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TWO CHARACTERIZATION THEOREMS FOR HALF
LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE

KENMOTSU MANIFOLD

Dae Ho Jin

Abstract. In this paper, we study the curvature of locally symmetric or semi-
symmetric half lightlike submanifolds M of an indefinite Kenmotsu manifold M̄ ,
whose structure vector field is tangent to M . After that, we study the existence of
the totally geodesic screen distribution of half lightlike submanifolds of indefinite
Kenmotsu manifolds with parallel co-screen distribution subject to the conditions:
(1) M is locally symmetric, or (2) the lightlike transversal connection is flat.

1. Introduction

The theory of lightlike submanifolds is an important topic of research in differ-
ential geometry due to its application in mathematical physics, especially in the
electromagnetic field theory. The study of such notion was initiated by Duggal and
Bejancu [2] and later studied by many authors (see up-to date results in two books
[4, 5]). The class of lightlike submanifolds of codimension 2 is compose of two classes
by virtue of the rank of its radical distribution, which are called the half lightlike
and coisotropic submanifolds [3]. Half lightlike submanifold is a special case of r-
lightlike submanifold such that r = 1 and its geometry is more general form than
that of coisotrophic submanifold. Much of the works on half lightlike submanifolds
will be immediately generalized in a formal way to general r-lightlike submanifolds
of arbitrary codimension n and arbitrary rank r.

In the theory of Sasakian manifolds, the following result is well-known [9]: If a
Sasakian manifold is locally symmetric, then it is of constant positive curvature 1.
In 1971, K. Kenmotsu proved the following result [8]: If a Kenmotsu manifold is
locally symmetric, then it is of constant negative curvature −1.
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In this paper, we study the curvature of locally symmetric or semi-symmetric
half lightlike submanifolds of an indefinite Kenmotsu manifold M̄ , whose structure
vector field is tangent to M . After that, we study the existence of the totally geodesic
screen distribution of half lightlike submanifolds of indefinite Kenmotsu manifolds
with parallel co-screen distribution subject such that either M is locally symmetric
or the lightlike transversal connection is flat. We prove the following results:

Theorem 1.1. Let M be a half lightlike submanifold of an indefinite Kenmotsu
manifold M̄ , whose structure vector field is tangent to M . If M is locally symmet-
ric or semi-symmetric, then M is a space of constant negative curvature −1. In
this case, the induced connection on M is a torsion-free metric connection and the
lightlike transversal connection is flat.

Theorem 1.2. Let M be a half lightlike submanifold of an indefinite Kenmotsu
manifold M̄ with parallel co-screen distribution. If either M is locally symmetric or
the lightlike transversal connection is flat, then the screen distribution S(TM) of M

is never totally geodesic in M .

2. Half Lightlike Submanifolds

An odd dimensional semi-Riemannian manifold (M̄, ḡ) is said to be an indefinite
Kenmotsu manifold [7, 8, 10] if there exist a structure set (J, ζ, θ, ḡ), where J is a
(1, 1)-type tensor field, ζ is a vector field and θ is a 1-form such that

J2X = −X + θ(X)ζ, Jζ = 0, θ ◦ J = 0, θ(ζ) = 1,(2.1)

θ(X) = ḡ(ζ, X), ḡ(JX, JY ) = ḡ(X, Y )− θ(X)θ(Y ),

∇̄Xζ = −X + θ(X)ζ,(2.2)

(∇̄XJ)Y = −ḡ(JX, Y )ζ + θ(Y )JX,(2.3)

for any vector fields X, Y on M̄ , where ∇̄ is the Levi-Civita connection of M̄ .
A submanifold (M, g) of a semi-Riemannian manifold M̄ of codimension 2 is called

a half lightlike submanifold if the radical distribution Rad(TM) = TM ∩ TM⊥ of
M is a vector subbundle of the tangent bundle TM and the normal bundle TM⊥ of
rank 1. Then there exist complementary non-degenerate distributions S(TM) and
S(TM⊥) of Rad(TM) in TM and TM⊥ respectively, which are called the screen
and co-screen distributions on M , such that

