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LIPSCHITZ AND ASYMPTOTIC STABILITY FOR PERTURBED
NONLINEAR DIFFERENTIAL SYSTEMS

Yoon Hoe Goo

Abstract. The present paper is concerned with the notions of Lipschitz and as-
ymptotic stability for perturbed nonlinear differential system knowing the corre-
sponding stability of nonlinear differential system. We investigate Lipschitz and
asymtotic stability for perturbed nonlinear differential systems. The main tool used
is integral inequalities of the Bihari-type, in special some consequences of an exten-
sion of Bihari’s result to Pinto and Pachpatte, and all that sort of things.

1. Introduction

The notion of uniformly Lipschitz stability (ULS) was introduced by Dannan and
Elaydi [8] . For linear systems, the notions of uniformly Lipschitz stability and that of
uniformly stability are equivalent. However, for nonlinear systems, the two notions
are quite distinct. In fact, uniformly Lipschitz stability lies somewhere between
uniformly stability on one side and the notions of asmptotic stability in variation of
Brauer[4] and uniformly stability in variation of Brauer and Strauss[3] on the other
side. Gonzalez and Pinto[9] proved theorems which relate the asymptotic behavior
and boundedness of the solutions of nonlinear differential systems.

In this paper, we investigate Lipschitz and asymptotic stability for solutions of
the nonlinear differential systems. To do this we need some integral inequalities.
The method incorporating integral inequalities takes an important place among the
methods developed for the qualitative analysis of solutions to linear and nonlinear
system of differential equations. In the presence the method of integral inequalities
is as efficient as the direct Lyapunov’s method.
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2. Preliminaries

We consider the nonlinear nonautonomous differential system

x′(t) = f(t, x(t)), x(t0) = x0,(2.1)

where f ∈ C(R+ × Rn,Rn), R+ = [0,∞) and Rn is the Euclidean n-space. We
assume that the Jacobian matrix fx = ∂f/∂x exists and is continuous on R+ × Rn

and f(t, 0) = 0. Also, consider the perturbed differential system of (2.1)

(2.2) y′ = f(t, y) +
∫ t

t0

g(s, y(s))ds, y(t0) = y0,

where g ∈ C(R+ × Rn,Rn) , g(t, 0) = 0. For x ∈ Rn, let |x| = (
∑n

j=1 x2
j )

1/2. For an
n× n matrix A, define the norm |A| of A by |A| = sup|x|≤1 |Ax|.

Let x(t, t0, x0) denote the unique solution of (2.1) with x(t0, t0, x0) = x0, existing
on [t0,∞). Then we can consider the associated variational systems around the zero
solution of (2.1) and around x(t), respectively,

v′(t) = fx(t, 0)v(t), v(t0) = v0(2.3)

and

z′(t) = fx(t, x(t, t0, x0))z(t), z(t0) = z0.(2.4)

The fundamental matrix Φ(t, t0, x0) of (2.4) is given by

Φ(t, t0, x0) =
∂

∂x0
x(t, t0, x0),

and Φ(t, t0, 0) is the fundamental matrix of (2.3).
Before giving further details, we give some of the main definitions that we need

in the sequel[8].

Definition 2.1. The system (2.1) (the zero solution x = 0 of (2.1)) is called
(S) stable if for any ε > 0 and t0 ≥ 0, there exists δ = δ(t0, ε) > 0 such that if
|x0| < δ, then |x(t)| < ε for all t ≥ t0 ≥ 0,
(US) uniformly stable if the δ in (S) is independent of the time t0,
(ULS) uniformly Lipschitz stable if there exist M > 0 and δ > 0 such that |x(t)| ≤
M |x0| whenever |x0| ≤ δ and t ≥ t0 ≥ 0
(ULSV) uniformly Lipschitz stable in variation if there exist M > 0 and δ > 0 such
that |Φ(t, t0, x0)| ≤ M for |x0| ≤ δ and t ≥ t0 ≥ 0,
(EAS) exponentially asymptotically stable if there exist constants K > 0 , c > 0,
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and δ > 0 such that

|x(t)| ≤ K |x0|e−c(t−t0), 0 ≤ t0 ≤ t

provided that |x0| < δ,
(EASV) exponentially asymptotically stable in variation if there exist constants K >

0 and c > 0 such that

|Φ(t, t0, x0)| ≤ K e−c(t−t0), 0 ≤ t0 ≤ t

provided that |x0| < ∞.

