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DYNAMIC RISK MEASURES AND G-EXPECTATION

Ju Hong Kim

Abstract. A standard deviation has been a starting point for a mathematical
definition of risk. As a remedy for drawbacks such as subadditivity property dis-
couraging the diversification, coherent and convex risk measures are introduced in
an axiomatic approach. Choquet expectation and g-expectations, which general-
ize mathematical expectations, are widely used in hedging and pricing contingent
claims in incomplete markets. The each risk measure or expectation give rise to its
own pricing rules. In this paper we investigate relationships among dynamic risk
measures, Choquet expectation and dynamic g-expectations in the framework of the
continuous-time asset pricing.

1. Introduction

Various kinds of risk measures have been proposed and discussed to measure or
quantify the market risks in theoretical and practical perspectives. A starting point
for a mathematical definition of risk is simply as standard deviation. Markowitz [19]
used the standard deviation to measure the market risk in his portfolio theory but his
method doesn’t tell the difference between the positive and the negative deviation.
Artzner et al. [2, 3] proposed a coherent risk measure in an axiomatic approach,
and formulated the representation theorems. Frittelli [12] proposed sublinear risk
measures to weaken coherent axioms. Heath [16] firstly studied the convex risk mea-
sures and Föllmer & Schied [9, 10, 11] and Frittelli & Rosazza Gianin [13] extended
them to general probability spaces. They had weakened the conditions of positive
homogeneity and subadditivity by replacing them with convexity.

There exist stochastic phenomena like Allais paradox [1] and Ellsberg paradox [8]
which can not be dealt with linear mathematical expectation in economics. Cho-
quet [6] introduced a nonlinear expectation called Choquet expectation which ap-
plied to many areas such as statistics, economics and finance. But Choquet expec-
tation has a difficulty in defining a conditional expectation. Peng [21] introduced
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a nonlinear expectation, g-expectation which is a solution of a nonlinear backward
stochastic differential equation. It’s easy to define conditional expectation with
Peng’s g-expectation. In this paper, we show that Choquet expectation is equal to
g-expectation under some conditions via {Ft}t∈[0,T ]-consistent expectation E satis-
fying Eµ-domination and translability condition.

The coherent (or convex) risk measure which is a static risk measures is defined
in section 2. Peng’s g-expectation, Choquet expectation and dynamic risk measure
are introduced in section 3. The relationships between Choquet expectation and
g-expectation are given as in the literature in section 4. It is shown that Choquet ex-
pectation is equal to g-expectation under some conditions via {Ft}t∈[0,T ]-consistent
expectation E in section 5.

2. Static Risk Measures

Risk measures are introduced to measure or quantify investors’ risky positions
such as financial contracts or contingent claims. Let (Ω,F , P ) be a probability space
and T be a fixed horizon time. Assume that X = Lp(Ω,F , P ), with 1 ≤ p ≤ +∞ is
the space of financial positions to be quantified or measured. Lp(Ω,F , P ) is endowed
with its norm topology for p ∈ (1, +∞) and with the weak topology σ(L∞, L1) for
p = +∞.

Definition 2.1. A coherent risk measure ρ : X → R is a mapping satisfying for
X, Y ∈ X

(1) ρ(X) ≥ ρ(Y ) if X ≤ Y (monotonicity),
(2) ρ(X + m) = ρ(X)−m for m ∈ R (translation invariance),
(3) ρ(X + Y ) ≤ ρ(X) + ρ(Y ) (subadditivity),
(4) ρ(λX) = λρ(X) for λ ≥ 0 (positive homogeneity).

The subadditivity and the positive homogeneity can be relaxed to a weaker quan-
tity, i.e. convexity

ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ) ∀λ ∈ [0, 1],

which means diversification should not increase the risk.

3. Peng’s g-expectation and Choquet Expectation

Let (Wt)t≥0 a standard d−dimensional Brownian motion and (Ft)t≥0 the aug-
mented filtration associated with the one generated by (Wt)t≥0. Let L2

F (T ;Rn) be
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the space of the adapted processes (ξt)t∈[0,T ] such that

E

[∫ T

0
‖ξs‖2ds

]
< +∞.

where ‖ · ‖ represents the Euclidean norm on Rn.
Suppose that for t ∈ [0, T ], L2(Ft) := L2(Ω,Ft, P ) is the space of real-valued,

Ft-measurable and square integrable random variables endowed with the L2-norm
‖ · ‖2 topology.

