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A NUMERICAL ALGORITHM FOR SINGULAR MULTI-POINT
BVPS USING THE REPRODUCING KERNEL METHOD

Yuntao Jia a, ∗ and Yingzhen Lin b

Abstract. In this paper, we construct a complex reproducing kernel space for sin-
gular multi-point BVPs, and skillfully obtain reproducing kernel expressions. Then,
we transform the problem into an equivalent operator equation, and give a numeri-
cal algorithm to provide the approximate solution. The uniform convergence of this
algorithm is proved, and complexity analysis is done. Lastly, we show the validity
and feasibility of the numerical algorithm by two numerical examples.

1. Introduction

Differential equations arise from various practical problems in mathematics and
physics such as gas dynamics, nuclear physics, chemical reaction and geological
prospecting etc. Multi-point BVPs can solve the contradictions in the process of
actual research status efficiently and enhance their compatibility. Therefore, this
problem has received a lot of attention of researchers. In [1-4], the existence and
uniqueness are investigated. In [5], the author give the approximate solutions of
a certain class of singular two-point (BVPs) by the Sinc-Galerkin method and
homotopy-perturbation method. In [6], the author solve two-point BVPs by varia-
tional iteration method. In [7], the author present a method for solving a class of
singular two-point BVPs based on cubic splines. For more information, please refer
to [8-13]. Recently, in [14], the author adopt differential transformation method to
solve the two-point BVPs

(1.1)





u′′(x) +
1
x

u′(x) + q(x)u(x) = f(x), 0 < x ≤ 1

u(0) = a1, u(1) = b1, or u′(0) = a2, u(1) = b2.
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This method is able to provide an approximate solution of (1.1), while it has several
disadvantages. This method is based on Taylor series which requires a high degree
of smoothness. It has a local convergence region and the function f(x) are all
polynomial functions.

Now, we present a new algorithm to make up the deficiencies in [14]. It can be
extended to singular multi-point BVPs. We take the problem

(1.2)





u′′(x) +
1

p(x)
u′(x) + q(x)u(x) = f(x), 0 < x ≤ 1,

u′(0) = 0, u(1) = δu(c),

where p(x), q(x), f(x) are continuous complex functions on (0, 1] and x = 0 is the
singular value point of p(x), c, δ are complex constants and c ∈ (0, 1), δ 6= 1.

In this paper, we construct a complex reproducing kernel space W 3
2 [0, 1]. Then

(1.2) can be transformed into an equivalent operator equation. Its approximate
solution is provided. We also analyze the convergence and complexity of this algo-
rithm. Finally, we give some numerical examples to verify the effectiveness of our
algorithm.

2. Several Complex Reproducing Kernel Spaces

2.1. The complex reproducing kernel space W 3
2 [0, 1]. We define the inner

product space W 3
2 [0, 1] = {u(x)|u′′ is absolutely continuous complex function, u(3) ∈

L2[0, 1], u′(0) = 0, u(1) = δu(c)}.
The inner product is given by

(2.1) 〈u, v〉 = u′′(0)v′′(0) +
∫ 1

0
u′′′(x)v′′′(x)dx.

Lemma 2.1. The space W 3
2 [0, 1] is a complex reproducing kernel space.

The proof can be found in [15]. Next, we give the reproducing kernel function
Ry(x) of W 3

2 [0, 1]. For each y ∈ [0, 1] and each u(x) ∈ W 3
2 [0, 1], by applying (2.1),

we have

(2.2) u(y) = 〈u(x), Ry(x)〉,
that is

〈u(x), Ry(x)〉 = u′′(0)R′′
y(0) +

∫ 1

0
u′′′(x)

∂3Ry(x)
∂x3

dx,

where ∫ 1

0
u′′′(x)

∂3Ry(x)
∂x3

dx =
∫ c

0
u′′′(x)

∂3Ry(x)
∂x3

dx +
∫ 1

c
u′′′(x)

∂3Ry(x)
∂x3

dx.
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We can obtain

u(y) =〈u(x), Ry(x)〉= u′′(0)
(∂2Ry(0)

∂x2
− ∂3Ry(0)

∂x3

)
+

2∑

i=1

(−1)iu(i)(1)
∂(5−i)Ry(1)

∂x(5−i)

− u(0)
∂5Ry(0)

∂x5
+

2∑

i=1

(−1)iu(i)(c)
(∂(5−i)Ry(c−)

∂x(5−i)
− ∂(5−i)Ry(c+)

∂x(5−i)

)

−
∫ c

0
u(x)

∂6Ry(x)
∂x6

dx + u(c)
(∂5Ry(c−)

∂x5
− ∂5Ry(c+)

∂x5
+ δ

∂5Ry(1)
∂x5

)

−
∫ 1

c
u(x)

∂6Ry(x)
∂x6

dx.