We give some related properties that we need in the sequel.
We need Alekseev formula to compare between the solutions of (2.1) and the

solutions of perturbed nonlinear system

y′ = f(t, y) + g(t, y), y(t0) = y0,(2.5)

where g ∈ C(R+×Rn,Rn) and g(t, 0) = 0. Let y(t) = y(t, t0, y0) denote the solution
of (2.5) passing through the point (t0, y0) in R+ × Rn.

The following is a generalization to nonlinear system of the variation of constants
formula due to Alekseev [1].

Lemma 2.2. Let x and y be a solution of (2.1) and (2.5), respectively. If y0 ∈ Rn,
then for all t such that x(t, t0, y0) ∈ Rn,

y(t, t0, y0) = x(t, t0, y0) +
∫ t

t0

Φ(t, s, y(s)) g(s, y(s)) ds.

Lemma 2.3 ([7]). Let u, λ1, λ2, w ∈ C(R+), w(u) be nondecreasing in u and 1
vw(u)≤

w(u
v ) for some v > 0. If , for some c > 0,

u(t) ≤ c +
∫ t

t0

λ1(s)u(s)ds +
∫ t

t0

λ1(s)
{∫ s

t0

λ2(τ)w(u(τ))dτ
}

ds, t ≥ t0 ≥ 0,

then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

λ2(s)ds
]
exp

(∫ t

t0

λ1(s)ds
)
, t0 ≤ t < b1,

where W (u) =
∫ u
u0

ds
w(s) ,u > 0, u0 > 0, W−1(u) is the inverse of W (u) and

b1 = sup
{

t ≥ t0 : W (c) +
∫ t

t0

λ2(s)ds ∈ domW−1
}

.
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Lemma 2.4 ([10]). Let u, p, q, w, and r ∈ C(R+) and suppose that, for some c ≥ 0,
we have

(2.6) u(t) ≤ c +
∫ t

t0

p(s)
∫ s

t0

[q(τ)u(τ) + w(τ)
∫ τ

t0

r(a)u(a)da]dτds, t ≥ t0.

Then

(2.7) u(t) ≤ c exp(
∫ t

t0

p(s)
∫ s

t0

[q(τ) + w(τ)
∫ τ

t0

r(a)da]dτds), t ≥ t0.

Lemma 2.5 ([15]). Let u(t), f(t) ,and g(t) be real-valued nonnegative continuous
functions defined on R+, for which the inequality

u(t) ≤ u0 +
∫ t

0
f(s)u(s)ds +

∫ t

0
f(s)(

∫ s

0
g(τ)u(τ)dτ)ds, t ∈ R+,

holds, where u0 is a nonnegative constant. Then,

u(t) ≤ u0(1 +
∫ t

0
f(s) exp(

∫ s

0
(f(τ) + g(τ))dτ)ds), t ∈ R+.

Lemma 2.6 ([12]). Let u, λ1, λ2, λ3 ∈ C(R+), w ∈ C((0,∞)) and w(u) be nonde-
creasing in u, u ≤ w(u). Suppose that for some c > 0,

u(t) ≤ c +
∫ t

t0

λ1(s)w(u(s))ds +
∫ t

t0

λ2(s)(
∫ s

t0

λ3(τ)u(τ)dτ)ds, 0 ≤ t0 ≤ t.