Let g : Ω × [0, T ] × R × Rn → R a function that g 7→ g(t, y, z) is measurable for
each (y, z) ∈ R× Rn and satisfy the following conditions

|g(t, y, z)− g(t, ȳ, z̄)| ≤ K(|y − ȳ|+ |z − z̄|)(3.1a)

∀t ∈ [0, T ],∀(y, z), (ȳ, z̄) ∈ R× Rn, for some K > 0,∫ T

0
|g(t, 0, 0)|2 dt < ∞,(3.1b)

For each (t, y) ∈ [0, T ]× R, g(t, y, 0) = 0.(3.1c)

Theorem 3.1 ([20]). For every terminal condition X ∈ L2(FT ) the following back-
ward stochastic differential equation

−dyt = g(t, yt, zt) dt− ztdWt, 0 ≤ t ≤ T(3.2a)

yT = X(3.2b)

has a unique solution (yt, zt)t∈[0,T ] ∈ L2
F (T ;R)× L2

F (T ;Rn).

Definition 3.2. For each X ∈ L2(FT ) and for each t ∈ [0, T ] g−expectation of X

and the conditional g−expectation of X under Ft is respectively defined by

Eg[X] := y0, Eg[X|Ft] := yt,

where yt is the solution of the BSDE (3.2).

Since g-expectation and conditional g-expectation can be considered as the exten-
sion of classic mathematical expectation and conditional mathematical expectation,
they preserve most properties of classic mathematical expectation and conditional
mathematical expectation except the linearity.

Definition 3.3. A real-valued set function c : F → [0, 1] is called capacity if it
satisfies (1) c(A) ≤ c(B) for A ⊂ B, (2) c(∅) = 0 and c(Ω) = 1.

Definition 3.4. A capacity is called submodular or 2-alternating if
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c(A ∪B) + c(A ∩B) ≤ c(A) + c(B).

Definition 3.5. Two measurable functions X and Y on (Ω,F) are called comono-
tone if there exists a measurable function Z on (Ω,F) and increasing functions f

and g on R such that

X = f(Z) and Y = g(Z).

A risk measure ρ on Lp(FT ) is called comonotonic if

ρ(X + Y ) = ρ(X) + ρ(Y )

whenever X and Y are comonotonic.

Define the Choquet integral of the loss as

ρ(X) :=
∫

(−X)dc.

Then ρ : X → R satisfies monotonicity, translation invariance and positive homo-
geneity, and other properties according to the given conditions.

(1) (Constant preserving)
∫

λdc = λ for constant λ.
(2) (Monotonicity) If X ≤ Y , then

∫
(−X)dc ≥ ∫

(−Y )dc.
(3) (Positive homogeneity) For λ ≥ 0,

∫
λ(−X)dc = λ

∫
(−X)dc.

(4) (Translation invariance)
∫

(−X + m) dc =
∫

(−X) dc + m, m ∈ R.
(5) (Comonotone additivity) If X and Y are comonotone functions, then

∫
[(−X) + (−Y )]dc =

∫
(−X)dc +

∫
(−Y )dc.

(6) (Subadditivity) If c is submodular or concave function, then
∫

(X + Y ) dc ≤
∫

X dc +
∫

Y dc.

The static risk measures do not account for payoffs or new information according
to the time evolution(refer to [25, 26]).

Definition 3.6. A dynamic risk measures are defined as the mappings (ρt)t∈[0,T ]

satisfying

(1) ρt : Lp(FT ) → L0(Ω,Ft, P ), for all t ∈ [0, T ],
(2) ρ0 is a static risk measure,
(3) ρT (X) = −X P−a.s., for all X ∈ Lp(FT ).
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4. Nonlinear Expectations and Nonlinear Pricing

To quantify riskiness of financial positions, coherent (or convex) risk measures,
Choquet expectation and g-expectation are widely used. It depends on practitioner’s
appropriate choices. The paper [5] shows that the pricing with the coherent risk
measure is less than one with the Choquet expectation.

Denote the Choquet expectation C(·) as Cg(·) with respect to the capacity Vg

defined as

Vg(A) := Eg[IA] ∀A ∈ FT .

Theorem 4.1 ([5]). If Eg[·] is a coherent risk measure, then Eg[·] is bounded by the
Choquet expectation Cg(·), that is

Eg[X] ≤ Cg(X), X ∈ L2(Ω,F , P ).

But if Eg[·] is a convex risk measure, then the above inequality does not hold generally.

