
J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. ISSN(Print) 1226-0657
http://dx.doi.org/10.7468/jksmeb.2013.20.4.269 ISSN(Online) 2287-6081
Volume 20, Number 4 (November 2013), Pages 269–276

SCALAR CURVATURE DECREASE FROM A HYPERBOLIC
METRIC

Yutae Kang a and Jongsu Kim b, ∗

Abstract. We find an explicit C∞-continuous path of Riemannian metrics gt on
the 4-d hyperbolic space H4, for 0 ≤ t ≤ ε for some number ε > 0 with the following
property: g0 is the hyperbolic metric on H4, the scalar curvatures of gt are strictly
decreasing in t in an open ball and gt is isometric to the hyperbolic metric in the
complement of the ball.

1. Introduction

For any Riamannian manifold (Mk, g0), k ≥ 3 and a ball B ⊂ M , is there a
C∞-continuous path of Riemannian metrics gt, 0 ≤ t ≤ ε on M such that the scalar
curvatures of gt are strictly decreasing in t on B and that gt ≡ g0 on M\B? This
family, if exists, may be called a scalar curvature melting of g0 in B. This question
is actually a small step toward Lohkamp’s conjecture on ricci curvature version [6,
Section 10].

If there is a scalar curvature melting gt, then the scalar curvatures satisfy
ds(gt)

dt
|t=0 ≤ 0

on B. As gt is deforming only inside a ball, it is more relevant to the linearization
Lg of the scalar curvature functional on the space of Riemannian metrics restricted
to a domain. According to Corvino [3, Theorem 4], a scalar curvature melting of
g seems to exist when the formal adjoint L∗g (as defined on the space of functions
which are square integrable on each compact subset of B) is injective. Although this
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injectivity condition holds for generic metrics by Theorem 6.1 and Theorem 7.4 in
[1], it is not easy to check which metrics satisfy this.

In the previous works we have studied explicit scalar curvature meltings of Eu-
clidean metrics and one positive Einstein metric [4, 5]. In this article we study the
hyperbolic metric gh, i.e. the metric with constant curvature −1. The derivative of
the scalar curvature functional dsgh

(defined on a whole manifold M) is surjective,
but we do not know whether the above (locally defined) L∗g is injective or not. In
any case, a merit of our construction is that it is explicit and provides a large scale
melting.

We shall first construct a family of Riemannian metrics on the 4-dimensional
hyperbolic space H4 whose scalar curvatures decrease on a precompact open subset
and are hyperbolic away from it. Then by conformal change of the metrics, we
spread the negativity inside the subset over to a larger ball. In the process, we find
a natural choice of parameter t to get gt. In this way we get a scalar curvature
melting;

Theorem 1.1. There exists a C∞-continuous path of Riemannian metrics gt on
H4, for 0 ≤ t ≤ ε for some number ε > 0 with the following property: g0 is the
hyperbolic metric on H4, the scalar curvatures of gt are strictly decreasing in t in an
open ball and gt is isometric to g0 in the complement of the ball.

2. Metrics on the 4-d Hyperbolic Space

We start with a metric on R4 of the form

g0 = f2dr2 +
r2

f2
dθ2 + h2dρ2 +

ρ2

h2
dσ2,

where (r, θ), (ρ, σ) are the polar coordinates for each summand of R4 := R2 × R2

respectively, and f , h are smooth positive functions on R4, which are functions of r

and ρ only. Then by a straightforward computation one gets the scalar curvature:

sg0 = 2(R2112 + R3113 + R4114 + R3223 + R4224 + R4334)

= 2
(frr

f3
+

3fr

rf3
− 3f2

r

f4
− f2

ρ

h2f2
+

hρρ

h3
+

3hρ

ρh3
− 3h2

ρ

h4
− h2

r

h2f2

)
,

where fr = ∂f
∂r , frr = ∂2f

∂r∂r , etc..
Consider the unit ball centered at the origin in R4. Then the hyperbolic met-

ric corresponds to gh = 4
(1−r2−ρ2)2

(dr2 + r2dθ2 + dρ2 + ρ2dσ2) in the unit ball
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{(r, θ, ρ, σ)| r2 + ρ2 < 1}. Note that gh = 4
(1−|x|2)2

(dx1
2 + dx2

2 + dx3
2 + dx4

2)
in the rectangular coordinates. If we consider the deformation

g̃ =
4

(1− r2 − ρ2)2
(
f2dr2 +

r2

f2
dθ2 + h2dρ2 +

ρ2

h2
dσ2

)
= ψ2g0,

where ψ = 2
(1−r2−ρ2)