Now, we have

(2.3)





∂2Ry(0)
∂x2

− ∂3Ry(0)
∂x3

= 0,

∂(5−i)Ry(1)
∂x(5−i)

= 0, i = 1, 2

∂5Ry(0)
∂x5

= 0,

∂(5−i)Ry(c−)
∂x(5−i)

− ∂(5−i)Ry(c+)
∂x(5−i)

= 0, i = 1, 2,

∂5Ry(c−)
∂x5

− ∂5Ry(c+)
∂x5

+ δ
∂5Ry(1)

∂x5
= 0.

Since Ry(x) ∈ C2 , we get

(2.4)





∂iRy(c−)
∂xi

=
∂iRy(c+)

∂xi
,

∂iRy(y−)
∂xi

=
∂iRy(y+)

∂xi
.(i = 0, 1, 2)

Similarly, if 0 ≤ y ≤ c, the function Ry(x) should satisfy the differential equation:

(2.5)
∂6Ry(x)

∂x6
=

{ −δ(x− y), 0 ≤ x ≤ c
0, c < x ≤ 1

and if c ≤ y ≤ 1, the function Ry(x) should satisfy the differential equation:

(2.6)
∂6Ry(x)

∂x6
=

{ 0, 0 ≤ x ≤ c,
−δ(x− y), c < x ≤ 1.

If x 6= y, (2.5) and (2.6) become
∂6Ry(x)

∂x6
= 0. Its characteristic equation is

λ6 = 0,
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the characteristic roots are λi = 0, (i = 1, 2, · · · , 6). So, we assume that
(2.7)

Ry(x) =





R1(x, y) = c11 + c12x + c13x
2 + c14x

3 + c15x
4 + c16x

5, y < x < c,

R2(x, y) = c21 + c22x + c23x
2 + c24x

3 + c25x
4 + c26x

5, y < c < x,

R3(x, y) = c31 + c32x + c33x
2 + c34x

3 + c35x
4 + c36x

5, c < y < x,

R4(x, y) = c41 + c42x + c43x
2 + c44x

3 + c45x
4 + c46x

5, c < x < y,

R5(x, y) = c51 + c52x + c53x
2 + c54x

3 + c55x
4 + c56x

5, x < c < y,

R6(x, y) = c61 + c62x + c63x
2 + c64x

3 + c65x
4 + c66x

5, x < y < c.

Since
∂6Ry(x)

∂x6
= −δ(x− y),

we get

(2.8)
∂iRy(y−)

∂xi
=

∂iRy(y+)
∂xi

, (i = 3, 4)

and

(2.9)
∂5Ry(y−)

∂x5
= 1 +

∂5Ry(y+)
∂x5

.

In addition, we also need

(2.10) R′
y(0) = 0, Ry(1) = δRy(c).

Combining(2.3), (2.4), (2.8) − (2.10) as well as y ∈ (0, c) and y ∈ (c, 1), we get
36 equations. We can find the undetermined coefficients cij of (2.7) by solving the
equations. If c = 1/2 and δ = 1 + 2i, Ry(x) is the following expression

Ry(x) =





R1(x, y) =
1

3840
[−(80 + 120i)x3 + (80 + 40i)x4 − 32x5 − 160xy4

+40x2(−(6 + 9i) + 24y2 + 8y3) + 5(47− (48− 72i)y2

−(16− 24i)y3 + (16− 8i)y4)], y < x < c,

R2(x, y) =
1

7680
[32ix3(5x− 10− x2) + 40x2(48y2 − (14 + 17i) + 16y3)

−10x((i− 2) + 32y4) + (2− i)(187 + 94i− (336− 192i)y2

−(112− 64i)y3 + 80y4)], y < c < x,

R3(x, y) =
1

3840
(233− 160ix3 + 80ix4 − 16ix5 + (10 + 5i)y − (280

−340i)y2+160iy3− 80iy4 + (32 + 16i)y5 + 20x2(−(14+17i)
+48y2 + 16y3)− 5x((i− 2) + 32y4)), c < y < x,

R4(x, y) = R3(y, x), c < x < y,

R5(x, y) = R2(y, x), x < c < y,

R6(x, y) = R1(y, x), x < y < c.
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2.2. The complex reproducing kernel space W 1
2 [0, 1]. W 1

2 [0, 1] = {u(x)|u is
absolutely continuous complex function, u′ ∈ L2[0, 1]}.