Theorem 4.2 ([15]). Let g be convex function with respect to z, independent of y

and deterministic. Let g also satisfy (3.1). Then ρg(X) ≤ Cg[−X] for X ∈ L2(FT ) if
and only if ρg is a coherent risk measure. Here ρg(X) is defined as ρg(X) := Eg[−X]
for X ∈ L2(FT ).

Note that ρg : L2(FT ) 7→ R is a coherent (or convex) risk measure if and only
if g is independent of y and is positively homogeneous and subadditive (or convex)
with respect to z (see [23, 14, 22]).

The positive homogeneity and comonotonic additivity hold in the Choquet ex-
pectation. The time consistency holds in the g-expectation.

E[ξ + η] = E[ξ] + E[η] ∀ξ, η ∈ L2(Ω,F , P ).

The above equality holds for the Choquet expectation if ξ and η are comonotonic.
But if g is nonlinear, the above equality does not hold for the g-expectation even if
ξ and η are comonotonic. These facts means that g-expectation is more nonlinear
than the Choquet expectation on L2(Ω,F , P ) [15].

The following Lemmas (4.3) and (4.6), Proposition (4.4), and Theorem (4.5) are
from the paper [5].

Lemma 4.3. For any X ∈ L2(Ω,FT , P ), there exists unique η ∈ L2(Ω,Ft, P ) such
that

Eg[IAX] = Eg[IAη] ∀A ∈ Ft.
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The η is called the conditional g-expectation of X and it is written as Eg[X|Ft]. This
Eg[X|Ft] is exactly the yt which is the solution of BSDE (3.2).

Proposition 4.4. Let µ = {µt}t∈[0,T ] be a continuous functions. Suppose that
g(t, y, z) = µt|zt| and the process (zt)t∈[0,T ] is one dimensional. Then for any ξ ∈
L2(Ω,F , P ), the conditional g-expectation satisfies

Eg[ξ|Ft] = ess supQ∈QEQ[ξ|Ft] for µ > 0.

where Q is a set of probability measures defined as

Q :=
{

Qv
∣∣∣ dQv

dP
:= e−

1
2

∫ T
0 |vs|2ds+

∫ T
0 vsdWs ,

vt is Ft − adapted and |vt| ≤ µt, a.e. t ∈ [0, T ]
}

.

Theorem 4.5 ([5]). Suppose that g satisfies the given Hypotheses. Then there exists
a Choquet expectation whose restriction to L2(Ω,F , P ) is equal to a g-expectation if
and only if g is independent of y and is linear in z, i.e. there exists a continuous
function ν(t) such that

g(y, z, t) = ν(t)z.

Lemma 4.6. Suppose that g is a convex (or concave) function. If Eg[·] is comono-
tonic additive on L2

+(Ω,F , P ) (or L2−(Ω,F , P )), then Eg[·|Ft] is also comonotonic
additive on L2

+(Ω,F , P ) (or L2−(Ω,F , P )) for any t ∈ [0, T ).

Corollary 4.7. Suppose that g is a convex (or concave) function. If Eg[·] is a
Choquet expectation on L2

+(Ω,F , P ) (or L2−(Ω,F , P )), then Eg[·|Ft] is also a Choquet
expectation on L2

+(Ω,F , P ) (or L2−(Ω,F , P )) for any t ∈ [0, T ).

5. Ft-consistent Expectation

In this section, an {Ft}t∈[0,T ]-consistent expectation E is defined as a nonlin-
ear functional on L2(FT ). We’ll show that Choquet expectation is an {Ft}t∈[0,T ]-
consistent expectation E under some conditions.

Definition 5.1. A nonlinear expectation is defined as a functional E : L2(FT ) → R
satisfying

(1) (Monotonicity) If X ≥ Y P -a.s., then E(X) ≥ E(Y ). Moreover, under the
inequality X ≥ Y , E(X) = E(Y ) if and only if X = Y P -a.s..

(2) (Constancy) E(c) = c ∀c ∈ R.
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Definition 5.2. An {Ft}t∈[0,T ]-consistent expectation is defined as the nonlinear
expectation E such that if for any X ∈ L2(FT ) and any t ∈ [0, T ] there exists
η ∈ L2(Ft) satisfying

E [1AX] = E [1Aη] ∀A ∈ Ft.(5.1)

The η satisfying (5.1) is called conditional {Ft}t∈[0,T ]-consistent expectation of X

under Ft and denoted by E [X|Ft].