(2.4) TM = Rad(TM)⊕orth S(TM), TM⊥ = Rad(TM)⊕orth S(TM⊥),

where ⊕orth denotes the orthogonal direct sum. We denote such a half lightlike
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submanifold by M = (M, g, S(TM)). Denote by F (M) the algebra of smooth func-
tions on M and by Γ(E) the F (M) module of smooth sections of a vector bundle
E over M . Choose L ∈ Γ(S(TM⊥)) as a unit vector field with ḡ(L,L) = ±1. In
this paper we may assume that ḡ(L,L) = 1, without loss of generality. Consider the
orthogonal complementary distribution S(TM)⊥ to S(TM) in TM̄ . For any null
section ξ of Rad(TM), certainly ξ and L belong to Γ(S(TM)⊥). Thus we have

S(TM)⊥ = S(TM⊥)⊕orth S(TM⊥)⊥,

where S(TM⊥)⊥ is the orthogonal complementary to S(TM⊥) in S(TM)⊥. For
any null section ξ of Rad(TM) on a coordinate neighborhood U ⊂ M , there exists
a uniquely defined null vector field N ∈ Γ(ltr(TM)) satisfying

(2.5) ḡ(ξ,N) = 1, ḡ(N, N) = ḡ(N,X) = ḡ(N,L) = 0, ∀X ∈ Γ(S(TM)).

We call N, ltr(TM) and tr(TM) = S(TM⊥)⊕orth ltr(TM) the lightlike transversal
vector field, lightlike transversal vector bundle and transversal vector bundle of M

with respect to S(TM) respectively. Therefore TM̄ is decomposed as

TM̄ = TM ⊕ tr(TM) = {Rad(TM)⊕ tr(TM)} ⊕orth S(TM)(2.6)

= {Rad(TM)⊕ ltr(TM)} ⊕orth S(TM)⊕orth S(TM⊥).

Let P be the projection morphism of TM on S(TM). Then the local Gauss and
Weingarten formulas of M and S(TM) are given respectively by

∇̄XY = ∇XY + B(X, Y )N + D(X,Y )L,(2.7)

∇̄XN = −AN X + τ(X)N + ρ(X)L,(2.8)

∇̄XL = −ALX + φ(X)N ;(2.9)

∇XPY = ∇∗XPY + C(X, PY )ξ,(2.10)

∇Xξ = −A∗ξX − τ(X)ξ, ∀X, Y ∈ Γ(TM).(2.11)

where ∇ and ∇∗ are induced linear connections on TM and S(TM) respectively,
B and D are called the local second fundamental forms of M , C is called the local
second fundamental form on S(TM). AN , A∗ξ and AL are linear operators on TM

and τ, ρ and φ are 1-forms on TM .
Since ∇̄ is torsion-free, ∇ is also torsion-free and both B and D are symmetric.

From the facts B(X, Y ) = ḡ(∇̄XY, ξ) and D(X, Y ) = ḡ(∇̄XY,L), we know that B

and D are independent of the choice of S(TM) and satisfy

(2.12) B(X, ξ) = 0, D(X, ξ) = −φ(X), ∀X ∈ Γ(TM).
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The induced connection ∇ of M is not metric and satisfies

(2.13) (∇Xg)(Y, Z) = B(X, Y ) η(Z) + B(X, Z) η(Y ),

for all X, Y, Z ∈ Γ(TM), where η is a 1-form on TM such that

(2.14) η(X) = ḡ(X, N), ∀X ∈ Γ(TM).