The inner product is given by

〈u, v〉 = u(0)v(0) +
∫ 1

0
u′(x)v′(x)dx.

It is easy to prove that W 1
2 [0, 1] is a complex reproducing kernel space and its

reproducing kernel is

(2.11) Ky(x) =

{
1 + x, x ≤ y,

1 + y, y < x.

3. A Solution of (1.2)

In this section, we investigate how to obtain approximate solutions of (1.2). First,
we transform (1.2) into an equivalent operator equation (3.1). Then we give its
approximate solution. Also, the convergence and complexity analysis are provided.

3.1. Equivalent operator equation. The equation (1.2) can be transformed into
the following form:





xαu′′(x) +
xa

p(x)
u′(x) + xaq(x)u(x) = xaf(x), 0 < x ≤ 1,

u′(0) = 0, u(1) = δu(c),

where α is constant and satisfy lim
x→0

xa

p(x)
= b (b 6= 0).

Define linear operator L : W 3
2 [0, 1] −→ W 1

2 [0, 1] by

Lu = xαu′′(x) +
xa

p(x)
u′(x) + xaq(x)u(x).

Obviously, operator L is bounded. The equation (1.2) can be converted into an
equivalent operator equation:

(3.1) Lu = f1(x),

where f1(x) = xaf(x).

3.2. The numerical solution for operator equation (3.1). We choose a count-
able dense subset {xi}∞i=1 ⊂ (0, 1] and define ψi(x) as

ψi(x)
def
= (LRx(·))(xi) ∈ W 3

2 [0, 1].
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Theorem 3.1. The function system {ψi(x)}∞i=1 is a complete system in the space
W 3

2 [0, 1].

Proof. For an arbitrary i, we have,

0 = 〈u(x), ψi(x)〉 = 〈u(x), (LRx(·))(xi)〉 = L(〈u(x), Rx(·)〉)(xi)

= L(u(·))(xi) = (Lu)(xi).

Note that {xi}∞i=1 is dense in [0, 1], so (Lu)(x) = 0. By the existence of L−1, it
follows that u ≡ 0. Therefore, {ψi(x)}∞i=1 is a complete system in W 3

2 [0, 1]. ¤

Furthermore, we obtain an orthogonal system {ψ̃i(x)}∞i=1 of W 3
2 [0, 1] derived from

Gram-Schmidt orthonormalization process from {ψi(x)}∞i=1:

ψ̃i(x) =
i∑

k=1

βikψk(x).

Theorem 3.2. If {xi}∞i=1 is dense on [0, 1], then the solution of (1.2) is

u(x) =
∞∑

i=1

i∑

k=1

βikf1(xk)ψ̃i(x).

Proof. We expand u(x) into a Fourier series as follows

u(x) =
∞∑

i=1

〈u(x), ψ̃i(x)〉ψ̃i(x) =
∞∑

i=1

〈u(x),
i∑

k=1

βikψk(x)〉ψ̃i(x)

=
∞∑

i=1

i∑

k=1

βik〈u(x), ψk(x)〉ψ̃i(x) =
∞∑

i=1

i∑

k=1

βik〈u(x), (LRx(·))(xk)〉ψ̃i(x)

=
∞∑

i=1

i∑

k=1

βikL(〈u(x), (Rx(·))〉)(xk)ψ̃i(x) =
∞∑

i=1

i∑

k=1

βikf1(xk)ψ̃i(x).

¤

Now, we can get the approximate solution un(x) by truncating the nth − term

of the exact solution u(x),

(3.2) un(x) =
n∑

i=1

i∑

k=1

βikf1(xk)ψ̃i(x).
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3.3. Theoretical analysis for our algorithm.

Theorem 3.3. An approximate solution un(x) is uniform convergence to u(x) on
[0, 1]. Moreover, u′n(x), u′′n(x) are both uniform convergence to u′(x) and u′′(x) on
[0, 1].

Proof. Note that

un(x) = 〈un, Rx〉, u(x) = 〈u,Rx〉,

and

u
(i)
n (x) = 〈un, ∂i

xRx〉, u(i)(x) = 〈u, ∂i
xRx〉. (i = 1, 2)

By applying Schwarz,s inequality and the boundedness of ‖∂i
xRx‖(i = 0, 1, 2), we

have

|u(i)
n (x)− u(i)(x)| ≤ ‖un − u‖‖∂i

xRx‖ ≤ Mi‖un − u‖ → 0.

So

u(i)
n (x) ⇒ u(i)(x) (i = 0, 1, 2).

¤

Theorem 3.4. The time complexity of the algorithm is O(n3).

