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MODULAR TRIBONACCI NUMBERS BY MATRIX METHOD

EunMI1 CHo1

ABSTRACT. In this work we study the tribonacci numbers. We find a tribonacci
triangle which is an analog of Pascal triangle. We also investigate an efficient method
to compute any nth tribonacci numbers by matrix method, and find periods of the
sequence by taking modular tribonacci number.

1. INTRODUCTION

The study of Fibonacci sequence F;, (n > 0) has a long history since Lucas, 1885.
The research has been extended to algebraic aspects, such as Fibonacci group([9],
[4]) and Fibonacci ring[2], etc. It is also generalized to higher-order sequences includ-
ing tribonacci[5], quatranacci, k-step Fibonacci sequences[l]. The 3-step Fibonacci
sequence usually called the tribonacci sequence T, is the sum of the preceding three
terms having initial values 0,0,1. Hence T}, =T\, 1+Tn—o+Th—3withT 1 =Ty =0
and T1 = 1, so the first some numbers are {T},} : 0,0,1,1,2,4,7,13,24,44, ---.

The purpose of this work is to study the tribonacci numbers. We construct a
tribonacci triangle which is an analog of Pascal triangle so that every tribonacci
number appears in the triangle. We find an efficient method to compute any nth
tribonacci numbers by matrix method, and investigate periods of the sequence by

taking modular tribonacci number.

2. TRIBONACCI NUMBERS WITH BINOMIAL COEFFICIENTS

11

1 0 then M" =

For the Fibonacci sequence Fj,, it is known that if M = [

F2 F1 n_ Fn+1 Fn
F F | | F F,

} thus F?2 — F,,_1F,11 = (—1)""!. Fibonacci sequence
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1 1 1
is to M what tribonacci sequence isto N = | 1 0 0 |, in fact
0 1 0
T 11 1 T, 11 11" 1
T, |=1]100 T,..|=|10 0 T
Th_1 01 0 Th_o 01 0 To
Theorem 2.1. Let N be the matriz as above.
T2 1 Tl Tn+1 Tn + Tn—l Zrn
(1) N = T1 0 TO and N™ = Tn Tn,1 + Tn,Q Tn,1
To 1 T4 Tho1 Tho+Th-3 Th_2

(2)1 =T+ T} -TWT-1 — TuTp

(3) Tsfl —-1= 2Tn—2Tn—1Tn + Tn—STn—lTn+1 - T272Tn+1 - Tn—3Tq%

n

= n72(2Tn71Tn - Tn+1) + TnfS(Ty% - TnflTnJrl)-

T3 Tho+Ty Tp
Proof. Since N*>= | Ty, Ty +Ty Ti |, (1) follows by induction. Moreover since
T To+T_1 T
1=det(N) =T+ T - TiT_1 — TxTy

Tn+1 Tn + Tn—l Tn Tn+1 Tn Tn—l
= det(Nn) = T, Thaa+Th o Thoy |=—| Ty Thor Tho |,
Tn—l Tn—2 + Tn—3 Tn—2 Tn—l Tn—2 Tn—S

we have
Toir T o = Toi T 1 T3+ ToTn 3 — 20T 2T + Ty = 1,

hence T3 | — 1 =T, _3(T2 — Tn-1Tns1) + Tp—2(2T0 1T — Trs1)- O

Next theorem is about the tribonacci numbers T,, for negative n.

Tnf 1 Tn

Th_o Th_1 s0 Tfn = T%—l = (Tn72 + Tn73)2 (mOd Tn)

Theorem 2.2. T_,, = ‘

Proof. Since N=" = (N™)~!, it follows that
T—n+1 T n+T na T
T—n T—n—l + T—n—Q T—n—l
T 1 Tpo+tTpn-3 T-pno