But the connection ∇∗ on S(TM) is metric. The above three local second funda-
mental forms are related to their shape operators by

B(X,Y ) = g(A∗ξX, Y ), ḡ(A∗ξX,N) = 0,(2.15)

C(X, PY ) = g(AN X, PY ), ḡ(AN X, N) = 0,(2.16)

D(X, PY ) = g(ALX, PY ), ḡ(ALX, N) = ρ(X),(2.17)

D(X, Y ) = g(ALX,Y )− φ(X)η(Y ), ∀X, Y ∈ Γ(TM).(2.18)

In case C = 0 on any coordinate neighborhood U , we say that S(TM) is totally
geodesic in M . From (2.10), we show that S(TM) is totally geodesic in M if and
only if S(TM) is a parallel distribution on M , i.e.,

∇XY ∈ Γ(S(TM)), ∀X ∈ Γ(TM) and Y ∈ Γ(S(TM)).

In the sequel, we let X, Y, Z, U, · · · be the vector fields of M , unless otherwise
specified. Denote by R̄ and R the curvature tensors of ∇̄ and ∇ respectively. Using
(2.7)∼(2.11), we have the Gauss-Codazzi equations for M and S(TM):

R̄(X, Y )Z = R(X, Y )Z(2.19)

+ B(X, Z)AN Y −B(Y, Z)AN X + D(X, Z)ALY −D(Y,Z)ALX

+ {(∇XB)(Y,Z)− (∇Y B)(X,Z) + τ(X)B(Y, Z)− τ(Y )B(X, Z)

+ φ(X)D(Y,Z)− φ(Y )D(X, Z)}N,

+ {(∇XD)(Y, Z)− (∇Y D)(X, Z) + ρ(X)B(Y, Z)− ρ(Y )B(X, Z)}L,

R̄(X, Y )N = −∇X(AN Y ) +∇Y (AN X) + AN [X, Y ](2.20)

+ τ(X)AN Y − τ(Y )AN X + ρ(X)ALY − ρ(Y )ALX

+ {B(Y, AN X)−B(X, AN Y ) + 2dτ(X, Y ) + φ(X)ρ(Y )− φ(Y )ρ(X)}N
+ {D(Y,AN X)−D(X, AN Y ) + 2dρ(X,Y ) + ρ(X)τ(Y )− ρ(Y )τ(X)}L,

R̄(X, Y )L = −∇X(ALY ) +∇Y (ALX) + AL [X, Y ](2.21)

+ φ(X)AN Y − φ(Y )AN X

+ {B(Y, ALX)−B(X,ALY ) + 2dφ(X,Y ) + τ(X)φ(Y )− τ(Y )φ(X)}N,
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R(X,Y )ξ = −∇∗X(A∗ξY ) +∇∗Y (A∗ξX) + A∗ξ [X, Y ]− τ(X)A∗ξY(2.22)

+ τ(Y )A∗ξX + {C(Y, A∗ξX)− C(X, A∗ξY )− 2dτ(X, Y )}ξ.
A half lightlike submanifold M = (M, g,∇) equipped with a degenerate metric

g and a linear connection ∇ is said to be of constant curvature c if there exists a
constant c such that the curvature tensor R of ∇ satisfies

(2.23) R(X, Y )Z = c{g(Y, Z)X − g(X,Z)Y }.
For any X ∈ Γ(TM), let ∇`

XN = Q(∇̄XN), where Q is the projection morphism
of Γ(TM̄) on Γ(ltr(TM)) with respect to (2.6). Then ∇` is a linear connection on
the lightlike transversal vector bundle ltr(TM) of M . We say that ∇` is the lightlike
transversal connection of M . We define the curvature tensor R` on ltr(TM) by

(2.24) R`(X, Y )N = ∇`
X∇`

Y N −∇`
Y∇`

XN −∇`
[X,Y ]N.

If R` vanishes identically, then the transversal connection is said to be flat.
From (2.8) and the definition of ∇`, we get ∇`

XN = τ(X)N for all X ∈ Γ(TM).
Substituting this equation into the right side of (2.24), we get

R`(X, Y )N = 2dτ(X,Y )N.