Then

(2.8) u(t) ≤ W−1
[
W (c) +

∫ t

t0

(λ1(s) + λ2(s)
∫ s

t0

λ3(τ))ds
]
, t0 ≤ t < b1,

where W , W−1 are the same functions as in Lemma 2.3 and

b1 = sup
{

t ≥ t0 : W (c) +
∫ t

t0

(λ1(s) + λ2(s)
∫ s

t0

λ3(τ))ds ∈ domW−1
}

.

Lemma 2.7 ([13]). Let u, p, q, w, r ∈ C(R+), w ∈ C((0,∞)) and w(u) be nonde-
creasing in u. Suppose that for some c ≥ 0,

(2.9) u(t) ≤ c +
∫ t

t0

(p(s)
∫ s

t0

(q(τ)w(u(τ)) + v(τ)
∫ τ

t0

r(a)w(u(a))da)dτ)ds, t ≥ t0.

Then

(2.10) u(t) ≤ W−1
[
W (c)+

∫ t

t0

(p(s)
∫ s

t0

(q(τ)+ v(τ)
∫ τ

t0

r(a)da)dτ)ds
]
, t0 ≤ t < b1,

where W (u) =
∫ u
u0

ds
w(s) , W−1(u) is the inverse of W (u) and

b1 = sup
{

t ≥ t0 : W (c) +
∫ t

t0

(p(s)
∫ s

t0

(q(τ) + v(τ)
∫ τ

t0

r(a)da)dτ)ds ∈ domW−1
}

.
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Lemma 2.8 ([14]). Let the following condition hold for functions u(t), v(t) ∈ C[[t0,∞),R+)
and k(t, u) ∈ C[[t0,∞)× Rn,R+):

u(t)−
∫ t

t0

k(s, u(s))ds ≤ v(t)−
∫ t

t0

k(s, v(s))ds,

t ≥ t0 and k(s, u) is strictly increasing in u for each fixed s ≥ 0. If u(t0) < v(t0),
then u(t) < v(t), t ≥ t0 ≥ 0.

Lemma 2.9 ([5]). Let u, λ1, λ2, λ3 ∈ C(R+), w ∈ C((0,∞)) and w(u) be nonde-
creasing in u. Suppose that for some c > 0,

u(t) ≤ c +
∫ t

t0

λ1(s)w(u(s))ds +
∫ t

t0

λ2(s)(
∫ s

t0

λ3(τ)w(u(τ))dτ)ds, 0 ≤ t0 ≤ t.

Then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

(λ1(s) + λ2(s)
∫ s

t0

λ3(τ))ds
]
, t0 ≤ t < b1,

where W (u) =
∫ u
u0

ds
w(s) ,u > 0, u0 > 0, W−1(u) is the inverse of W (u) and

b1 = sup
{

t ≥ t0 : W (c) +
∫ t

t0

(λ1(s) + λ2(s)
∫ s

t0

λ3(τ))ds ∈ domW−1
}

.

3. Main Results

In this section, we investigate Lipschitz and asymptotic stability for solutions of
the nonlinear perturbed differential systems.

Theorem 3.1. Assume that x = 0 of (2.1) is ULS. Let the following condition hold
for (2.2): ∫ t

t0

|g(s, y(s))|ds ≤ W (t, |y|), 0 ≤ t0 ≤ t,

where W (t, u) ∈ C(R+×R+,R+) is monotone nondecreasing in u with W (t, 0) = 0.
Suppose that u(t) is any solution of the scalar differential equation

(3.1) u′(t) = MW (t, u), u(t0) = u0 > 0,M ≥ 1,

existing on R+ such that m(t0) < u(t0). If u = 0 of (3.1) is ULS, then y = 0 of
(2.2) is also ULS whenever M |y0| < u0.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of (2.1) and (2.2),
respectively. Using the variation of constants formula, we have
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|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|
∫ s

t0

|g(τ, y(τ))|dτds,

where Φ(t, t0, y0) is the fundemental matrix of (2.4). Since x = 0 of (2.1) is ULS,
it is ULSV by Corollary 3.6[5]. Thus there exist M > 0 and δ > 0 such that
|Φ(t, t0, y0)| ≤ M for t ≥ t0 ≥ 0. Therefore, by the assmption, we have

|y(t)| −M

∫ t

t0

W (s, |y(s)|)ds ≤ M |y0| < u0 = u(t)−M

∫ t

t0

W (s, u(s))ds.

