J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. ISSN(Print) 1226-0657
http://dx.doi.org/10.7468 /jksmeb.2015.22.2.113 ISSN(Online) 2287-6081
Volume 22, Number 2 (May 2015), Pages 113125

HALF LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE
TRANS-SASAKIAN MANIFOLD OF QUASI-CONSTANT
CURVATURE

DAE Ho JIn

ABSTRACT. We study half lightlike submanifolds M of an indefinite trans-Sasakian
manifold M of quasi-constant curvature subject to the condition that the 1-form
0 and the vector field ¢, defined by (1.1), are identical with the 1-form 6 and the
vector field ¢ of the indefinite trans-Sasakian structure {J, 6, ¢} of M.

1. INTRODUCTION

The theory of lightlike submanifolds is an important topic of research in differen-
tial geometry due to its application in mathematical physics. The study of such no-
tion was initiated by Duggal-Bejancu [3] and later studied by many authors (see two
books [5, 6]). Half lightlike submanifold M is a lightlike submanifold of codimension
2 such that rank{Rad(TM)} = 1, where Rad(T'M) is the radical distribution of M.
It is a special case of an r-lightlike submanifold [3] such that r = 1. Its geometry is
more general than that of lightlike hypersurfaces or coisotropic submanifolds which
are lightlike submanifolds M of codimension 2 such that rank{Rad(TM)} = 2.
Much of its theory will be immediately generalized in a formal way to arbitrary
r-lightlike submanifolds. For this reason, we study half lightlike submanifolds.

B.Y. Chen and K. Yano [2] introduced the notion of a Riemannian manifold
of quasi-constant curvature as a Riemannian manifold (M,g) endowed with the
curvature tensor R satisfying the following form:

(LDR(X,Y)Z = {g(Y, 2)X — §(X, Z)Y'}
+ M{g(Y, 2)0(X)¢ — g(X, 2)0(Y)( + 0(Y)0(Z2)X - 6(X)0(Z2)Y },
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for any vector fields X, Y and Z of M, where ¢ and h are smooth functions, ¢ is a
smooth vector field and 6 is a 1-form associated with ¢ by 0(X) = g(X,¢). If h =0,
then M is a space of constant curvature /.

J.A. Oubina [10] introduced the notion of a trans-Sasakian manifold of type
(o, 3). We say that a trans-Sasakian manifold M of type (a,3) is an indefinite
trans-Sasakian manifold if M is a semi-Riemannian manifold. Indefinite Sasakian,
Kenmotsu and cosymplectic manifolds are three important kinds of trans-Sasakian
manifold such that o =1, 6 =0, and a =0, 8 =1, and o = = 0, respectively.

In this paper, we study half lightlike submanifolds M of an indefinite trans-
Sasakian manifold M of quasi-constant curvature subject to the condition that the
1-form € and the vector field ¢, defined by (1.1), are identical with the 1-form 6
and the vector field ¢ of the indefinite trans-Sasakian structure {.J, ¢, 0} of M. The

paper contains several new results which are related to the induced structure on M.

2. HALF LIGHTLIKE SUBMANIFOLD

Let (M, g) be a half lightlike submanifold, with the radical distribution Rad(T M),
and screen and coscreen distributions S(TM) and S(T M) respectively, of a semi-
Riemannian manifold (M, g). We follow Duggal and Jin [4] for notations and struc-
ture equations used in this article. Denote by F'(M) the algebra of smooth functions
on M, by I'(E) the F(M) module of smooth sections of a vector bundle E over M
and by (k. x); the i-th equation of (x.x). We use the same notations for any others.
For any null section £ of Rad(TM) on a coordinate neighborhood U C M, there
exists a uniquely defined null vector field N € I'(S(TM=*)1) satisfying

