as ω.

Proof. Given a smooth function f with inf f ≤ sg ≤ sup f , by Lemma 1 and Lemma
2 there exist a diffeomorphism φ and a C∞ ω-almost-Kähler metric g̃ such that the
scalar curvature of pulled-back metric φ∗g̃ equals f . Then the pulled-back pair
(ω̃ := φ∗ω, φ∗g̃) is an almost-Kähler structure with the scalar curvature f and the
same volume as ω. ¤

4. Computations on the Kodaira-Thurston Nil-manifold

In order to use Proposition 1, we need to have almost-Kähler metrics (g, ω) with
constant scalar curvature such that DSω|g is surjective. The problem is that we
do not have many examples of non-Kähler almost Kähler metrics with constant
scalar curvature. Another problem is that it is difficult to verify the surjectivity of
DSω|g especially for non-Kähler almost Kähler metrics, in contrast to the general
Riemannian case in [3, 4.37].

Here we consider a left-invariant almost Kähler metric g on a compact quotient
M of the 4-dimensional Kodaira-Thurston nil-manifold [1, 13]. We shall check for
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the surjectivity of DSω|g.
On the universal cover they are described as follows: the metric can be written

on R4 = {(x, y, z, t)|x, y, z, t ∈ R} as g = dx2 + dy2 + (dz − xdy)2 + dt2 and the left-
invariant symplectic form is ω = dx ∧ dt + dz ∧ dy. The almost complex structure
J is then given by J(e4) = e1, J(e1) = −e4, J(e2) = e3, J(e3) = −e2, where
e1 = ∂

∂x , e2 = ∂
∂y + x ∂

∂z , e3 = ∂
∂z , e4 = ∂

∂t which form an orthonormal frame for
the metric. Consider the discrete subgroup Γ of the isometry group of g spanned by
{γi, i = 1, 2, 3, 4} where γ1(x, y, z, t) = (x+1, y, y+z, t), γ2(x, y, z, t) = (x, y+1, z, t),
γ3(x, y, z, t) = (x, y, z + 1, t) and γ4(x, y, z, t) = (x, y, z, t + 1). Then R4/Γ is a
compact quotient smooth manifold with the quotient metric which we still denote
by g.

By routine computation one can find the components rij of Ricci curvature as
follows; r11 = −1

2 , r22 = −1
2 , r33 = 1

2 , r44 = 0, and rij = 0 for i 6= j. Then the
components r−ij = r−(ei, ej) = 1

2{r(ei, ej)− r(Jei, Jej)} of the J-anti-invariant part
of the Ricci tensor are as follows: r−11 = −1

4 , r−22 = −1
2 , r−33 = 1

2 , r−44 = 1
4 , and other

components r−ij (i 6= j) are identically zero.
Suppose that a smooth function ψ belongs to Ker(DgS )∗. Equivalently, it satisfies

∇g
−dψ−ψr−g = 0. Now one computes the J-anti-invariant part ∇−dψ of the Hessian

of ψ.
For convenience we denote ∂ψ

∂x by ψx and ∂2ψ
∂x∂y by ψyx, etc.. The Riemannian

connection ∇ can be computed by the formula

2〈∇XY, Z〉=X〈Y, Z〉+ Y 〈X, Z〉−Z〈X, Y 〉 − 〈X, [Y, Z]〉 − 〈Y, [X,Z]〉+ 〈Z, [X, Y ]〉;

For i = 1, 2, 3, 4, ∇eiei = 0, ∇e4ei = ∇eie4 = 0.

∇e1e2 = −∇e2e1 =
1
2
e3, ∇e1e3 = ∇e3e1 = −1

2
e2, ∇e2e3 = ∇e3e2 =

1
2
e1.

We set ∇dψij = ∇dψ(ei, ej). From ∇dψ(X,Y ) = X(Y ψ)− (∇XY )ψ;

∇dψ11 = ψxx, ∇dψ22 = ψyy + 2xψyz + x2ψzz, ∇dψ33 = ψzz,

∇dψ44 = ψtt, ∇dψ12 = ψxy + xψxz +
1
2
ψz, ∇dψ13 = ψxz +

1
2
ψy +

1
2
xψz,

∇dψ14 = ψxt, ∇dψ23 = ψyz + xψzz − 1
2
ψx, ∇dψ24 = ψyt + xψzt,

∇dψ34 = ψzt.