Tn—2 Tn—l _ Tn—l Tn Tn—l Tn
Tn—3 Tn—2 Tn—B Tn—2 Tn—2 Tn—l
_ Tn Tnfl Tn+1 Tn Tn+1 Tn
- _‘ Tnfl Tn72 ‘ Tnfl Tn72 _‘ Tn Tnfl
Tn Tnfl + Tn72 _ TnJrl Tn + Tnfl TnJrl Tn + Tnfl
L Tn—l Tn—2 + Tn—3 Tn—l Tn—2 + Tn—3 Tn Tn—l + Tn—2
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[ Tn—2 Tn—l _ Tn—l Tn Tn—l Tn
Tn—S Tn—2 Tn—3 Tn—2 Tn—2 Tn—l
_ _ Tn Tnfl Tn+1 Tn _ Tn+1 Tn
- Tnfl Tn72 Tnfl Tn72 Tn Tnfl
Tn Tn+1 . Tn+1 Tn+2 Tn+1 Tn+2
Tn—l Tn Tn—l Tn Tn Tn+1 |
Th-1 1T,
Hence we have T_,, = | ;1 - for all n. Therefore, by mod T,
Tn—2 Tn—l

T =T ~T, Ty o=T2 = (Th—Tho—Tn3)?=(Th2+Th3)?. O

Example 1. It is easy to see T_19 = Tg (mod Tjp) = 812 (mod 149) = 5. Precisely
| Ty Tio 81 149 |

T = ‘ Ty Ty 44 81 |7

Furthermore comparing Fibonacci and tribonacci, we can write

T2 | — T Ty g =T, while F2, — F,F, 5= (—1)""".

The Fibonacci sequence is known for its connection to the Pascal’s triangle.

1
1 ]1
1121
1131311
14 4 |1

Upon using the binomial coefficients C’,’i = (Z), this table can be written as

o
c? | Cy
C3 | Cy | CF

Cy|Ci|CE|CE|Ch

+

Py | Fy | By | Fy | Fs | Fs | Fr | Fs

it thus follows that F,1; = ZE(J) cl_,=>",C ..
An analog of tribonacci numbers and binomial coefficients is as follows.

Theorem 2.3. If n > 0 is even, then
Cg
Cy
C3

CO
Tom CRAC + 16y Ol | 6 | +1C5 Ca i
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CY 29
3 3 3 3 Cs T2 N5 2 G2 52 Cuy
O O 5 Crig Chdl cz | Tt [ CipCi Ca Oy, } ol
3 ol
-1 o3-1 ] [ G
+[ C C%—l] ol
1 : ) 2 ) 3 n_ o 1
= CO_C0+Y Chy (Ci+ > C2y (Cht Y Ciy Oy +y Ci[Ch,
1=0 1=0 1=0 =0
If n > 0 is odd, then
OO OS
= OO + (O Chal | |+ 102 Cha)| €]
2
% Bt g gl ] | b
2]- 3]- 3]- 1
+[Ch_4Cp_5Ci_6C 7] Czé +o [ Claimn Oy Claj ] ngj—l
c3 [2)-1

[5] ~0
+C1Ca)

1 2

:QL%+Z%44%§Bﬁ$£+M+iQﬁiigﬂﬂﬁw&.
i=0 i=0 i=0

Proof. As an analog of the Pascal triangle, we consider the following table. Then

we can see that the sum of each column produces tribonacci numbers as:

Tn=CJCY =1=C0CY =1Ts,

Ty = C9CY + C1CY = 2,

T, = CYCY + C3CY + CLCt =4,

Ts = C{CY + CiCY + CiCT + C3C9 =7,

Ts = C3CG + C1CY + C3CY + G303 + C3C; = 13,

T; = CYCY + CECY + C{C] + C3CY + C3C3 + C3C3 + C3C9 = 24,

Ty = CYCY + C4CY + CCL 4 C3C9 + C3Cy + C3C35 + CICY + C3C3 = 44,

Ty = CICY + CHCY + C4C1 + CZCY + C2C3 + C3C3 + C3CY + C3C3 + C3C3 + CLCY.

Moreover these identities can be expressed by matrices that

[0 0
n-cgcg+icien| o | m-aagrician| o |+ao,
Ts = C9C0 cl ol [ C? ] C2 o2 CS Czc!

