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COMPLETE MONOTONICITY OF A DIFFERENCE BETWEEN
THE EXPONENTIAL AND TRIGAMMA FUNCTIONS

Feng Qi a, ∗ and Xiao-Jing Zhang b

Abstract. In the paper, by directly verifying an inequality which gives a lower
bound for the first order modified Bessel function of the first kind, the authors supply
a new proof for the complete monotonicity of a difference between the exponential
function e1/t and the trigamma function ψ′(t) on (0,∞).

1. Introduction

In [3, Lemma 2], the inequality

(1.1) ψ′(t) < e1/t − 1

on (0,∞) was discovered and employed, where ψ(t) denotes the digamma function

ψ(t) = [ln Γ(t)]′ =
Γ′(t)
Γ(t)

and Γ is the classical Euler gamma function which may be defined for <(z) > 0 by

Γ(z) =
∫ ∞

0
tz−1e−t d t.

The functions ψ′(z) and ψ′′(z) are respectively called the trigamma function and
the tetragamma function. As a whole, the derivatives ψ(k)(z) for k ∈ {0} ∪ N are
called polygamma functions.

An infinitely differentiable function f defined on an interval I is said to be a
completely monotonic function on I if it satisfies

(1.2) (−1)kf (k)(x) ≥ 0
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for all k ∈ {0}∪N on I. Some properties of the completely monotonic functions can
be found in, for example, [2, 8].

In [5, Theorem 3.1] and [6, Theorem 1.1], the following theorem was proved by
three methods totally.

Theorem 1.1. The function

(1.3) h(t) = e1/t − ψ′(t)

is completely monotonic on (0,∞) and

(1.4) lim
t→∞h(t) = 1.

The second main result of the paper [6] is [6, Theorem 1.2] which has been
referenced in [4, Section 1.2] and [5, Lemma 2.1] as follows.

Theorem 1.2. For k ∈ {0} ∪ N and z 6= 0, let

(1.5) Hk(z) = e1/z −
k∑

m=0

1
m!

1
zm

.

For <(z) > 0, the function Hk(z) has the integral representations

(1.6) Hk(z) =
1

k!(k + 1)!

∫ ∞

0
1F2(1; k + 1, k + 2; t)tke−zt d t

and

(1.7) Hk(z) =
1

zk+1

[
1

(k + 1)!
+

∫ ∞

0

Ik+2

(
2
√

t
)

t(k+2)/2
e−zt d t

]
,

where the hypergeometric series

(1.8) pFq(a1, . . . , ap; b1, . . . , bq; x) =
∞∑

n=0

(a1)n · · · (ap)n

(b1)n · · · (bq)n

xn

n!

for bi /∈ {0,−1,−2, . . . }, the shifted factorial (a)0 = 1 and

(1.9) (a)n = a(a + 1) · · · (a + n− 1)

for n > 0 and any real or complex number a, and the modified Bessel function of
the first kind

(1.10) Iν(z) =
∞∑

k=0

1
k!Γ(ν + k + 1)

(
z

2

)2k+ν

for ν ∈ R and z ∈ C.

When k = 0, the integral representations (1.6) and (1.7) may be written as

(1.11) e1/z = 1 +
∫ ∞

0

I1

(
2
√

t
)

√
t

e−zt d t
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and

(1.12) e1/z = 1 +
1
z

[
1 +

∫ ∞

0

I2

(
2
√

t
)

t
e−zt d t

]

for <(z) > 0. Hence, by the well known formula

(1.13) ψ(n)(z) = (−1)n+1

∫ ∞

0

un

1− e−u
e−zu d u

for <(z) > 0 and n ∈ N, see [1, p. 260, 6.4.1], the function h(t) defined by (1.3) has
the following integral representation

(1.14) h(t) = 1 +
∫ ∞

0

[
I1

(
2
√

u
)

√
u

− u

1− e−u

]
e−tu d u.

Proposition 1.3 (Hausdorff-Bernstein-Widder Theorem [8, p. 161, Theorem 12b]).
A necessary and sufficient condition that f(x) should be completely monotonic for
0 < x < ∞ is that

(1.15) f(x) =
∫ ∞

0
e−xt d α(t),

where α(t) is non-decreasing and the integral converges for 0 < x < ∞.

Combining the complete monotonicity in Theorem 1.1 and the integral represen-
tation (1.14) with the necessary and sufficient condition in Proposition 1.3, it was
revealed in [6] that

(1.16)
I1

(
2
√

u
)

√
u

≥ u

1− e−u
, u > 0.

Replacing 2
√

u by t in (1.16) yields [6, Theorem 1.3] below.

Theorem 1.4. For t > 0, we have

(1.17) I1(t) >
(t/2)3

1− e−(t/2)2
.

We note that the complete monotonicity in Theorem 1.1 is the basis of the in-
equality (1.17) and some results in the subsequent papers [4, 5].

The aim of this paper is, with the help of the integral representation (1.14) but
without using Proposition 1.3, to supply a new proof of Theorems 1.1 and 1.4 in a
converse direction with that in [4, 5, 6]. In other words, Theorem 1.4 will be firstly
and straightforwardly proved, and then Theorem 1.1 will be done.

2. A New Proof of Theorems 1.1 and 1.4

By the definition of the modified Bessel function Iν(z) in (1.10), it is easy to see
that
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I1

(
2
√

u
)

√
u

=
∞∑

k=0

1
k!Γ(k + 2)

uk > 1 +
1
2
u +

1
12

u2.

Hence, in order to prove (1.16), it suffices to show

(2.1) 1 +
1
2
u +

1
12

u2 ≥ u

1− e−u

which is equivalent to

eu
(
12− 6u + u2

)− 12− 6u− u2

>

(
1 + u +

u2

2
+

u3

3!
+

u4

4!
+

u5

5!

)[
3 + (u− 3)2

]− 12− 6u− u2

=
1

120
u5

[
3
4

+
(

1
2
− u

)2]

≥ 0.

Consequently, the proof of the inequality (1.16), that is, Theorem 1.4, is thus com-
plete.

Substituting the inequality (1.16) into the integral representation (1.14) leads to
h(t) > 0 and for k ∈ N

(−1)kh(k)(t) =
∫ ∞

0

[
I1

(
2
√

u
)

√
u

− u

1− e−u

]
uke−tu d u > 0

on (0,∞). As a result, the function h(t) is completely monotonic on (0,∞).
The limit (1.4) follows immediately from taking t → ∞ on both sides of the

integral representation (1.14). Theorem 1.1 is thus proved.

Remark 2.1. The inequality (2.1) is equivalent to

Q(u) = eu
(
12− 6u + u2

)− 12− 6u− u2 > 0.

An immediate differentiation yields

Q′(u) = eu
(
u2 − 4u + 6

)− 2(u + 3),

Q′′(u) = eu
(
u2 − 2u + 2

)− 2,

Q′′′(u) = u2eu.

Since Q′′′(u) and Q′′(0) = 0, it follows that Q′′(u) > 0 on (0,∞). Owing to Q′(0) = 0
and Q′′(u) > 0, it is derived that Q′(u) > 0. Finally, since Q(0) = 0, the function
Q(u) is positive on (0,∞). This gives an alternative proof of the inequality (2.1).

Remark 2.2. This is a slightly modified version of the preprint [7].
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