9§, N) =1, g(N,N) = g(N,X) = g(N, L) = 0, VX € T(S(TM)).
Denote by ltr(TM) the subbundle of S(T'M =)+ locally spanned by N. Then we show
that S(TM*)* = Rad(TM)®Itr(TM). Let tr(TM) = S(TM™*)@gpep, ltr(TM). We
call N, ltr(TM) and tr(TM) the lightlike transversal vector field, lightlike transver-
sal vector bundle and transversal vector bundle of M with respect to the screen
distribution S(TM) respectively. Let V be the Levi-Civita connection of M and P
the projection morphism of TM on S(TM). Then the local Gauss and Weingarten
formulas of M and S(T'M) are given respectively by
(2.1) VxY = VxY + B(X,Y)N + D(X,Y)L,
(2.2) VxN = —A, X +7(X)N + p(X)L,
(2.3) VxL = —A, X+ ¢(X)N;
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(2.4) VxPY = V%PY + C(X, PY),
(2.5) Vxé = —AiX —7(X)E,

where V and V* are induced connections on T'M and S(T'M) respectively, B and
D are called the local second fundamental forms of M, C is called the local second
fundamental form on S(TM). A,, Az and A, are called the shape operators, and
7, p and ¢ are 1-forms on T'M. From now and in the sequel, let X, Y, Z and W be
the vector fields on M, unless otherwise specified.

Since the connection V on M is torsion-free, the induced connection V on M
is also torsion-free, and B and D are symmetric. The above three local second
fundamental forms of M and S(T'M) are related to their shape operators by

(2.6) B(X,Y) = g(A{X,Y), GAIX,N) =0,
(2.7) C(X,PY) = g(A, X, PY), G(A,X,N) =0,
(2.8) D(X,)Y) =g(A, X,Y) = o(X)n(Y), 9(A, X, N) = p(X),

where 7 is a 1-form on T'M such that n(X) = g(X, N) for any X € I'(TM). From

(2.6), (2.7) and (2.8), we see that B and D satisfy

(2.9) B(X, ) =0, D(X, §) = —¢(X),

(2.10) Vx&=—A{X —7(X)§ — ¢(X)L.

Af and A are S(T'M)-valued, and Af is self-adjoint on T'M such that Az{ = 0.
Denote by R, R and R* the curvature tensors of the connections V, V and V*

respectively. Using the local Gauss-Weingarten formulas for M and S(T'M), we
have the Gauss equations for M and S(T'M) such that

(2.11) R(X,Y)Z =R(X,Y)Z+ B(X,Z)A,Y —B(Y,Z2)A, X
+D(X,2)A,Y —D(Y,2)A, X
+H(VxB)(Y,2) — (VyB)(X, Z)
+7(X)B(YY,Z)—-7(Y)B(X, Z)
+¢(X)D(Y.Z) — ¢(Y)D(X, Z)}N
H(VxD)(Y, Z) — (VyD)(X, Z) + p(X)B(Y, 2)
—p(Y)B(X, Z)}L,

(2.12) R(X,Y)PZ = R*(X,Y)PZ + C(X,PZ)ALY — O(Y,PZ)A¢X
+{(VxC)(Y,PZ) — (VyC)(X,PZ)
—7(X)C(Y,PZ) +7(Y)C(X,PZ)}¢
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In the case R = 0, we say that M is flat.

3. INDEFINITE TRANS-SASAKIAN MANIFOLDS

An odd-dimensional semi-Riemannian manifold (M, g) is called an indefinite
trans-Sasakian manifold [10] if there exists a structure set {J, (, 6, g}, where J
is a tensor field of type (1, 1), ¢ is a vector field which is called the structure vector
field of M and 6 is a 1-form such that

(31)  JPX ==X +0(X)(, g(JX, JY) =g(X,Y) —ef(X)0(Y), 6(¢) =1,

(32)  (VxJ)Y = alg(X,Y) — ed(Y)X} + B{g(IX, Y)C — ef(Y)IX},

for any vector fields X and Y on M, where e = 1 or —1 according as the vector field
¢ is spacelike or timelike respectively. In this case, the set {J, (, 6, g} is called an
indefinite trans-Sasakian structure of type (v, (3).

In the entire discussion of this paper, we may assume that { is unit spacelike,
i.e., € = 1, without loss generality. From (3.1) and (3.2), we get

(3.3) Vx(¢=—-aJX + B(X —0(X)¢), do(X,Y) =g(X, JY).