¢ =C5C0 +[C; Cs] cl +[C3 3] cl + 0305,

_ 0 - 9
Tr = C§Cy + [C5 CY] cﬁ +[C; C3 C5] C% +C3C9,

L ] C2
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C9 3 Y
n-cicpriciall| g |+iczer aa| of | +ieen| g |
1 02 3
CO Cg -C??
n-cig+iciall| g | +lcsesen| o] | +icecien | df | +cicy
! ¢ .
e
oot | clev | cicl
CICY | C1C7 | 30
C3C9 | C3C; | C3C3
crey feler faicr
C3C3 | C3C; | C3C3
C3C3 | C3C5 | C3C3 | C3C3
CiCy | CiCY | CiC]
CiC3 | C3Cy | C3C3
CiC3 | CiCs | C3C3 | CEC3
cich | cicl | cich
COCy [ CICT [ CICT
C3C3 | C2Cy | C2C3
cich | cial | cscs
cict | cicl
cict
CeCy | CsCY | CC
C3Cy | CECy | C3C3
CgCy | CECs
cich
CICY | C7CY | €10
703 | C3Cy
cich
+ : : :
1 1 2 4 7 13 24 44 81 149 274
Tl T2 T3 T4 T5 TG T7 T8 T9 TlO T]l e

Furthermore it can be written by

0 1 0 1 0
T, = Z Ccy_,CL+ Z Cy_iCf, Ty = Z Ci_iCy + Z C3_;C1 + Z C3_iCs,
i=0 =0

10 zO

TG_ZC5 100+Zc4 101+Zc3 .Ch,

1= O

Zcﬁ 100+Zcr 01+Zc4 102+203 .CE

Ty = Z CCi+ Z CiiCi + Z C2.Cs + Z CiiCs,

=0 =0 =0 =0
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15__2535& zcb-+j{:cy lC“—kjE:C% ch-rj{:cg ch-+j£:cg .CL.

=0 =0 =0
Hence this can be proved for every n, so that the theorem holds. ([l
The author would like to thank the referee for providing information about new

research for binomial expression of the tribonacci numbers [7].

3. TRIBONACCI TABLE AND TRIBONACCI MATRIX

In this section, we display the tribonacci sequence in a rectangle form with & > 0
columns. We call the rectangle composed of tribonacci numbers the k columns
tribonacci table. We begin to consider the 4 columns tribonacci table

1 1 2 4

7 13 24 44
81 149 274 504
927 1705 3136

Then we find that, for instance
Tig = (11)3136 + (5)274 + 24 = (374 — 1)T'15 + (T4 + 1)T11 + T7 = 35890.
Similarly from the 5 columns tribonacci table

1 1 2 4 7

13 24 44 81 149
274 504 927 1705 3136
5768 10609 19513 35890

we also can see that, for instance
To3 = (21)19513 + 927 + 44 = (3T5)T1s + T3 + Ts = 410744.

Moreover from the 6 columns tribonacci table

1 1 2 4 7 13

24 44 81 149 274 504
927 1705 3136 9768 10609 19513
35890 66012 121415 223317 410744

it can be seen that, for instance
Too = (39)5768 — (13 — 2)149 + 4 = (3T4)T16 — (T — 2)T10 + Ty = 223317.
Theorem 3.1. Letn=kt+r (1 <r <k). Assume 4 <k <10. Then

(1) Tn = Thtsr = m1Th(e—1) 40 + H2The—2)+r + 13Th(t—3) 4
where the coefficients (u1, p2, u3) depending on k are as follows

k=4 k=5 k=6
(1, p2,p3) || BTy —1, Ty +1,1) (375,1,1) (3Ts, =16 +2,1)
k=7 F—8 =9 k=10
BT —1.15,1) || (BTs 1, -3.1) | (3T 2, 23,1) | (370 —4,4L,1)
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(2) Titsr is a linear sum of T, in the 1st row, Ty, in the 2nd row and Thyy, in

the 3rd row of the table, and these belong to the same rth column.

Proof. 1t is due to the above observations and mathematical induction. O

In [6], the identity Ty, 1) = 1174 + 5T4(—1) + Ty(n—2) was proved. This is the
case only for k = 4. Theorem 3.1 gives the identities for all 4 < k& < 10.

Corollary 3.2. For 5 <k <10, {Tk,} are as follows.