From ∇−dψ(X, Y ) = 1
2{∇dψ(X, Y )−∇dψ(JX, JY )};
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2∇−dψ11 = ψxx − ψtt, 2∇−dψ22 = ψyy + 2xψyz + (x2 − 1)ψzz,

2∇−dψ12 = ψxy + xψxz + 1
2ψz + ψzt, 2∇d−ψ13 =ψxz+

1
2
ψy+

1
2
xψz−ψyt−xψzt,

2∇−dψ23 = 2(ψyz + xψzz − 1
2ψx), 2∇−dψ14 = 2ψxt.

We deduce that the equation ∇g
−dψ − ψr−g = 0 is equivalent to the following

system of six differential equations.

〈1〉 ψxx − ψtt = −1
2ψ, 〈2〉 ψyy + 2xψyz + (x2 − 1)ψzz = −ψ,

〈3〉 ψxy + xψxz + 1
2ψz + ψzt = 0, 〈4〉 ψxz +

1
2
ψy +

1
2
xψz − ψyt − xψzt = 0,

〈5〉 ψyz + xψzz − 1
2ψx = 0, 〈6〉 ψxt = 0.

Now the surjectivity of DgS follows by showing that ψ should be necessarily zero.
The computation is elementary and it goes as follows.

From the equation 〈6〉, ψ(x, y, z, t) can be written as a(x, y, z) + b(y, z, t). From
〈1〉, axx − btt = −1

2(a + b). So, axx + 1
2a = btt − 1

2b. LHS is a function of x, y, z

whereas RHS is a function of y, z, t. So, both sides are functions of y and z only. By
differentiating RHS, we have bttt− 1

2bt = 0. So bt = b1(y, z)e
1√
2
t+b2(y, z)e−

1√
2
t. And

b =
√

2b1(y, z)e
1√
2
t −√2b2(y, z)e−

1√
2
t + b3(y, z). ψ(x, y, z, t) = a(x, y, z) + b(y, z, t)

should be invariant under the repeated action of γ4(x, y, z, t) = (x, y, z, t + 1). It
forces b1 = b2 = 0 and b = b(y, z). So, ψt = bt = 0. Taking ∂

∂x to 〈3〉, we get
ψxxy +xψxxz + 3

2ψxz = 0. As ψxx = −1
2ψ from 〈1〉, we have −1

2ψy− 1
2xψz + 3

2ψxz = 0.
Comparing this with 〈4〉, we get ψy +xψz = 0. Take ∂

∂z to get ψyz +xψzz = 0. With
〈5〉, it follows that ψx = 0. From 〈1〉, ψ = 0. So Ker(DgS )∗ = 0.

Now the linearized map DSω|g is surjective. The scalar curvature of c2g, c > 0
can be any negative constant and c2g is an almost Kähler metric compatible with the
symplectic structure c2ω. Clearly DSc2ω|c2g is also surjective. So from Proposition
1 we get the ‘if’ part of Theorem 1.1. According to [7, Theorem A], as M is an
enlargeable manifold, it does not admit any Riemannian metric with nonnegative
and not identically zero scalar curvature. It is well known that M does not admit a
zero-scalar-curved metric. Indeed, if it does, the metric should be ricci-flat and then
should be Kähler by Hitchin’s theorem [12]. This proves Theorem 1.1.

Remark 1. We only computed for one 4-dimensional metric g on the Kodaira-
Thurston manifold, but one can get similar results to Theorem 1.1 in higher dimen-
sions. For example, one may try the product metric g + gT where gT is the flat
Kähler metric on the 2k-dimensional torus, k ≥ 1.
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Remark 2. One may produce some more examples of similar kind in 4 dimension
belonging to the class (c′). For instance, we have available some explicit almost
Kähler metrics on solvmanifolds.

Remark 3. We hope Theorem 1.1 gives a motivation to pursue for the problem
of characterizing the scalar curvature functions of almost-Kähler metrics for general
symplectic manifolds.
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