Definition 5.3. It is called that {Ft}t∈[0,T ]-consistent expectation E is dominated
by Eµ (µ > 0) if

E [X + Y ]− E [X] ≤ Eµ[Y ] ∀X, Y ∈ L2(FT )

where Eµ is g-expectation with g(t, y, z) = µ|z|.
An {Ft}t∈[0,T ]-consistent expectation E is called to satisfy the translability con-

dition if

E [X + β|Ft] = E [X|Ft] + β ∀X ∈ L2(FT ), ∀β ∈ L2(Ft).(5.2)

The following theorem tells us the relationships between conditional g-expectation
and {Ft}t∈[0,T ]-consistent expectation.

Theorem 5.4 ([7]). Let E : L2(FT ) → R be a {Ft}t∈[0,T ]-consistent expectation. If
E is Eµ-dominated for some µ > 0 and if it satisfies translability condition (5.2),
then there exists a unique g which is independent of y, satisfies the assumptions (3.1)
and |g(t, z)| ≤ µ|z| such that

E [X] = Eg[X] and E [X|Ft] = Eg[X|Ft] ∀X ∈ L2(FT ).

Theorem 5.5 ([11]). For the Choquet integral with respect to a capacity c, the
following are equivalent.

(1) ρ0(X) :=
∫

(−X) dc is a convex risk measure on L2(FT ).
(2) ρ0(X) :=

∫
(−X) dc is a coherent risk measure on L2(FT ).

(3) For Qc := {Q ∈M1,f |Q[A] ≤ c(A) ∀A ∈ FT },∫
X dc = sup

Q∈Qc

EQ[X] for X ∈ L2(FT ).(5.3)

(4) The set function c is submodular. In this case, Qc = Qmax.

The set M1,f = M1,f (Ω,F) in Theorem (5.3) is the one of all finitely additive
set functions Q : F → [0, 1] which is normalized to Q[Ω] = 1. The Qmax is defined
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as

Qmax :=

{
Q ∈M1,f

∣∣∣ sup
X∈Aρ

EQ[−X] = 0

}

where Aρ is defined as

Aρ := {X ∈ L2(FT ) | ρ(X) ≤ 0}.

From the viewpoint of Proposition (4.4) and Theorem (4.5), the set Qc of (5.3)
is unnecessarily too large so that it could be reduced to a suitable set of probability
measures for consistency, i.e.

Qc :=
{

Qv ∈M1,f

∣∣∣Qv[A] ≤ c(A) ∀A ∈ FT ,
dQv

dP
:= e−

1
2

∫ T
0 |vs|2ds+

∫ T
0 vsdWs ,(5.4)

vt is Ft − adapted and |vt| ≤ µt, a.e. t ∈ [0, T ]

for continuous functions µt > 0
}

.

It can be shown that Qc is indeed the set of equivalent martingale measures by
the following Proposition (5.6).

Proposition 5.6 ([11]). If Q << P on F , then Q is equivalent to P if and only if
dQ
dP > 0 P -a.s.

Assume that the capacity c is submodular. Under the new set Qc as in (5.4), we
define a nonlinear expectation E : L2(FT ) → R as

E [X] :=
∫

X dc = ess sup
Q∈Qc

EQ[X], X ∈ L2(FT ).(5.5)

We will show that the above E [X] satisfies all the assumptions of Theorem (5.4).
It is easy to show that E [X] satisfies the monotonicity and constancy in the Defini-
tion (5.1) but if X ≥ Y , E [X] = E [Y ] if and only if X = Y P -a.s.. Suppose that
X ≥ Y and E [X] = E [Y ]. We prove it contrapositively. Suppose X = Y P -a.s. does
not hold. Let A = {w ∈ Ω |X 6= Y } ∈ F . Then EQ[1AX] > EQ[1AY ] for each
Q ∈ Qc and there exists a r ∈ R such that EQ[1AX] > r > EQ[1AY ]. By taking
supremum on the left hand side first, we have ess supQ∈Qc

EQ[1AX] > r > EQ[1AY ]
and so ess supQ∈Qc

EQ[1AX] > r ≥ ess supQ∈Qc
EQ[1AY ], it’s a contradiction.