T5(n41) = 2150 + T5(n—1) + T5(n—2); To(nt1) = 39T6n — 11T5(n—1) + To(n—2)s
Tanyry = NV T7n + 15T 70 1) + Tr(n—2),  Ts(n+1) = 131180 — 3T3(n—1) + T(n—2):
Totni1) = 241To — 2300 1) + Topn—2, Tio(ns1) = 443T10n + 413001y + Tio(m—2)-

Example 2. Consider T5q. By taking k = 7 for instance, we have

T50 = Tr(r)+1 = mTr(6)+1 + H2T7(s)+1 + 13T7(a) 41

with (p1, o, u3) = (377 — 1, 15, 1) = (71,15,1). So it follows immediately
T50 = T1T7(6)+1 + 15T 7(5)+1 + T7(a) 11

= (T1- 71+ 15)T7(5)11 + (15 - T1+ 1) T4y 41 + T1T7(3) 11

= 5056 T7(5)+1 + 1066 T7(4)+1 + 71 T7(3)+1

— 360042 Ty(ay41 + 75911 T3y 41 + 5056 Trg)y

— 25638893 Tr(3)41 + 5405686 Trz)41 + 360042 Tr(1) 4

= 1825767089 T7 ()11 + 384943437 T741 + 25638893 11 = 5,742,568, 741, 225
by plugging T7(2)41 = 3136, T741 = 44 and T1 = 1.

Now taking tribonacci number T}, by modular tribonacci number T}, the next

theorem follows from Theorem 3.1.

Theorem 3.3. Letn=Fkt+r (1 <r <k)and4 <k <10. By mod Ty,

Titr = 1 Th—1)4r + V2Th—2)4r + V3Th—3)1r  (mod Tj)
where the coefficients (v1,v2,v3) are

k| (viyve,vs) || k| (vi,ve,v3) ||k | (vi,ve,v8) || K| (v1,02,15)

i (-LLy [5]0,L1) 6 1(0,2,1) (—1,15,1)

8| (~1,-3,1) || 9| (-2,-23,1) || 10 | (—4,41,1)

Example 3. Take k =5 for instance. Then T5¢ (mod T5 = 7) is

Ts50 = Ts.945 = T5.745 + Ts.645 = (T5.545 + T5.445) + T5.645

=T5645 + T5.545 + T5.445 = (Ts.a15 + Ts.315) + Ts.5405 + T4
= Ts5+5 + 2715445 + T5.315 = 2T5.445 + 215.315 + T5.245
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= 215345 + 35245 + 21515 = 3T5.945 + 41545 + 215 = 1.
If we regard the k columns tribonacci table as a matrix with k columns, we may
treat Tiiqr (1 <7 < k) as the entry ey, at the place of (¢ + 1)th row and rth

column in the matrix. Thus due to Theorem 3.1, it can be written as

Thttr = €(t11,0) = M€(tr) T H2€(1—1,r) T 13€(1—2,1)5

i.e., Ty, is a linear sum of three successive entries in the same rth column. The

coefficients (u1, 2, p3) are strongly dependent on the number k.

0 1 0
Theorem 3.4. Letn=4t+r (1<r <4)andu € Z. Let Ay = [0 0 1] and
1 1 -1
Xy =[1L1 —1]. Then in the 4 columns tribonacci matriz (mod Ty = 4)
E(t—2,r) C(t—u—2,7) €(1,r)
T4t+7‘ = X(4) C(t—1,r) = X(4)A7(J4) C(t—u—1,r) = X(4 (4) 6(2 )
€(t,r) €(t—u,r) €(3,r)
Proof. In the 4 columns tribonacci matrix, Theorem 3.3 shows that
Tatyr = €@y1) = —€tr) T -1, + €t—2r) = 2€0-1) — €(t—3,)

= _26(15—2,7’) + €(t—3,r) + 2e(t—4,7") = 3€(t—3,7’) - 26(15—5,7‘) =
by mod Ty. By making use of X4 and Ay, it can be written by