, the scalar curvature is given [2, p.59] by

s(g̃) = ψ−3{64g0ψ + s(g0)ψ}.
Substituting 4g0ψ = − ψr

rf2 + 2frψr

f3 − ψrr

f2 − ψρ

ρh2 + 2hρψρ

h3 − ψρρ

h2 , ψr = 4r
(1−r2−ρ2)2

,

ψrr = 12r2−4ρ2+4
(1−r2−ρ2)3

, ψρ = 4ρ
(1−r2−ρ2)2

and ψρρ = 12ρ2−4r2+4
(1−r2−ρ2)3

, we get;

s(g̃) =3(1− r2 − ρ2)2
{(−2− 2r2 + 2ρ2)

f2(1− r2 − ρ2)2
+

(−2 + 2r2 − 2ρ2)
h2(1− r2 − ρ2)2

+
fr

f3
· 2r

1− r2 − ρ2
+

hρ

h3
· 2ρ

1− r2 − ρ2

+
1
6
(frr

f3
+

3fr

rf3
− 3f2

r

f4
− f2

ρ

f2h2
+

hρρ

h3
+

3hρ

ρh3
− 3h2

ρ

h4
− h2

r

f2h2

)}
.

Put F + 1 = 1
f2 and H + 1 = 1

h2 . Then

s(g̃) + 12
6(1− r2 − ρ2)2

= − 1
24

{
Frr +

(3
r

+
12r

1− r2 − ρ2

)
Fr − 24(−1− r2 + ρ2)

(1− r2 − ρ2)2
F

+ Hρρ +
(3
ρ

+
12ρ

1− r2 − ρ2

)
Hρ − 24(−1 + r2 − ρ2)

(1− r2 − ρ2)2
H

}− f2
ρ + h2

r

12f2h2
.

We shall find F and H which satisfy

Frr +
(3
r

+
12r

1− r2 − ρ2

)
Fr − 24(−1− r2 + ρ2)

(1− r2 − ρ2)2
F = α(r, ρ)

and

Hρρ +
(3
ρ

+
12ρ

1− r2 − ρ2

)
Hρ − 24(−1 + r2 − ρ2)

(1− r2 − ρ2)2
H = −α(r, ρ)

for some function α(r, ρ). For convenience we denote Fr = F
′
, Frr = F

′′
, C =

(3
r + 12r

1−r2−ρ2 ) and D = −24(−1−r2+ρ2)
(1−r2−ρ2)2

, hence the equation is F
′′
+CF

′
+DF = α. If

we assume the solution is of the form F (r, ρ) = u(r, ρ)v(r, ρ), the equation becomes

(2.1) v
′′

+ (
2
u

u
′
+ C)v

′
+ (

1
u

u
′′

+
C

u
u
′
+ D)v =

α

u
.

Choose u so that 2
uu

′
+ C = 0, i.e.,

u = e−
1
2

∫
Cdr = e

− 1
2

∫
( 3

r
+ 12r

1−r2−ρ2 )dr = r−
3
2 (1− r2 − ρ2)3c̃(ρ).
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Then 1
uu

′′
+ C

u u
′
+ D = −3

4
1
r2 . Therefore the equation (2.1) becomes

v
′′ − 3

4r2
v =

r
3
2

(1− r2 − ρ2)3
α,

which is a well-known Euler-Cauchy equation. The general solution of this equation
is

v = c1(ρ)r
3
2 + c2(ρ)r−

1
2 +

1
2
r

3
2

∫
r

(1− r2 − ρ2)3
αdr − 1

2
r−

1
2

∫
r3

(1− r2 − ρ2)3
αdr.

Hence we have the solution

F = u(r, ρ)v(r, ρ) =c1(ρ)c̃(ρ)(1− r2 − ρ2)3 + c2(ρ)c̃(ρ)r−2(1− r2 − ρ2)3

+
1
2
c̃(ρ)(1− r2 − ρ2)3

∫
r

(1− r2 − ρ2)3
αdr

− 1
2
c̃(ρ)r−2(1− r2 − ρ2)3

∫
r3

(1− r2 − ρ2)3
αdr.

Choosing c1(ρ) = c2(ρ) = 0 and c̃(ρ) = 1 we have a solution

F =
1
2
(1− r2 − ρ2)3

{∫ r

0

t

(1− t2 − ρ2)3
α(t, ρ)dt− 1

r2

∫ r

0

t3

(1− t2 − ρ2)3
α(t, ρ)dt

}
.

Similarly we have

H = −1
2
(1−r2−ρ2)3

{∫ ρ

0

s

(1− r2 − s2)3
α(r, s)ds− 1

ρ2

∫ ρ

0

s3

(1− r2 − s2)3
α(r, s)ds

}
.

Hence

(2.2)
s(g̃) + 12

6(1− r2 − ρ2)2
= −f2

ρ + h2
r

12f2h2
= − 1

48
{ H + 1

(F + 1)2
F 2

ρ +
F + 1

(H + 1)2
H2

r

}
.