Hence |y(t)| < u(t) by Lemma 2.8. Since u = 0 of (3.1) is ULS, it easily follows that
y = 0 of (2.2) is ULS. ¤

Corollary 3.2. Assume that x = 0 of (2.1) is ULS. Consider the scalar differential
equation

(3.2) u′(t) = KW (t, u) = Ka(t)[u +
∫ t

t0

k(s)u(s)ds],

where u0 ≥ 1,K ≥ 1 and a, k ∈ C(R+) satisfy the conditions
(a)

∫ t
t0
|g(s, y(s))|ds ≤ W (t, |y|), where

∫ t
t0

g(s, y(s))ds is in (2.2),
(b) M(t0) = (1 + K

∫∞
t0

a(s)exp(
∫ s
t0

(Ka(τ) + k(τ))dτ)ds) < ∞ and b1 = ∞.
Then y = 0 of (2.2) is ULS.

Proof. Let u(t) = u(t, t0, x0) be any solution of (3.2). Then, by Lemma 2.5 , we
have

|u(t)| ≤ u0(1 + K

∫ t

t0

a(s)exp(
∫ s

t0

(Ka(τ) + k(τ))dτ)ds) ≤ M(t0)|u0|,

Hence u = 0 of (3.2) is ULS. This implies that the solution y = 0 of (2.2) is ULS by
Theorem 3.1. ¤

Remark 3.3. In Corollary 3.2, it is needed that b1 = ∞. The condition W (∞) = ∞
is too strong and it represents situations which are not stable. For example, if
w(u) = uα, then only α ≤ 1 satisfies W (∞) = ∞ and α < 1 is not stable. See [18].

Corollary 3.4. Assume that x = 0 of (2.1) is ULS. Consider the scalar differential
equation

(3.3) u′(t) = KW (t, u) = Ka(t)[u +
∫ t

t0

k(s)w(u(s))ds],

where u0 ≥ 1,K ≥ 1, u, w ∈ C(R+), w(u) be nondecreasing in u and 1
vw(u) ≤ w(u

v )
for some v > 0, and a, k ∈ C(R+) satisfy the conditions
(a)

∫ t
t0
|g(s, y(s))|ds ≤ W (t, |y|), where

∫ t
t0

g(s, y(s))ds is in (2.2),
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(b) M(t0) = W−1[W (u0) +
∫∞
t0

k(s)ds] · exp(
∫∞
t0

Ka(s)ds) < ∞, b1 = ∞, and a, k ∈
L1(R+). Then y = 0 of (2.2) is ULS.

Proof. Let u(t) = u(t, t0, x0) be any solution of (3.3). Then, by Lemma 2.3, we have

|u(t)| ≤ W−1[W (u0) +
∫ t

t0

k(s)ds] · exp(
∫ t

t0

Ka(s)ds) ≤ M(t0) ≤ M(t0)|u0|.

Hence u = 0 of (3.3) is ULS. By Theorem 3.1, the solution y = 0 of (2.2) is ULS. ¤

Corollary 3.5. Assume that x = 0 of (2.1) is ULS. Consider the scalar differential
equation

(3.4) u′(t) = KW (t, u) = K[a(t)w(u(t)) + b(s)
∫ t

t0

k(s)u(s)ds],

where w ∈ C((0,∞), w(u) is nondecreasing on u and u ≤ w(u), u0 ≥ 1,K ≥ 1 and
a, b, k ∈ C(R+) satisfy the conditions
(a)

∫ t
t0
|g(s, y(s))|ds ≤ W (t, |y|), where

∫ t
t0

g(s, y(s))ds is in (2.2),
(b) M(t0) = W−1[W (u0)+K

∫∞
t0

(a(s)+ b(s)
∫ s
t0

k(s)ds)] < ∞, b1 = ∞, and a, b, k ∈
L1(R+). Then y = 0 of (2.2) is ULS.