€(t—2,r) €(t—3,r) €(t—4,r)
Tuyr = Xy | eo-1m) | = XwAw | ei-20) | = XAl | €e-sr)
€(t,r) €(t—1,r) €(t—2,r)
€(t—u—2,7) i3 €(1,r)
= cee = X(4)A?4) e(t,u,lw,«) = X(4)A(4) e(g’r) .
E(t—u,r) €(3,r)
O
01 0 01 0
Theorem 3.5. Let A(5) = 0 0 1 5 A(G) = 0 0 1 5 X(5) = [1 1 1] and
1 1 0 1 2 0
Xe=[2221]. Ifn=>5t+r (1<r< 5) then in the 5 columns matriz (mod Ts ),

[ eqt—2,m) ] €(t—u—4,r) e(1,r)
Tstrr=[110]| e,y | = =X A | etu-sn | = X5 )A(g) e(2,r) ] -
L C@,r) C(t—u—2,7) J €(3,r)
Similarly, if n =6t +r (1 <r< 6), then in the 6 columns matriz (mod Tg),
[ eq—2,r) €(t—u—t,r) e(1,r)
Totr=[120] | €1, | = X(6)A(6) €(t—u—3,r) X )A(g) e2,r) ] .
€(t,r) L €(t—u—2,7) J €(3,r)
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Proof. In the 5 columns matrix, Theorem 3.3 shows by mod T5 = 7 that

Totrr = €(t41s) = €(t—1,) T €(t—2) = €(t—2,7) T €(t—3,) + €(t—4.r)

= e-3r) T 2€1-ar) F €t—5r) = 2€(t—a) + 2€(t—5,) + €t—6.1)

= 2eq-5,) +3€n—6) T 2€4-7,) = 3€1—6,) T Le(i—7) T 2€(1-81)-
By means of X(5) and A(s), these identities can be expressed by

€(t—2,r) (t 4,7) €(t—4,r)
Tsir=[110] | €1y | =11 s | = X)) | €3
(t 2,1) e(t—?,r)

E(t,r)

€(t—5,r) 9 €(t—6,r)
= X(5)A(5) €(t—a,r) = X(5)A(5) €(t—5,r) =
€(t—3,r) €(t—4,r)
C(t—u—4,r) _ €@,r)
= X(5)Aq(‘5) Clt—u—3r) | = - ( )A(5) €(2,r)
C(t—u—2,7) €(3,r)
Similarly Tot+r = 2T6—2)4r + To(t—3)4r (mod Tg = 13) shows

Tot4r = €(t41,r) = 2€(4—1r) T €(t—2,r)
= e—ar) T 2%e(—3,) + 2€0—a,) = 2%€(1—31) + 2°€(—ar) T Cl1—5r)
= 2%e_ay) + (2° + Deg_s,y + 2%e—er)
= (2° + Deosyy + (2° + 2%) 6, + 2%e(—7,)
= (2° +2%)eqr6,) T (2(2° +1) + 2%)e_7y) + (27 + Deg_gr)-
Hence in terms of Xy and A, this is equivalent to write

C(t—2,r) C(t—4,r)
Torr=1[1 2 0] [ e-1,r) | = Xe) [ €e(t—3,r)
€(t,r) €(t—2,r)
€(t—5,r) €(t—u—4a,r) €(1,r)
= X(6)A(6) €(t_4774) ] = X(G)A?G) e(t_u_3,r) ] = X(G)Azg)g) 6(277’) O
€(t—3,r) C(t—u—2,7) €(3,r)

0O 1 0
Theorem 3.6. Let X3 = [v3 v2 v1] and Ay, = [ 0 0 1 ] where 4 < k < 10
Vs UV 11
and v; are in Theorem 3.3. Then in the k columns tribonacci matriz,
€(t—2,r) €(1,r)
Tit+r= Xr) [ Ct-17) ] XA | cen ] :

(t,r) €@3,r)

Proof. In the k columns tribonacci matrix, it follows that
Tht+r = €(t41,r) = Vi€(tr) T 1V2€1—1,7) + V3€(1—2,p)
= (v + v2)e—1,) + (V1V2 + V3)e—ayy + ViV3e(—3,y)
= (U} + 201 + 1)) + (12(VF + 1v2) + v1vs)eq_s ) + V3T + 2)eq—ayy.-
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These identities can be expressed as