We choose α(r, ρ) = a(r)b(ρ)(1 − r2 − ρ2)3 where a(r) and b(ρ) are smooth
functions satisfying

1) a(r) = 0, r ≤ 0, r ≥ 1
2

2)
∫ 1

2

0
(t− 4t3)a(t)dt = 0

3) b(ρ) = 0, ρ ≤ 0, ρ ≥ 1
2

4)
∫ 1

2

0
(s− 4s3)b(s)ds = 0.

Note that this will make F (r, ρ) = 0 and H(r, ρ) = 0 when r ≥ 1
2 or ρ ≥ 1

2 .

A graph of a typical such function a (or b) is given in the picture below:
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1
2

0

Fig.1. The graph of a.

Then

F (r, ρ) =
1
2
(1− r2 − ρ2)3b(ρ){

∫ r

0
ta(t)dt− 1

r2

∫ r

0
t3a(t)dt},(2.3)

H(r, ρ) = −1
2
(1− r2 − ρ2)3a(r){

∫ ρ

0
sb(s)ds− 1

ρ2

∫ ρ

0
s3b(s)ds}

and

Fρ =
1
2
(1− r2 − ρ2)2{−6ρb(ρ) + (1− r2 − ρ2)b

′
(ρ)}(

∫ r

0
ta(t)dt− 1

r2

∫ r

0
t3a(t)dt),

Hr = −1
2
(1− r2− ρ2)2{−6ra(r)+ (1− r2− ρ2)a

′
(r)}(

∫ ρ

0
sb(s)ds− 1

ρ2

∫ ρ

0
s3b(s)ds).

We set D = {(r, θ, ρ, φ)| 0 ≤ r, ρ < 1
2 , 0 ≤ θ, φ < 2π}. Due to the conditions

1)−4) on a and b, the support of F and H lie in D. So, g̃ = gh away from D and from
(2.2) its scalar curvature sg̃ < s(gh) inside D except the subset T := {(r, θ, ρ, φ) ∈
D | Fρ = 0, Hr = 0}. By choosing a and b properly, T becomes a thin subset in D.

One can check that the region D lies within the gh-distance 4 from the origin
(0, 0, 0, 0) ∈ H4.

Proposition 1. There exist Riemannian metrics on H4 such that their scalar cur-
vatures are less than that of the hyperbolic metric on the subset D\T and they are
hyperbolic away from D.

3. A Scalar-curvature-decreasing Family

We are going to show that there is a C∞-continuous path g̃t among the metrics
in the previous section such that its scalar curvature s(g̃t) is decreasing in D\T and
g̃t is hyperbolic in the complement of D.

We define a path of metrics:

(3.1) g̃t =
4

(1− r2 − ρ2)2
(f2

t dr2 +
r2

f2
t

dr2 + h2
t dρ2 +

ρ2

h2
t

dσ2),
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where 1
f2

t
= tF + 1 and 1

h2
t

= tH + 1 for the functions F and H as in (2.3). Then
g̃0 = gh.

From (2.2) the scalar curvature is as follows;

s(g̃t) + 12
6(1− r2 − ρ2)2

= − 1
48
{ tH + 1
(tF + 1)2

t2F 2
ρ +

tF + 1
(tH + 1)2

t2H2
r }.

One can easily check d(s(g̃t))
dt |t=0 = 0 and

(3.2)
d2(s(g̃t))

dt2
|t=0 = −1

4
(1− r2 − ρ2)2(F 2

ρ + H2
r ) ≤ 0.

Note that inside D the set of points with d2

dt2
(s(g̃t))|t=0 = 0 is identical to the set

T. We see that s(g̃t) is strictly decreasing only on D\T. In order to have the right
decreasing property, we need to diffuse the negativity (of scalar curvature) onto a
ball containing D\T.

4. Diffusion of Negative Scalar Curvature onto a Ball

Our argument in this section follows those in [4, Section 4] and [5, Section 4] with
just a few differences in estimation.

We use the following functions; FM
t,m(ρ) ∈ C∞(R,R≥0) for m, M > 0, t ≥ 0

defined by FM
t,m(ρ) = m · t2 · exp(−M

ρ ) on R>0 and FM
t,m = 0 on R≤0. Also choose an

H ∈ C∞(R, [0, 1]) with H = 0 on R≥1, H = 1 on R≤0 and Hb
ε (ρ) = H(1

ε (ρ− b)), for
b > 0, ε > 0.

Let Br(x) be the open ball of radius r with respect to g̃0 = gh centered at x. We
may choose a point p and a number ε1 < 0.1 so that B2ε1(p) ⊂ D\T as T is a thin
subset. Then s(g̃t) < 0 on Bε1(p) when 0 < t < c for some number c.