Proof. There are three steps to calculate the approximate solution un(x) of (1.2) .
(1) Assume the number of multiplications required is C in one calculation of the inner
product 〈ϕi, ϕj〉, then the total number of multiplications required is n(n + 1)C/2
in calculation of all inner products.
(2) Orthogonalization of the system {ψi(x)}n

i=1 needs 3 layers of nested loops, that
is, the number of multiplication is

n∑

i=1

i∑

k=1

k∑

j=1

=
n(n + 1)(n + 2)

6
.

(3) The number of multiplication is n2 when calculating un(x) using (3.2).
To sum up, the total number of multiplication is

n(n + 1)C
2

+
n(n + 1)(n + 2)

6
+ n2 = O(n3).

¤
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4. Numerical Examples

In this section, some numerical examples are studied to demonstrate the accuracy
of the present algorithm. Results obtained by this algorithm are compared with the
exact solution of each example and are shown to be in good agreement with the
exact solution.

Example 1. Consider equation




u′′(x) +
1

sinx + ix
u′(x) + iu(x) = f(x), 0 < x ≤ 1

u′(0) = 0, u(1) = (1 + 2i)u(1
2),

where f(x) =
3 + 2i

13
[(8+4i)− (16−8i)

√
e−8ie− (1−5i)ex +(3−2i)x− ((2−4i)+

(4 + 8i)
√

e− 4e)x2 +
(−3 + 2i) + (3− 2i)ex + (4− 8i)x + (8 + 16i)

√
ex− 8ex

x− i sinx
]. Its

exact solution is u(x) =
6 + 4i

13
[((1− 2i) + (2 + 4i)

√
e− 2e)x2 − ex + x]i. Applying

our algorithm and taking the number of nodes as n=50 and 100, the absolute errors
of real part (a.e.Re) and the absolute errors of imaginary part (a.e.Im) are shown in
Table 1. It shows that the approximate solution is getting more and more accurate
as n increases.

Table1: The absolute errors for Example 1
x a.e.Re(n=50) a.e.Im(n=50) a.e.Re(n=100) a.e.Im(n=100)
0.1 4.2040E-5 3.9676E-5 9.5771E-6 5.2571E-6
0.2 4.2197E-5 1.3767E-5 8.5274E-6 2.7894E-7
0.3 3.3794E-5 6.1748E-7 3.3151E-6 1.5179E-6
0.4 2.5060E-5 7.6275E-6 4.3567E-6 2.3956E-6
0.5 1.6794E-5 1.3384E-5 2.6555E-6 2.8710E-6
0.6 9.0774E-6 1.7845E-5 1.1549E-6 3.1825E-6
0.7 1.8277E-6 2.1730E-5 2.0479E-7 3.4707E-6
0.8 5.0567E-6 2.5501E-5 1.4713E-6 3.8216E-6
0.9 1.1695E-5 2.9506E-5 2.6878E-6 4.3009E-6
1.0 1.8220E-5 3.4027E-5 3.8960E-6 4.9617E-6

Example 2. Consider equation




u′′(x) +
1

sinx
u′(x) + u(x) = f(x), 0 < x ≤ 1,

u′(0) = 0, u(1) = 0,
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where

f(x) =

{
x− 11

2 , 0 < x < 1
2 ,

−5 +
√

(x− 1
2), 1

2 ≤ x ≤ 1.

The function f(x) is continuous at x = 1
2 , but not differentiable. So the method of

[14] is invalid for example 2. While using our algorithm, we choose 100 points in
(0, 1]. The numerical results |Lu100 − f | are given in the following Table 2.

Table 2: Numerical results |Lu100 − f | for Example 2
x |Lu100 − f | x |Lu100 − f |
0.05 7.1054E-15 0.55 4.4408E-14
0.1 9.7699E-15 0.6 1.9539E-14
0.15 6.2172E-15 0.65 1.2434E-14
0.2 1.5987E-14 0.7 5.3290E-15
0.25 1.5099E-14 0.75 3.1086E-14
0.3 2.3092E-14 0.8 1.7763E-14
0.35 7.9936E-15 0.85 1.7763E-14
0.4 2.5757E-14 0.9 3.3750E-14
0.45 5.3290E-15 0.95 3.9968E-14
0.5 2.5757E-14 1.0 1.7763E-14

5. Conclusion

In this paper, we present a new numerical algorithm in complex reproducing
kernel space for singular multi-point BVPs. We give the rigorous theoretical analysis,
the uniform convergence of the approximate solution. The numerical examples show
that by using this algorithm we obtain better solution and fix the deficiencies of [14].
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