Let M be a half lightlike submanifold of an indefinite trans-Sasakian manifold M
such that the structure vector field ¢ of M is tangent to M. Calin [1] proved that
if ¢ is tangent to M, then it belongs to S(T'M) which assume in this paper. It is
known [8] that, for any half lightlike submanifold M of an indefinite trans-Sasakian
manifold M, J(Rad(TM)), J(itr(TM)) and J(S(TM+)) are subbundles of S(TM),
of rank 1. Thus there exists a non-degenerate almost complex distribution H, with
respect to J, i.e., J(H,) = H,, such that

S(TM) = {J(Rad(TM)) ® J(ltr(TM))} ©oran J (S(TM™)) Gorn Ho.
Denote by H the almost complex distribution with respect to J such that

H = Rad(TM) ®open, J(Rad(TM)) ®oper, Ho,
TM = H & J(tr(TM)) @ore, J(S(TML)).

Consider two local null vector fields U and V', a local unit spacelike vector field W
on S(TM), and their 1-forms u, v and w defined by

(3.4) U=—JN, V= —J¢, W =—JL,
(3.5) u(X)=g(X,V), o(X)=g(X,U), w(X)=g(X,W).
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Let S be the projection morphism of TM on H and F the tensor field of type (1,1)
globally defined on M by F = J o .S. Then JX is expressed as

(3.6) JX = FX + u(X)N +w(X)L.
Applying J to (3.6) and using (3.1) and (3.4), we have
(3.7) F2X = — X + w(X)U + w(X)W + 6(X)C.

Applying Vx to (3.4) ~ (3.6) by turns and using (2.1), (2.2), (2.3), (2.6) ~ (2.8),
(2.10) and (3.4) ~ (3.6), we have

(3.8)  B(X,U)=C(X,V), B(X,W)=D(X,V), C(X,W)=D(X,U),

(3.9) VxU = F(A,X) +7(X)U + p(X)W — {an(X) + Bu(X)}(,

(3.10)  VxV =F(A:X) - 7(X)V = ¢(X)W — Su(X)C,

(3.11)  VxW =F(A, X)+ ¢(X)U - Buw(X)(,

(3.12)  (VxF)(Y)=u(Y)A, X +w(Y)A, X — B(X,Y)U — D(X,Y)W
+af{g(X,Y)C - 0(Y)X} + B{g(JX,Y)¢ = 0(Y)FX},

(813)  (Vxu)(Y) = —u(Y)r(X) — w(Y)$(X) - AO(Y)u(X) — B(X,FY),

(814)  (Vxo)(Y) = o(Y)7(X) + w(¥)p(X) - 0(Y)fan(X) + Bu(X)}
g(ANX7 FY)

(815)  (Vxw)(Y) = —u(Y)p(X) — BO(Y Juw(X) — D(X,FY).

)

Substituting (3.6) into (3.3) and using (2.1), we see that

(3.16) Vx(=—aFX+ (X - 0(X)(),
(3.17) B(X, () = —au(X), D(X, ¢) = —aw(X).

Applying Vx to g(¢, N) = 0 and using (3.1) and (3.3), we have

(3.18) C(X, ¢) = —av(X) + fn(X).

4. MANIFOLD OF QUASI-CONSTANT CURVATURE

Let M be a half lightlike submanifold of an indefinite trans-Sasakian manifold
M of quasi-constant curvature. Comparing the tangential, lightlike transversal and
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co-screen components of the two equations (2.11) and (4.1), we get
(4.1) R(X,Y)Z =t{g(Y,2)X — g(X,2)Y}
+ m{g(Y,2)0(X)( — g(X,Z)0(Y)(+0(Y)0(2)X
)

—0(X)0(2)Y}
+ B(Y,Z2)A X — B(X,Z)A, Y
D(Y,Z)ALX—D( , )AL ,
(42)  (VxB)(Y. )—(vyBx Z) +7(X)B(Y. 2) - 7(Y)B(X, 2)
AR}
)

p(X)D(Y, Z) = ¢(Y)D(X,
(4.3) (VxD)(Y, ) (VyD)(X, Z2) + p(X)B(Y, Z) — p(Y)B(X, Z) = 0.
Taking the scalar product with N to (2.12), we have
g(R(X,Y)PZ, N) = (VxC)(Y,PZ) — (VyC)(X,PZ)
—7(X)C(Y,PZ)+7(Y)C(X,PZ).
Substituting (4.1) into the last equation, we see that
(4.4) (VxC)(Y,PZ) - (VyC)(X,PZ)—17(X)C(Y,PZ)+7(Y)C(X,PZ)
— p(X)D(Y,PZ) + p(Y)D(X, PZ)
= Hg(Y, PZ)n(X) — g(X, PZ)n(Y)}
+ 1{0(Y)n(X) = 0(X)n(Y)}6(PZ).
Theorem 4.1. Let M be a half lightlike submanifold of an indefinite trans-Sasakian