C(t—2,r) €(t—3,r) C(t—4,r)
Thtrr = Xy | €t-1) | = Xw)Aw) | €tt—20) | = X(k)A%k) e(t-3,r)
€(t,r) C(t—1,r) €(t—2,r)
C(t—u—2,r) €(1,r)
= XAy | Couin | == XAl | cen |- =
€(t—u,r) €@3,r)

Example 4. Tso = Ty(12)42 (mod Ty = 4) in the 4 columns matrix is

01 017 eqsy 01 0 1

T5()E[11—1][00 1] [6(2)2) 0 0 1][1]51.
110 e(.2) 11 -1 [

Also in the 5 columns matrix, T50 = T5(9)45 (mod T5 = 7) is

=[11—1]

0 1 071'[ eqs 01 1 0
T5()E[111] 0 0 1 €(2,5) E[lll} 1 11 2 | =1.
110 es.5) 121 0

Similarly in the 6 columns tribonacci matrix, we are able to show
T50 = T6(8)+2 = 6(972) =4 (mod T6 = 13)

Comparing to Example 3, this makes it easier to have modular tribonacci.

4. PERIOD OF THE TRIBONACCI SEQUENCES

The smallest number A is called the period of the tribonacci sequence by mod n
denoting by h = perp(n) such that 7,1 =T, =0 and Tp11 =1 (mod n). Refer to
[3] and [8] for the period of Fibonacci sequence. By the order of matrix M by mod
n, we mean the smallest number u to be M* = I (mod n) (I the identity matrix).
We denote it by u = o(M mod n). And the smallest number s satisfying v® = 1
(mod n) is called the order of v € Z by mod n, and is denoted by s = o(v mod n).

Let us consider the period of tribonacci sequences by mod tribonacci Tj.

Lemma 4.1. The matrices Ay, Ay and Ay in Theorem 3.4 and 3.5 are of order
o(Agy mod Ty) = 8, o(A(s) mod Ts) = 48 and o( Ay mod Tg) = 28.

Proof. By some matrix calculation, it is easy to see that, by mod Ty = 4,

0 0 1 -1 0 2
2 — _ 4 = 8 =
A(4) = 1 1 -1/, A(4) = [ 2 1 2 ] and A(4) =1,
-1 0 2 2 0 -1

hence O(A(;) mod Ty) = 8. Moreover by mod T = 7,
[ 1 1

4
A6) !

0
=11
| 1

2 3 2 2.0 0
,A?s)zlz 4 3], andAlﬁz[o 2 0]:2[,
00 2

1
5
2 3 5 4 ®
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thus A?g) = 2% and A‘(lg) =2°1 =1, s0 o(A(5) mod Ty) = 48.

On the other hand, by mod Tg = 13,

01 2 4 9 4 -3 -2 2
A?G)z[2 4 1 ,AZG)E 4 12 9],andA%g)E[ 2 1 —2],
1 4 4 9 9 12 —2 2 1
so A%g) = I and o(A() mod Tg) = 28. O

Theorem 4.2. For any n € Z,
Ty = Thyas (mod Ty), T, = Try54s (mod T5) and T,, = Tyy6.28 (mod Tg).

Proof. For n =4t +r (1 <r <4) and u € Z, Theorem 3.5 says

C(t—u—2,7)
T =Tyr = E(t+1,r) = X(4)A?4) E(t—u—1,r) ] (mod Ty)
e(t—u,r)

with X4 =[1 1 —1]. Since A?4) = [ in Lemma 4.1, we have

€(t—10,r) €(t—10,r)
et—or) | =Xy | €r-9n)

€(t-8,r) €(t—8,r)

Tytir= X (4)A?4) = Ty(t-8)+4rs

$0 Ty = Tat1r = Ty448)4r = Tnras (mod Ty). Similarly in Theorem 3.6,

C(t—u—4,r)
T5t+7n = e(t+17,,) = X(5)A1(L5) €(t—u—3,r) ] (mod T5)
C(t—u—2,r)

with 1 <7 <5 and X5 = [1 1 0]. But since A§) = I, it follows that

45 €(t—52,r) €(t—52,r)
Tst0= X(5)A(sy | €t-s1r) | = X5) | €51 | = T(-48)+r>
€(t—50,r) €(t—50,r)