We need the stability property of a set Qc to show that E [X] is a {Ft}t∈[0,T ]-
consistent expectation. In the following definitions, the stopping times σ and τ can
be replaced by t ∈ [0, T ] without any loss.
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Definition 5.7. Let Q1 and Q2 be two equivalent probability measures and σ be a
stopping time. The probability measure

Q̃[A] := EQ1 [Q2[A|Fσ]] , A ∈ FT ,

is called the pasting of Q1 and Q2 in σ.

Note that by the monotone convergence theorem for conditional expectation Q̃

is a probability measure and

EQ̃[Y ] := EQ1 [EQ2 [Y |Fσ]] , ∀Y ∈ L2(FT ), Y ≥ 0.

Definition 5.8. A set Q of equivalent probability measures on (Ω,F) is called stable
if, for any Q1, Q2 ∈ Q and the stopping time σ, also their pasting in σ is contained
in Q.

Proposition 5.9 ([11]). The set Qc of equivalent martingale measures is stable.

Theorem 5.10 ([11]). Let Q be a set of equivalent probability measures. If Q is
stable, then the following holds for X ∈ L2(FT )

ess sup
Q∈Q

EQ[X|Ft] = sup
Q∈Q

EQ[ess sup
Q′∈Q

EQ′ [X|Fs]|Ft] for t, s ∈ [0, T ] with t ≤ s.

From the Theorem (5.10), we can easily see that E [X] is a {Ft}t∈[0,T ]-consistent
expectation condition (5.1), E [1AX] = E [1A · E [X|Ft]] ∀A ∈ Ft.

Let us show that {Ft}t∈[0,T ]-consistent expectation E is dominated by Eµ (µ >

0). Since E [X + Y ] − E [X] ≤ ess supQ∈Qc
EQ[Y ] and there exists g-expectation Eµ

with g(t, y, z) = µz satisfying Eµ[X] = ess supQ∈Qc
EQ[Y ] by Theorem (4.5), E is

dominated by Eµ. Note that Eµ-dominated nonlinear expectation E implies that E
is lower semi-continuous [7].

Finally we show that {Ft}t∈[0,T ]-consistent expectation E satisfies the translability
condition. Let X ∈ L2(FT ) and β ∈ L2(Ft). Then by the definition of E we have

E [(X + β)|Ft] = ess sup
Q∈Qc

EQ[(X + β)|Ft] = ess sup
Q∈Qc

EQ[X|Ft] + β = E [X|Ft] + β.

Therefore, the nonlinear expectation E defined as (5.5) satisfies the all the condi-
tions of Theorem (5.4). Thus the results so far can be summarized in the following
Theorem (5.11).

Theorem 5.11. Let the nonlinear expectation E be defined as (5.5). Then there
exists a unique g which is independent of y, satisfies the assumptions (3.1) and
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|g(t, z)| ≤ µ|z| such that

E [X] :=
∫

X dc = Eg[X] and E [X|Ft] :=
∫

X|Ft dc = Eg[X|Ft] ∀X ∈ L2(FT ).

Note that the generator g in Theorem (5.11) should be the form of g(t, y, z) = µtz

which is linear in z and so Eg = Eµ to be consistent to the results of Theorem (4.5).
In fact, for g(t, y, z) = µtz, let us consider the BSDE

Yt = X +
∫ T

t
µszs ds−

∫ T

t
zs dWs, X ∈ L2(FT ).(5.6)

The above differential equation (5.6) is reduced to

Yt = X −
∫ T

t
zsdW̃s, W̃t = Wt −

∫ t

0
µs ds.

By Girsanov’s Theorem, (W̃t)0≤t≤T is a Q-Brownian motion under Q defined as

dQ

dP
= exp

[
−1

2

∫ T

0
µ2

sds +
∫ T

0
µsdWs

]
.

Therefore we have the relations

Eg[X] = EQ[X], Eg[X|Ft] = EQ[X|Ft]

which means that g-expectation is a classical mathematical expectation.

Proposition 5.12 ([23]). Let the risk measure ρg
t (X) be defined as

ρg
t (X) := Eg[−X|Ft], ∀X ∈ L2(FT ), ∀t ∈ [0, T ]

where g satisfies the conditions (3.1). Moreover, if g is sublinear in (y, z), i.e. pos-
itively homogeneous in (y, z) and subadditive in (y, z), then (ρg

t )t∈[0,T ] is a dynamic
coherent and time-consistent risk measure.

Note that if g satisfies both positive homogeneity and subadditivity, g is indepen-
dent of y. The proposition (5.12) and Theorem (4.2) tells us that for Theorem (5.11)
to hold the linearity of g is necessary.
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