manifold M of quasi-constant curvature. Then « is a constant, and
B =0, (= a? h=0.
Proof. Applying Vy to (3.16), we obtain
VxVy( = —(Xa)FY — a(VxF)Y — aF(VyY)
+ (XB)Y + BVxY +aB(Y)FX — B20(Y)X
~{(XP)I(Y) + BX(0(Y)) — B20(X)0(Y)}C.
Using this equation, (2.3)2, (3.12) and (3.16), we have
(4.5)  R(X,Y)( =—(Xa)FY + (Ya)FX + (XB)Y — (YB)X
+ ofu(X)A)Y —u()A X +w(X)A,Y —w(Y)A, X}
+ (0 = B{O(Y)X — 0(X)Y}
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+ 2a0{0(Y)FX — 0(X)FY}
—{(X3)O(Y) = (YB)0(X) + 26(1 — a)df(X,Y)}C.
Replacing Z by ¢ to (2.11) and then, taking the scalar product with ¢ and using

(3.17) and the fact that g(R(X,Y)(,¢) = 0, we have
9(R(X,Y)(, ) = efu(X)g(AyY, () —u(Y)g(Ay X, ()}
Taking the scalar product with ¢ to (4.5) and using (3.17), we have
Bla—1)g(X,JY) =0.
Taking X = U and Y = £ to this equation, we obtain 3(a — 1) = 0.
Applying Vx to (3.8)1: B(Y,U) = C(Y,V), we have
(VxB)(Y,U) = (VxC)(Y,V) + g(AY,VxV) — g(AFY, VxU).
Using (3.8), (3.9), (3.10), (3.17) and (3.18), the last equation is reduced to
(VxB)(Y,U)
— (VXC)(Y,V) = 20(X)C(V, V) — $(X)D(Y,U) — p(X)D(Y, V)
—a® u(Y)n(X) = B2 u(X)n(Y) + aB{u(X)o(Y) — u(Y)v(X)}
— 9(A¢X, F(ALY)) — g(AgY, F(Ay X))
Substituting this equation into (4.2) such that Z = U and using (3.8), we get
(VxC)Y, V) — (VyCO)(X, V) —1(X)CY,V)+7(Y)C(X,V)
= p(X)D(Y, V) + p(Y)D(X, V) + 200{u(X)v(Y) — u(Y)v(X)}
+ (@ = ) {u(X)n(Y) — u(Y)n(X)} = 0.
Comparing this equation with (4.4) such that PZ = V', we obtain
(€ = + F2){u(Y)n(X) — u(X)n(Y)} = 2a8{u(Y )u(X) — u(X)v(Y)}.

Taking X = ¢ and Y = U, and then, X = V and Y = U to this, we have ¢ = a? — 32
and af = 0. From the facts that af = 0 and B(a — 1) = 0, we obtain g = 0, i.e.,

l=a? - 52, 8 =0.
Applying Vy to (3.17); and using (3.13) and (3.16) ~ (3.18), we have
(VxB)(Y,() = —(Xa)u(Y)
+ afu(Y)7(X) +w(Y)o(X) + B(X,FY) + B(Y, FX)}.
Substituting this into (4.2) such that Z = ¢, we have
(Xa)u(Y) = (Ya)u(X).
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Replacing Y by U to this equation, we obtain
(4.6) Xa=Ua)u(X).
Applying Vx to n(Y) = g(Y, N) and using (2.1) and (2.2) we have
(Vxm)(¥) = —g(A, X, ¥) + 7(X)n(Y).
Applying Vy to (3.18) and using (3.14), (3.16) and (3.18), we have
(VXC)(Y,€) = ~(Xa)o(Y) — a{r(X)o(Y) + p(X)uw(Y)}
+ a{ad(Y)n(X)+g(A X, FY)+g(A,Y,FX)}.
Substituting this into (4.4) such that PZ = ¢ and using (4.5), we get
MOX)n(Y) = 0(Y)n(X)} = (Xa)u(Y) — (Ya)o(X).
Taking X = ¢ and Y = (, and then, X = U and Y =V to this, we obtain
h =0, Ua =0.