0 Ty, = Tst1r = Ts(4448)+r = Tnis4s (mod T5). Analogously since

C(t—u—4,r)
C(t—u—3,r)
C(t—u—2,7)

with 1 <7 <6 and X(g = [2 4 1], and A%ﬁg) = I, we have

Tot+r = er1,r) = X(6)A(5)

08 €(t—32,r) €(t—32,r)
T6t+7“£ X(G)A(G) €(t—31,r) = X((j) €(t—31,r) = TG(t—QS)-‘rTa
€(t—30,r) €(t—30,r)
thus 75, = Tot4r = T(t428)+r = Int628 (mod Tp). O

Theorem 4.3. perp(Ty) |48, perp(T5) |5 - 48 and perp(Ts) 16 - 28. In fact,
perp(Ty) = 8 = o(Ay)), perp(T5) = 48 = o(A(s)) and perp(Ts) = 168 = 6 - o(A(g))-
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Proof. Since T}, = T 148 (mod Ty) and 8 = o(A(y)) by Theorem 4.2, the tribonacci
sequence by mod Ty is periodic with perp(T}y) |4 - 8. Similarly since 1), = Ty +5.48
(mod T5) and o(A5)) = 48, the sequence by mod 75 is periodic with pery(75) |5-48.
Again since T;, = Ty 46.28 (mod Tg) and O(A( )) = 28, the sequence by mod Tj is
periodic with perp(7g) |6 - 28. O

Furthermore, for matrices Ay (7 < k < 10), we have the followings that
o(A(7y mod T7) = 208 and T, = T4 7.208 (mod T7). So perp(T7) |7 - 208.
o(Agy mod Tg) = 440 and T, = Ty1s.440 (mod Tg). So pery(T3) [8 - 440.
o(A(gy mod Ty) = 39 and T;, = Ty19.39 (mod Ty). So pery(To) [9 - 39.
o(A 9y mod Tip) = 740 and T;, = Ty 10740 (mod T1p). So pery (7o) |10 - 740.
This consideration provides a lower and upper bound of the period that
o(Awy) | perp(Ty) and perp(Ty) | (k- o(Agp)) for 4 <k <10.
The length of period of tribonacci sequence is usually long, but the periods of tri-

bonacci by tribonacci modules are as follows.

k[ Tk | perp(Th)

3 ]2 perp(2) = 4 = 22

4 |4 perp(4) =8 =23

5 (|7 perp(7) = 48 = 24(3)

6 [[13 pery(13) = 168 = 23(3)(7)

7 |24 =23(3) perp(24) = 208 = 24(13)

8 [ 44 =22(11) perp(44) = 440 = 23(5)(11)

9 ||81=3% perp(81) = 351 = 33(13)

10 || 149 pery(149) = 7400 = 23 5%(37)
11 || 274 = 2(137) per(274) = 75628 = 22(7)(37)(73)
12 || 504 = 23 3%(7) | pery(504) = 624 = 2%(3)(13)
13 || 927 = 32(103) perp(927) = 662 = 2(331)

14 || 1705 = 5(11)(31) | per,(1705) > 120, 000

Lemma 4.1 shows that the smallest u and v such that Az‘k) = vl (mod Ty) are

(u,v) = (8,1) if k = 4, while (16, 2) if k£ = 5. The following is useful to determine

the period of tribonacci.

Theorem 4.4. Let (k,u,v) be the triple such that u,v > 0 are the smallest satisfying
Az(‘k) = vl (mod Ty) for 4 <k <10. Then (k,u,v) are
(4,8,1), (5,16,2), (6,28,1), (7,208,1), (8,440,1), (9,13,28), (10,740,1).

Proof. From AT(LI@) I (mod T}), the determinants of both sides yield v3

= =1
(mod Ty). By mod T}, (k

=4,7,8,10), it is easy to see that the congruence equation
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v® =1 (mod T}) has unique solution v = 1. And
A?4) (mod Ty) =1, A?%S (mod T7) =1, A‘(lg;) (mod Tg) = I, Ang) (mod Ty9) =1

yield the triples of integers
(k,u,v) = (4,8,1), (7,208,1), (8,440,1), (10,740,1).