From this result we deduce the following theorem:

Theorem 2.1 ([6]). Let M be a half lightlike submanifold of a semi-Riemannian
manifold (M̄, ḡ). Then the lightlike transversal connection of M is flat, if and only
if the 1-form τ is closed, i.e., dτ = 0, on any U ⊂ M .

Note 1. We know that dτ is independent of the choice of the section ξ on Rad(TM),
where τ is given by τ(X) = ḡ(∇̄XN, ξ). In fact, if we take ξ̃ = γξ and τ̃(X) =
ḡ(∇̄XÑ , ξ̃), it follows that τ(X) = τ̃(X)+X(In γ). If we take the exterior derivative
d on the last equation, then we have dτ = dτ̃ .

3. Proof of Theorem 1.1

Assume that ζ is tangent to M . It is well known [1] that if ζ is tangent to M ,
then it belongs to S(TM). Replacing Y by ζ to (2.7) and using (2.2), we have

(3.1) ∇Xζ = −X + θ(X)ζ, B(X, ζ) = D(X, ζ) = 0.

Substituting (3.1)1 into R(X, Y )ζ = ∇X∇Y ζ−∇Y∇Xζ−∇[X, Y ]ζ and using (2.19),
(3.1) and the fact that ∇ is torsion-free, we have

R̄(X,Y )ζ = R(X, Y )ζ = θ(X)Y − θ(Y )X + 2dθ(X, Y )ζ.



6 Dae Ho Jin

Taking the scalar product with ζ to this and using the fact g(R̄(X, Y )ζ, ζ) = 0 and
(2.1), we show that θ is closed, i.e., dθ = 0 on TM . Thus we obtain

(3.2) R(X, Y )ζ = θ(X)Y − θ(Y )X.

Applying ∇̄X to θ(Y ) = g(Y, ζ) and using (2.2), (2.5) and ḡ(ζ, N) = 0, we have

(3.3) (∇Xθ)(Y ) = −g(X, Y ) + θ(X)θ(Y ).

Case 1. Assume that M is locally symmetric, i.e., ∇R = 0. Applying ∇Z to (3.2)
and using the first equation of (3.1)[denote by (3.1)1], (3.2) and (3.3), we have

(3.4) R(X,Y )Z = g(X,Z)Y − g(Y, Z)X.

Thus M is a space of constant curvature −1. Applying ∇U to (3.4), we have

(∇Ug)(X, Z)Y = (∇Ug)(Y, Z)X.

Taking Z = Y = ξ to this and using (2.12)1 and (2.13), we get B = 0. Thus ∇ is a
torsion-free metric connection on M by (2.13). As B = 0, we have A∗ξ = 0 by (2.15).
From (2.22), we get R(X, Y )ξ = −2dτ(X, Y )ξ. On the other hand, replacing Z by ξ

to (3.4), we have R(X, Y )ξ = 0. These two results imply dτ = 0. Thus the lightlike
transversal connection ∇` is flat.

Case 2. Assume that M is semi-symmetric, i.e., R(X, Y )R = 0. Applying ∇Z to
(3.2) and using (3.1)1, (3.2) and (3.3), we have

(3.5) (∇ZR)(X, Y )ζ = R(X, Y )Z − g(X, Z)Y + g(Y, Z)X.

Substituting (3.5) into (R(U,Z)R)(X,Y )ζ = 0 and using (3.1)1, we have

0 = θ(Z)(∇UR)(X,Y )ζ − θ(U)(∇ZR)(X,Y )ζ(3.6)

+ {B(U, Y )η(Z)−B(Z, Y )η(U)}X − {B(U,X)η(Z)−B(Z,X)η(U)}Y.

Replacing U by ζ to (3.6) and using (∇ζR)(X, Y )ζ = 0 due to (3.2) and (3.5), we
have (∇ZR)(X, Y )ζ = 0. From this and (3.5), we show that

(3.7) R(X,Y )Z = g(X,Z)Y − g(Y, Z)X.