Proof. Let u(t) = u(t, t0, x0) be any solution of (3.4). Then, Lemma 2.6, we have

|u(t)| ≤ W−1[W (u0) + K

∫ t

t0

(a(s) + b(s)
∫ s

t0

k(s)ds)] ≤ M(t0) ≤ M(t0)|u0|.

Hence u = 0 of (3.4) is ULS, and so by Theorem 3.1, the solution y = 0 of (2.2) is
ULS. ¤

Theorem 3.6. For the perturbed (2.2), we asssume that
∫ t

t0

|g(s, y(s))|ds ≤ a(t)w(|y(t)|) + b(t)
∫ t

t0

k(s)|y(s)|ds,

where a, b, k ∈ C(R+), a, b, k ∈ L1(R+), w ∈ C((0,∞), and w(u) is nondecreasing
in u,u ≤ w(u), and 1

vw(u) ≤ w(u
v ) for some v > 0,

(3.5) M(t0) = W−1
[
W (M) + M

∫ ∞

t0

(a(s) + b(s)
∫ s

t0

k(τ)dτ)ds
]
,

where M(t0) < ∞ and b1 = ∞. Then the zero solution of (2.2) is ULS whenever
the zero solution of (2.1) is ULSV.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of (2.1) and (2.2),
respectively. Since x = 0 of (2.1) is ULSV, it is ULS by Theorem 3.3[8]. Applying
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Lemma 2.2, we have

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|
∣∣∣∣
∫ s

t0

g(τ, y(τ))dτ

∣∣∣∣ds

≤ M |y0|+
∫ t

t0

M |y0|a(s)w(
|y(s)|
|y0| )ds

+
∫ t

t0

M |y0|b(s)
∫ s

t0

k(τ)
|y(τ)|
|y0| dτds.

Set u(t) = |y(t)||y0|−1. Now an application of Lemma 2.6 yields

|y(t)| ≤ |y0|W−1
[
W (M) + M

∫ t

t0

(a(s) + b(s)
∫ s

t0

k(τ)dτ)ds
]
.

Hence we have |y(t)| ≤ M(t0)|y0| for some M(t0) > 0 whenever |y0| < δ. This
completes the proof. ¤

Theorem 3.7. For the perturbed (2.2), we asssume that

|g(t, y)| ≤ a(t)w(|y(t)|) + b(t)
∫ t

t0

k(s)|y(s)|ds,

where a, b, k ∈ C(R+), a, b, k ∈ L1(R+), w ∈ C((0,∞), and w(u) is nondecreasing
in u,u ≤ w(u), and 1

vw(u) ≤ w(u
v ) for some v > 0,

(3.6) M(t0) = W−1
[
W (M) + M

∫ ∞

t0

∫ s

t0

(a(τ) + b(τ)
∫ τ

t0

k(r)dr)dτds
]
,

where M(t0) < ∞ and b1 = ∞. Then the zero solution of (2.2) is ULS whenever
the zero solution of (2.1) is ULSV.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of (2.1) and (2.2),
respectively. Using the nonlinear variation of constants formula and the ULSV
condition of x = 0 of (2.1), we have

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|
∫ s

t0

|g(τ, y(τ))|dτds

≤ M |y0|+
∫ t

t0

M |y0|
∫ s

t0

[a(τ)w(
|y(τ)|
|y0| )dτds

+
∫ t

t0

M |y0|
∫ s

t0

b(τ)
∫ τ

t0

k(r)
|y(r)|
|y0| dr]dτds.