As Ua =0, from (4.6), we see that a is a constant. O

Corollary 1. Let M be an indefinite trans-Sasakian manifold, of type (o, 3), of

quasi-constant curvature with a half lightlike submanifold. Then M is an indefinite

a-Sasakian manifold of constant positive curvature o.

Theorem 4.2. Let M be a half lightlike submanifolds of an indefinite trans-Sasakian
manifold M of quasi-constant curvature. If one of the followings:

(1) F is parallel with respect to the connection V,
(2) U is parallel with respect to the connection V,
(3) V is parallel with respect to the connection V, and
(4) W is parallel with respect to the connection V

is satisfied, then M is a flat manifold with an indefinite cosymplectic structure. In

case (1), M is also flat.

Proof. Denote A, i, 0 and § by the 1-forms such that
AMX) =B(X,U) =C(X,V), o(X) = D(X,W),

(1) If F is parallel, then, as 8 = 0, from (3.12) we have
(4.7) w(Y)A X +w(Y)A, X — B(X,Y)U — DX, Y)W
+alg(X,Y)C —6(Y)X) =0,
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Replacing Y by £ and using (2.9) and (3.5), we obtain ¢(X )W = 0. From this result,
we see that ¢ = 0. Taking the scalar product with U to (4.7), we get

w(Y)v(Ay X)) +w(Y)v(4,X) —abd(Y)v(X) =0.
Taking Y = W and Y = ( to this equation by turns, we get
(4.8) C(X,W)=D(X,U) =0, av(X) =0.

From (4.8)s, we get a = 0. By Theorem 4.1, £ = 0 and M is a flat manifold with an
indefinite cosymplectic structure. Taking Y = U to (4.7), we have

(4.9) A X = AX),

due to (4.8);. Taking the scalar product with N, V and W to (4.7) by turns and
using (2.7), (2.8), (3.8) and (4.8)1, we have

w(Y)p(X) = 0.
9(Ae X, Y) = g AN X)V + p(X)W, Y),
9(A X, Y) = g(a(X)W, Y).

Taking Y = W to the first equation, we obtain p = 0. As p = 0, from (2.8) we see
that A, X belongs to S(T'M). As A{X and A, X belong to S(I'M) and S(T'M) is
non-degenerate, from the last two equations, we have

A X = MX)V + u(X)W, A X =0(X)W.
Taking the scalar product with V' to the second equation, we see that
p(X) = B(X, W) =D(X,V) =0,
(4.10) A X = MX)V, A X =0(X)W.
As ¢ = h = 0, substituting (4.9) and (4.10) into (4.1), we get
R(X,Y)Z = {AY)AX) = AXX)AY)}u(2)U
+{o(Y)o(X) —o(X)o(Y)}w(Z)W = 0.
Thus M is also flat.
(2) If U is parallel with respect to V, then, from (3.6) and (3.9), we have
JAYX) —u(Ay X)N —w(A X)L+ 7(X)U 4+ p(X)W —an(X)( = 0.
Taking the scalar product with ¢, V and W by turns, we get

an(X) =0, T=0, p =0,
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respectively. Taking X = £ to the first result, we have o = 0. As a = 0, we see that
¢ =0 and M is a flat manifold with an indefinite cosymplectic structure.

(3) If V is parallel with respect to V, then, from (3.6) and (3.10), we have
J(AX) —u(A; X)N — w(A; X)L — 7(X)V — ¢(X)W = 0.