Thus M is a space of constant negative curvature −1. Replacing U by ξ to (3.6)
and using (2.12)1, (3.7) and (∇ZR)(X, Y )ζ = 0, we have

B(Y, Z)X = B(X, Z)Y.

Replacing Y by ξ to this and using (2.12)1, we get B = 0. Thus, by (2.13), ∇ is a
torsion-free metric connection on M . Using (2.22), (3.7) and the method of Case 1,
we see that the lightlike transversal connection is flat. ¤
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4. Proof of Theorem 1.2

From the decomposition (2.6) of TM̄ , the vector field ζ is decomposed as

(4.1) ζ = W + mN + nL,

where W is a smooth vector field on M and m = θ(ξ) and n = θ(L) are smooth
functions. Substituting (4.1) in (2.2) and using (2.8) and (2.9), we have

∇XW = −X + θ(X)W + mAN X + nALX,(4.2)

Xm + mτ(X) + nφ(X) + B(X, W ) = mθ(X),(4.3)

Xn + mρ(X) + D(X, W ) = nθ(X).(4.4)

Substituting (4.3) and (4.4) into the following two equations

[X, Y ]m = X(Y m)− Y (Xm), [X, Y ]n = X(Y n)− Y (Xn),

and using (2.19), (2.20), (2.21), (4.1), (4.3), (4.4), we have respectively

(4.5) 2mdθ(X,Y ) = ḡ(R̄(X, Y )ζ, ξ), 2ndθ(X, Y ) = ḡ(R̄(X, Y )ζ, L).

Substituting (4.2) into R(X, Y )W = ∇X∇Y W − ∇Y∇XW − ∇[X, Y ]W and using
(2.19)∼(2.21), (4.2)∼(4.5) and the fact ∇ is torsion-free, we have

(4.6) R̄(X, Y )ζ = θ(X)Y − θ(Y )X + 2dθ(X,Y )ζ.

Taking the scalar product with ζ to (4.6) and using (2.1), we show that the structure
1-form θ is closed, i.e., dθ = 0 on TM .

Assume that S(TM) is totally geodesic in M . In this case, ζ is not tangent to M

and l = θ(N) 6= 0. In fact, if ζ is tangent to M or l = 0, then ḡ(ζ, N) = 0. Applying
∇̄X to ḡ(ζ, N) = 0 and using (2.2) and (2.8), we have η(X) = 0 for all X ∈ Γ(TM).
It is a contradiction as η(ξ) = 1. Thus ζ is not tangent to M and l 6= 0. As ζ is not
tangent to M , we see that (m,n) 6= (0, 0). As S(TM⊥) is a parallel distribution, we
have AL = φ = 0 due to (2.9). From (2.17) and (2.18), we also have D = ρ = 0.

Substituting (2.19)∼(2.21) into (4.6) and using (4.5), we get

(4.7) R(X, Y )W = θ(X)Y − θ(Y )X.

Applying ∇̄X to θ(Y ) = g(Y, ζ) and using (2.2) and (2.6), we have

(4.8) (∇Xθ)(Y ) = lB(X, Y )− g(X,Y ) + θ(X)θ(Y ).

Case 1. Assume M is locally symmetric. Applying ∇Z to (4.7), we have

R(X, Y )∇ZW = (∇Zθ)(X)Y − (∇Zθ)(Y )X.
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Substituting (4.2) and (4.8) in this equation and using (4.7), we obtain

(4.9) R(X,Y )Z = {g(X, Z)− lB(X,Z)}Y − {g(Y,Z)− lB(Y,Z)}X.

Replacing Z by ξ to (4.9) and using (2.12)1, we have R(X,Y )ξ = 0. Comparing the
Rad(TM)-components of this and (2.22), we have dτ = 0. Thus by Theorem 2.1
the lightlike transversal connection is flat. From (2.19), (2.20) and (4.9), we have

0 = ḡ(R̄(X, Y )N,Z) = −ḡ(R̄(X,Y )Z,N) = −ḡ(R(X, Y )Z,N)(4.10)

= {g(Y,Z)− lB(Y,Z)}η(X)− {g(X, Z)− lB(X, Z)}η(Y ),

Replacing Y by ξ to (4.10) and using (2.12)1, we get

(4.11) lB(X, Y ) = g(X,Y ).