Set u(t) = |y(t)||y0|−1. Now an application of Lemma 2.7 yields

|y(t)| ≤ |y0|W−1
[
W (M) + M

∫ t

t0

∫ s

t0

(a(τ) + b(τ)
∫ τ

t0

k(r)dr)dτds
]
,
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Thus we have |y(t)| ≤ M(t0)|y0| for some M(t0) > 0 whenever |y0| < δ, and so the
proof is complete. ¤

Theorem 3.8. Let the solution x = 0 of (2.1) be EAS. Suppose that the perturbing
term g(t, y) satisfies

(3.7) |g(t, y(t))| ≤ e−αt
(
a(t)|y(t)|+ b(t)

∫ t

t0

k(s)|y(s)|ds
)
,

where α > 0, a, b, k ∈ C(R+), a, b, k ∈ L1(R+), w(u) is nondecreasing in u, and
1
vw(u) ≤ w(u

v ) for some v > 0. If

(3.8) M(t0) = c exp(
∫ ∞

t0

Meαs

∫ s

t0

[a(τ) + b(τ)
∫ τ

t0

k(r)dr]dτds) < ∞, t ≥ t0,

where c = |y0|Meαt0, then all solutions of (2.2) approch zero as t →∞
Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of (2.1) and (2.2),
respectively. Since the solution x = 0 of (2.1) is EAS, we have |Φ(t, t0, x0)| ≤
Me−α(t−t0) for some M > 0 and c > 0(Theorem 2[2]). Using Lemma 2.2, we have

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|
∣∣∣∣
∫ s

t0

g(τ, y(τ))dτ

∣∣∣∣ds

≤ M |y0|e−α(t−t0) +
∫ t

t0

Me−α(t−s)

∫ s

t0

[a(τ)e−ατ |y(τ)|

+b(τ)
∫ τ

t0

k(r)e−αr|y(r)|drdτ ]ds,

since eαt is increasing. Set u(t) = |y(t)|eαt. An application of Lemma 2.4 obtains

|y(t)| ≤ ce−αt exp(
∫ t

t0

Meαs

∫ s

t0

[a(τ) + b(τ)
∫ τ

t0

k(r)dr]dτds) ≤ ce−αtM(t0), t ≥ t0.

The above estimation yields the desired result. ¤

Theorem 3.9. Let the solution x = 0 of (2.1) be EAS. Suppose that the perturbing
term g(t, y) satisfies

(3.9)
∫ t

t0

|g(s, y(s))|ds ≤ e−αt
(
a(t)w(|y(t)|) + b(t)

∫ t

t0

k(s)w(|y(s)|)ds
)
,

where α > 0, a, b, k, w ∈ C(R+), a, b, k ∈ L1(R+) and w(u) is nondecreasing in u. If

(3.10) M(t0) = W−1
[
W (c) + M

∫ ∞

t0

(a(s) + b(s)
∫ s

t0

k(τ)dτ)ds
]

< ∞, b1 = ∞,

where c = M |y0|eαt0, then all solutions of (2.2) approch zero as t →∞
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Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of (2.1) and (2.2),
respectively. Using Lemma 2.2 and the assmptions, we have

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|
∣∣∣∣
∫ s

t0

g(τ, y(τ))dτ

∣∣∣∣ds

≤ M |y0|e−α(t−t0) +
∫ t

t0

Me−α(t−s)[e−αsa(s)w(|y(s)|)

+Mb(s)e−αs

∫ s

t0

k(τ)w(|y(τ)|)dτ ]ds.

Set u(t) = |y(t)|eαt. Since w(u) is nondecreasing, an application of Lemma 2.9
obtains

|y(t)| ≤ e−αtW−1
[
W (c) + M

∫ t

t0

(a(s) + b(s)
∫ s

t0

k(τ)dτ)ds
]
,

where c = M |y0|eαt0 . From the above estimation, we obtains the desired result. ¤
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