On the other hand, if k = 5 then the equation v3> = 1 (mod Ts) has solutions
{1,2,4} = {2,22,23} (mod T5), while if £ = 9 then v = 1 (mod Ty) has solutions
{1,28,55} = {28,282,283} (mod Ty) respectively. Thus, since Al = 2I (mod T)

(5)
and A%g’) = 28] (mod Ty), we have triples

(k, u,v) = (5,16,2), (9,13,28).
In particular when k = 6, v3 = 1 (mod Tj) has solution {1,3,9} = {3,32,33} (mod
Ts). But A%g) = I, so we have (k,u,v) = (6,28,1). O

The periods of the tribonacci sequence by mod either T5 or Ty are as follows.

Corollary 4.5. Let t € Z. In the 5 columns tribonacci matriz, ey16,) = 2€(1,r)
and e(448,) = €r) (mod Ts) for 1 < r < 5. Similarly in the 9 columns matriz,

e(t413,) = 28e,) and eqy39.y) = €1y (mod Ty) for 1 <r < 9.

Proof. With respect to X(5) = [1 1 1], Theorem 3.5 shows

e(t—4,r) e(t—u—4,r) ek e(l,r)

J— J— u J— -
€(t+1’7.): X(5) e(t,gy,«) = X(5)A(5) e(t,u,,?,’,,‘) = X(5)A(5) 6(2’7,)
E€(t—2,r) C(t—u—2,7) €(3,r)

by mod T3 for any t,u € Z. Since A%g) = 21, by plugging u = 16, we have

€(t—20,r) €(t—20,r)
e—19,r) | =2X(5) | €t-19) | -

e(t—l&r) e(t—l&r)

e(r1m)= X(5)A(5)

This means that
€(t—5,r)
et+16,r) = 2X(5) | C-am | = 2€(m),
€(t—3,r)

Cltra8,r) _ C(t48m) C(t4327) C(H161) _ 93 _ 4 (mod Ts = 7).

hence
€(t,r) €(t4+32,r) C(t+16,r)  C(t,r)

Similarly in the 9 columns matrix, with X9y = [1 —23 — 2], we have

€(1,r)
€2,y | -

€@3,r)

C(t—4,r) u
e(t—i—l,r)E X(g) €(t—3,r) = X(Q)A(g)

E€(t—2,r)

C(t—u—2,7) 3
€(t—u—1,r) = X(Q)A(g)
€(t—u,r)
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Since A%g’) = 281, it follows

13 €(t—15,r) €(t—15,r)
e+1,)= XA | €t-14m) | =28X(9) | €a-14m) |,
€(t—13,r) €(t—13,r)
SO
€(t—3,r)
€(t+1377,) = 28X(9) [ €(t—2,r) ] = 28€(t,r)'
€(t—1,r)
€(t+39, €(t+39,r) €(t+26,r) E(t+13,7) _ _
Thus, —oor) — ZH39n) 2260 T — 983 = 1 (1mod Ty = 81). O

E(t.r) €(t+26,r) C(t+13,r)  E(tr)
Example 5. By Theorem 3.1, in the 5 columns tribonacci matrix,

€(17,4)
Tog = Ts(19)44 = €204)= [L 1 0] | eqsay | (mod T5 = 7).

€(19,4)
Since e(1,4) = 4, €(24) = 4 and e(34) = 4, we have

€a) =€14) Teea =1 esq=egatesa =1, €pq) =€34) T €44 =9
1
Continuing, we have e(17 4y = 1, €(184) = 1 and e(19 4) = 6, s0 Tog = [110] [ 1 ] = 2.
6

However by making use of Corollary 4.5, it follows immediately that

14 e 16 —2 "
€(3,4)
1 1
= 2:4[111] A 1] [111] 0 ” ]_2 (mod T5).
1

1
0 O
Note Tyg = 53324762928098149064722658 is 2 (mod 4), 2 (mod 7) and 6 (mod 13).
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