From (4.9) and (4.11), we show that R = 0. From this and (4.7), we have

θ(X)Y = θ(Y )X.

Replacing Y by ξ to this equation and using X = PX + η(X)ξ, we have

mPX = g(X, W )ξ.

As the left term of this equation belongs to S(TM) and the right term belongs to
Rad(TM), we have mPX = 0 and g(X,W )ξ = 0 for all X ∈ Γ(TM). Thus m = 0
and g(X, W ) = 0 for all X ∈ Γ(TM). This imply W = lξ and

(4.12) ζ = lξ + nL.

From this and the fact ḡ(ζ, ζ) = 1, we show that n2 = 1.
It is known [6] that, for any half lightlike submanifold of an indefinite almost

contact metric manifold M̄ , J(Rad(TM)), J(ltr(TM)) and J(S(TM⊥)) are vector
subbundles of S(TM) of rank 1 respectively. Applying ∇̄X to ḡ(JN, L) = 0 and
using (2.1), (2.3), (2.8) and (2.9), we have

(4.13) ng(X,JN) = lg(X, JL).

Replacing X by Jξ to (4.13) and using (2.1)6, we have n = 0. It is a contradiction
as n2 = 1. Thus S(TM) is not totally geodesic in M .

Case 2. Assume that the transversal connection is flat. We have dτ = 0. Substi-
tuting (4.1) into (4.6) with dθ = 0 and using (2.19)∼(2.21) and (4.5), we have

R̄(X, Y )W = θ(X)Y − θ(Y )X.

Taking the scalar product with W to this and using the facts θ(X) − mη(X) =
g(X, W ) and ḡ(R̄(X, Y )W,W ) = 0, we have

θ(Y )η(X)− θ(X)η(Y ) = 0.
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Replacing Y by ξ to this equation, we have g(X, W ) = 0 for all X ∈ Γ(TM). This
implies W = lξ. Thus ζ is decomposed as

(4.14) ζ = lξ + mN + nL.

From the fact ḡ(ζ, ζ) = 1 and (4.14), we show that 2lm = 1− n2. Applying ∇̄X to
(4.14) and using (2.2), (2.8), (2.9) and (2.11), we have

−lA∗ξX + {X[l]− lτ(X)}ξ + {X[m] + mτ(X)}N + X[n]L

= −PX + {lθ(X)− η(X)}ξ + mθ(X)N + nθ(X)L.

Taking the scalar product with ξ, N and L to this result by turns, we get

(4.15) X[l]− lτ(X) = lθ(X)− η(X), Xm + mτ(X) = mθ(X), Xn = nθ(X),

respectively. From (2.15) and (4.15), we have

(4.16) lA∗ξX = PX, lB(X, Y ) = g(X, Y ).

Applying ∇̄X to ḡ(JN,L) = 0 and using (2.1), (2.3), (2.8), (2.9) and the fact S(TM)
is non-degenerate, we have

(4.17) nJN = lJL.

Taking the scalar product with Jξ to this and using (2.1)6, we have n(1 − ml) =
−lmn. This implies n = 0. As (m,n) 6= (0, 0) and n = 0, we have m 6= 0 and
2lm = 1. Consequently we get JL = 0 by (4.17). It is a contradiction as

0 = g(JL, JL) = ḡ(L,L)− θ(L)2 = 1− n2 = 1.

Thus S(TM) is not totally geodesic in M . ¤

Corollary 1. Let M be a half lightlike submanifold of an indefinite Kenmotsu
manifold M̄ . Then the structure 1-form θ, given by (2.1), is closed on TM .
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