Let fM
t,m ∈ C∞(H4,R≥0) be fM

t,m(q) = FM
t,m(%(q)), where %(q) is the g̃0-distance

from p to q ∈ H4 and let hb
ε ∈ C∞(H4,R≥0) be hb

ε(q) = Hb
ε (%(q)). We choose b = 9

and ε = ε1. We consider the Riemannian metric e2φt g̃t, where

φt(%) = fM
t,m(9 + ε1 − %) · h9

ε1(9 + ε1 − %) = mt2e
− M

9+ε1−% h9
ε1(9 + ε1 − %).

Here m and M will be determined below. The scalar curvature is as follows;

s(e2φt g̃t) = e−2φt(sg̃t + 6∆g̃tφt − 6|∇g̃tφt|2).
Setting B = sg̃t + 6∆g̃tφt − 6|∇g̃tφt|2, we have

ds(e2φt g̃t)
dt

= −2
dφt

dt
e−2φtB + e−2φt(

dsg̃t

dt
+ 6

d∆g̃tφt

dt
− 6

d|∇g̃tφt|2
dt

)
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and
d2s(e2φt g̃t)

dt2
= 4(

dφt

dt
)2e−2φtB − 2

d2φt

dt2
e−2φtB − 4

dφ

dt
e−2φt(

dsg̃t

dt
+ 6

d∆g̃tφt

dt

− 6
d|∇g̃tφt|2

dt
) + e−2φt(

d2sg̃t

dt2
+ 6

d2∆g̃tφt

dt2
− 6

d2|∇g̃tφt|2
dt2

).

As φt is of second degree in t and B|t=0 = −12, we readily get

ds(e2φt g̃t)
dt

|t=0 = 0 and

d2s(e2φt g̃t)
dt2

|t=0 = 48me
− M

9+ε1−% h9
ε1(9 + ε1 − %) + d2sg̃t

dt2
|t=0

+12m∆g̃0e
− M

9+ε1−% h9
ε1(9 + ε1 − %) .

On B9+ε1(p)−Bε1(p), since h9
ε1(9 + ε1 − %) = 1 and d2sg̃t

dt2
|t=0 ≤ 0,

(4.1)
d2s(e2φt g̃t)

dt2
|t=0 ≤ 48me

− M
9+ε1−% + 12m∆g̃0e

− M
9+ε1−% .

As ∆g̃0f = −f
′′ − 3

%f
′
for a function f := f(%), we compute

∆g̃0e
− M

9+ε1−% = −e
− M

9+ε1−%
M

(9 + ε1 − %)4
{M − 2(9 + ε1 − %)− 3

%
(9 + ε1 − %)2}.

Then we can readily see in (4.1) that d2s(e2φt g̃t)
dt2

|t=0 < 0 for some large M > 0.

On Bε1(p), d2sg̃t
dt2

|t=0 < 0, so choose m > 0 small so that 48me
− M

9+ε1−% h9
ε1(9 + ε1 −

%) + d2sg̃t
dt2

|t=0 + 12m∆g̃0e
− M

9+ε1−% h9
ε1(9 + ε1 − %) < 0.

In sum, we have ds(e2φt g̃t)
dt |t=0 = 0 and d2s(e2φt g̃t)

dt2
|t=0 < 0 on B9+ε1(p) and e2φt g̃t =

g̃0 on H4 −B9+ε1(p).
We may have subtlety near the boundary ∂B9+ε1(p), so we add the following

argument.
On B9(p), there exists ε̃ > 0 such that s(e2φt g̃t) is strictly decreasing for 0 ≤ t ≤ ε̃.

For a moment we set κ = 9 + ε1 − %, M̃ = M − 2κ − 3
%κ2 and E = e−

M
κ . On

B9+ε1(p)−B9(p), g̃t = gh and sg̃t = −12, so

s(e2φt g̃t) = e−2φt(−12 + 6∆g̃0φt − 6|∇g̃0φt|2)

= e−2φt{−12 + t2
6MmE

κ4
(−M̃ −Mmt2E)}.

We have
ds(e2φt g̃t)

dt
= 12te−2φtmE(4 + 2

t2MM̃mE

κ4
+ 2

t4M2m2E2

κ4
− MM̃

κ4
− 2

M2mt2E

κ4
).
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As M is large and m small, 4+2 t2MM̃mE
κ4 +2 t4M2m2E2

κ4 −MM̃
κ4 < 0 for 0 < t ≤ t0 with

some t0 > 0. Hence s(e2φt g̃t) is strictly decreasing for 0 ≤ t ≤ t0 on B9+ε1(p)−B9(p).
Setting ε = min{ε̃, t0}, we get a scalar-curvature melting gt = e2φt g̃t on B9+ε1(p) for
0 ≤ t ≤ ε. Theorem 1.1 is proved.

Remark 1. The argument in this article may be applicable to some other metrics.
A more generalization, including spherical metrics, will appear later.
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