Taking the scalar product with U and W by turns, we get 7 = 0 and ¢ = 0,
respectively. Applying J to the last equation and using (3.1) and (3.17), we have

AL X = —au(X)(+ 6(X)U + p(X)W.
Taking the scalar product with U to this equation, we get
B(X,U) = g(A}X,U) = 0.
Replacing X by ( to this equation and using (3.17)1, we get
a=au(lU)=—-B(U,() =0.
Thus ¢ = 0 and M is a flat manifold with an indefinite cosymplectic structure.
(4) If W is parallel with respect to V, then, from (3.6) and (3.11), we get
JA, X)—u(A, X)N —w(A, X)L+ ¢(X)U = 0.
Taking the scalar product with V' and U by turns, we have
¢ =0, p=0,
respectively. Applying J to the last equation and using (3.1), (3.17)2, we have
A X =—aw(X)(+w(X)U + o(X)W.
Taking the scalar product with U to this, we have D(X,U) = 0 and
C(X,W)=0.
Applying Vx to C(Y,W) = 0 and using (3.10) and ¢ = 5 = 0, we have
(VxC)(Y, W) = —g(4,Y, F(4, X)),
Taking PZ = W to (4.4) and using the last two equations, we obtain
9(Ay X, F(4,Y)) = g(A,Y, F(4, X)) = {u(Y)n(X) — w(X)n(¥V)}

as p = 0. Taking X = ¢ and Y = W to this and using the facts that F(A, W) =0
and A, ¢ = 0, we obtain £ = 0. As £ = 0, we see that o = 0 and M is a flat manifold
with an indefinite cosymplectic structure. |
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5. RECURRENT HALF LIGHTLIKE SUBMANIFOLDS

Definition. The structure tensor field F' on M is said to be recurrent [9] if there
exists a 1-form @ on M such that
(VxF)Y =w(X)FY, VX, Y el'(TM).
Theorem 5.1. Let M be a half lightlike submanifold of an indefinite trans-Sasakian
manifold M of quasi-constant curvature. If F is recurrent, then it is parallel, M
and M are flat, and the transversal connection of M is flat.
Proof. As F is recurrent, from (3.12) and the fact that 5 = 0, we get
w(X)FY = u(Y)A, X +w(Y)A, X - B(X,Y)U - DX, Y)W
+ ofg(X, V)¢ - 0(Y)X}.

Replacing Y by £ to this and using (2.10), (3.1), (3.4), (3.5) and the fact that
F¢ = -V, we get —w(X)V = ¢(X)W. Taking the scalar product with U, we get
w = 0. Thus F is parallel with respect to V. From Theorem 4.3, we see that M
and M are flat, and the transversal connection of M is flat. ]

Definition. The structure tensor field F' of M is said to be Lie recurrent [9] if there
exists a 1-form ¥ on M such that

(5.1) (L, F)Y =9(X)FY, VX, Yel(TM),
where £, F' denotes the Lie derivative on M of F' with respect to X, that is,
(5.2) (L, F)Y = [X,FY] - F[X,Y]
= (VxF)Y —Vpy X + FVyX.
The structure tensor field F' is called Lie parallel if ¥ = 0.

Theorem 5.2. Let M be a half lightlike submanifold of an indefinite trans-Sasakian
manifold M of quasi-constant curvature. If F is Lie recurrent, then it is Lie parallel,
and M is a flat manifold with indefinite cosymplectic structure.

Proof. As F' is Lie recurrent, from (3.12), (5.1) and (5.2) we get

(5.3) IX)FY = w(Y)A X +w(Y)A, X — B(X,Y)U — D(X,Y)W
+a{g(X,Y)(—0(Y)X} —VpyX + FVy X.

Replacing Y by £ to (5.3) and using (2.6), (3.4) and F§ = —V, we have

(5.4) —I(X)V = VyX + FV:X + (X)W,
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Taking the scalar product with V, W and ( to this by turns, we get
(5.5) u(VyX) =0, w(Vy X) = —¢(X), O(VyX)=0.
On the other hand, taking Y = V to (5.3) and using (3.4), we have
HX)E=-B(X,V)U = D(X,V)W = VX + FVy X + au(X)(.
Applying F' and using (3.7), (5.5) and FU = FW = F( =0, we get
HX)V =Vy X + FV X + o(X)W.

Comparing this with (5.4), we get ¥ = 0. Therefore F' is Lie parallel.
Taking X = U to (5.3) and using (3.7), (3.8), (3.9) and (3.18), we get

w(Y)A U +w(Y)A, U — F(A FY) — 7(FY)U — p(FY)W
—A)Y +a{v(Y)(-6(Y)U} =0.

Taking the scalar product with ¢ to this equation and using (3.18), we get av(Y) = 0.
Taking Y = V to this result, we have o = 0. Therefore, £ = 0 and M is a flat
manifold with indefinite cosymplectic structure. O
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